
        

SECANTS, TANGENTS AND THE HOMOGENEITY OF

FREUDENTHAL VARIETIES OF CERTAIN TYPE

Hajime Kaji & Osami Yasukura

0. Introduction

H. Freudenthal constructed, in a series of his papers (see [8] and its references), the
exceptional Lie algebras of type E8, E7, E6 and F4, with defining various projective
varieties. The purpose of our work is to study projective geometry for his varieties of
certain type, which are called varieties of planes in the symplectic geometry of Freuden-
thal (see [8, 4.11], [20, 2.3]). Precisely speaking, for a given simple, graded Lie algebra
g = Σgi of contact type over the complex number field C (see [23] and §1 below), set

V := {x ∈ g1|x �= 0, (adx)2g−2 = 0},

and define an algebraic set V in P∗(g1) to be the projectivization of V:

V := πV,

where π : g1 \ {0} → P∗(g1) is the natural projection. Then we call V ⊆ P∗(g1) (with
the reduced structure) the Freudenthal variety associated to the graded Lie algebra g,
which is a natural generalization of Freudenthal’s varieties mentioned above: Note that
V is not necessarily connected in this general setting.

Moreover set

S := {x ∈ g1|(adx)4g−2 �= 0},
T := {x ∈ g1|(adx)3g−2 �= 0, (adx)4g−2 = 0},
U := {x ∈ g1|(adx)2g−2 �= 0, (adx)3g−2 = 0}.

Then we have the following stratification of g1:

g1 = S � T � U � V � {0}.

In the literature, several results have been known about the structure of g1 as a g0-
space, case-by-case for each exceptional Lie algebra of types E8, E7, E6 and F4, from
the view-point of the invariant theory of prehomogeneous vector spaces (see [11], [13],
[16], [19]). By virtue of those results, it can be shown that the stratification gives
the orbit decomposition of the g0-space g1 for those exceptional Lie algebras, and also
that Freudenthal varieties V associated to the algebras of type E8, E7, E6 and F4 are
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respectively projectively equivalent to the 27-dimensional E7-variety arising from the 56-
dimensional irreducible representation, the orthogonal Grassmann variety of isotropic
6-planes in C12 (namely, the 15-dimensional spinor variety), the Grassmann variety of
3-planes in C6 and the symplectic Grassmann variety of isotropic 3-planes in C6, with
dimP∗(g1) = 55, 31, 19 and 13, respectively: for those homogeneous projective varieties,
we refer to [10, §23.3].

In this article we study the Freudenthal varieties V with the stratification of the
ambient space P∗(g1), from the view-point of projective geometry, not individually but
systematically in terms of abstract Lie algebras, without depending on the classification
of simple Lie algebras as well as on the known results for each case of types E8, E7, E6

and F4.
As a consequence of our work, it turns out that the stratification of g1 is closely

related to the secant and tangent loci of V ⊆ P∗(g1). In particular, for the exceptional
types, our work yields a projective-geometric characterization for g0-orbits in g1. Here,
the secant locus ΣP as well as the tangent locus ΘP of V with respect to a given point
P ∈ P∗(g1) are defined by

Σ◦
P :={Q ∈ V |∃R ∈ V \ {Q}, P ∈ Q ∗R}, ΣP := Σ◦

P ,

ΘP :={Q ∈ V |P ∈ TQV },

where we denote by Q ∗ R the projective line in P∗(g1) through Q and R, namely, the
secant line of V determined by Q and R, and by TQV the embedded tangent space to
V at Q in P∗(g1) (see, for example, [9]).

To state the consequence, we need some notation: Let H be the characteristic element
of the gradation g =

∑
gi, take E+ ∈ g2 and E− ∈ g−2 such that (E+, H, E−) form an

sl2-triple, and define a homogeneous quartic polynomial q over g1 as follows:

2q(x)E+ = (adx)4E−.

Then, the consequence is

Theorem A. We have:
(1) If s ∈ S, then

Σπs = Σ◦
πs =

{
π

(
(ad s)3E− ±

√
3q(s)s

)}
, Θπs = ∅.

(2) If t ∈ T , then
Σπt = ∅, Θπt = {π

(
(ad t)3E−

)
}.

(3) Assume that V is irreducible. If u ∈ U , then dim Σπu ≥ 1 and Θπu �= ∅.

In particular, it turns out that non-empty Freudenthal varieties V ⊆ P∗(g1) are so-
called varieties with one apparent double point (Corollary A2), that is, for a general
point P ∈ P∗(g1) there exists a unique secant line of V through P (see [21, IX]). We
also show that if V is neither empty nor irreducible, then V is a disjoint union of two
linear subspaces of P2n−1 of dimension n− 1, where 2n = dim g1 (Corollary B2).

On the other hand, we discuss the homogeneity of V as well. Consider a subalgebra
D0 of g0 as follows:

D0 := Ker(adE+|g0),

and denote by G the connected, closed subgroup of Int g, the inner automorphism group
of g, with Lie algebra D0. Then, we show
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Theorem B (Cf. [18, (5.8), (2)]). G acts transitively on each of irreducible components
of V .

Besides the results above, we discuss the dimension of V (Corollary B1 (1)) and the
projective lines contained in V (Corollary B3). Moreover, for the tangent variety of V ,
we discuss its defining equation (Corollary A5), its singular locus (Corollary A6) and a
certain duality (Corollary B1 (4)), where the tangent variety of V is by definition the
union of embedded tangent spaces to V . On the other hand, we also discuss relationship
among the strata of g1 (Corollaries A1, A3 and A4).

The contents of this article are organized as follows: In §1 we prove some results on
g1 and the stratification above, which are used in §2. Here we use a certain ternary
product in g1, to avoid raging flood of Lie brackets. In the literature, several authors
have introduced various ternary products on g1 along with establishing their theories
of triple systems ([6], [7], [17], [25]). However, those ternary products themselves are
essentially same, as is easily seen. In this article we use the one introduced by K.
Yamaguti and H. Asano [25], since their product seems suitable for our computation.
In §2 we prove firstly the assertion for secant loci in Theorem A (1), and then we give
some corollaries to this result. Using those results, we next prove Theorem B and its
corollaries, before continuing the proof of Theorem A. Then, using the results obtained
so far, we prove the remaining part of Theorem A.

Finally we should mention that S. Mukai announced a theorem [18, (5.8)] on cubic
Veronese varieties without proofs. Our work was originated by looking for proofs of the
corresponding statements for Freudenthal varieties (Theorem B, Corollaries A2, A5, B1
(3) and (4)). In fact, we see from his list [18, (5.10)] of cubic Veronese varieties that
the notion of our Freudenthal varieties seems to coincide with that of cubic Veronese
varieties. However, to the best of our knowledge, there is no a priori proof in the
literature for this coincidence.

1. Preliminaries

Let g be a simple Lie algebra of rank ≥ 2, let

g = g−2 + g−1 + g0 + g1 + g2

be a graded decomposition of contact type, and let H be the characteristic element: we
have

gi = {x ∈ g|(adH)x = ix}

and
[gi, gj ] ⊆ gi+j , g1 �= 0, dim g±2 = 1

(see [23]). Taking E+ ∈ g2 and E− ∈ g−2 such that (E+, H, E−) form an sl2-triple with
H = [E+, E−], we define a tri-linear map, [, , ] : g1×g1×g1 → g1 and a skew-symmetric
form, 〈, 〉 : g1 × g1 → C by

2[a, b, c] =[c, [b, [a, E−]]] + [c, [a, [b, E−]]],

2〈a, b〉E+ =[a, b]

with a, b, c ∈ g1. It is easily shown that the skew-symmetric form 〈, 〉 is non-degenerate
since g is simple (see [23, Lemma 3.2 (2)]). Moreover, we have the following
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Fact (Yamaguti-Asano). For any v, w, x, y, z ∈ g1, the following formulas hold:
(S1) [xyz] = [yxz].
(S2) [xyz]− [xzy] = 〈x, z〉y − 〈x, y〉z + 2〈y, z〉x.
(S3) [vw[xyz]] = [[vwx]yz] + [x[vwy]z] + [xy[vwz]].

Obviously (S1) follows from the definition, and (S2) is not difficult to show. However,
some complicated computations are necessary to show (S3). Since the only reference
for the proof of this fact is [3] written in Japanese, we give a proof for (S3) (including
(S2)) in Appendix for the convenience of the readers. In general, a vector space with
a ternary product 〈, 〉 and a skew-symmetric form [, ] satisfying (S1), (S2) and (S3) is
called a symplectic triple system ([1], [3], [25]).

Now, for the subalgebra D0 = Ker(adE+|g0) of g0, it is easily shown that

g0 = D0 ⊕ CH.

On the other hand, for a, b ∈ g1 we define a linear map L(a, b) : g1 → g1 by

L(a, b)c := [abc]

with c ∈ g1. If we define a× b ∈ g0 for a, b ∈ g1 by

−2a× b = [b, [a, E−]] + [a, [b, E−]],

then [a× b, c] = [abc] = L(a, b)c and a× b ∈ D0 (see [15, Proposition 2 (a)]). Since the
adjoint action of g0 on g1 is faithful (see [23, Lemma 3.2 (1)]), we may identify L(a, b)
with a × b, so that we may consider L(a, b) ∈ D0. Note that with the notation above,
we have

S = {s ∈ g1|〈s, [sss]〉 �= 0},
T = {t ∈ g1|[ttt] �= 0, 〈t, [ttt]〉 = 0},
U = {u ∈ g1|L(u, u) �= 0, [uuu] = 0},
V = {v ∈ g1|v �= 0, L(v, v) = 0},

and q(a) = 〈a, [aaa]〉. Furthermore, we have

Lemma 1. The subalgebra D0 is linearly spanned by the set {L(a, b)|a, b ∈ g1}.
Proof. Since g is simple, we have [[g1, E−], g1] = g0 = D0 ⊕ CH (see [23, Lemma 3.1]).
On the other hand, according to [15, Proposition 2 (b)], we have

[[a, E−], b] = a× b + 〈a, b〉H
for a, b ∈ g1 (see also the proof of (S2) in Appendix). Thus the result follows. �

Lemma 2. For any a, b ∈ g1 and D ∈ D0, we have 〈Da, b〉+ 〈a, Db〉 = 0.

Proof. From the definition of D0 and the Jacobi identity we obtain

0 = 2〈a, b〉D(E+) = D([a, b]) = [Da, b] + [a, Db]. �

Remark. It is known that Lemmas 1 and 2 above hold for any simple, symplectic triple
systems (see [1, Lemma 2.1 and Theorem 2.9]). On the other hand, all the results
below in this section are deduced from Lemmas 1, 2, the non-degeneracy of 〈, 〉, and
the axioms of symplectic triple systems, (S1), (S2) and (S3). According to [1, Theorem
2.3] (see also [25, Theorem 2]), a symplectic triple system is simple if and only if 〈, 〉
is non-degenerate. Therefore it turns out that all the results in this section hold for
arbitrary simple, symplectic triple systems.
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Lemma 3. For any a, b, c ∈ g1 and D ∈ D0, we have D[abc] = [Dabc]+[aDbc]+[abDc].

Proof. By virtue of Lemma 1, we may assume that D is of the form L(d, e) with d, e ∈ g1.
Then the claim is nothing but (S3). �

Proposition 1. For any x ∈ V, we have:
(1) (Asano [2]) L(a, x)x = 3〈a, x〉x for any a ∈ g1. In particular, if L(a, x) = 0,

then 〈a, x〉 = 0.
(2) x ∈ D0x.

Proof. (1) It follows from (S1), (S2) and x ∈ V that

L(a, x)x = [xax] = [xxa] + 〈x, x〉a− 〈x, a〉x + 2〈a, x〉x = 3〈a, x〉x.

(2) This follows from (1) and the non-degeneracy of 〈, 〉. �

Proposition 2. For any a, b, c, d ∈ g1, we have 〈L(a, b)c, d〉 = 〈L(c, d)a, b〉.
Proof. It follows from (S2) that

〈[abc], d〉 = 〈[acb], d〉+ 〈a, c〉〈b, d〉 − 〈a, b〉〈c, d〉+ 2〈b, c〉〈a, d〉,
〈[cda], b〉 = 〈[cad], b〉+ 〈c, a〉〈d, b〉 − 〈c, d〉〈a, b〉+ 2〈d, a〉〈c, b〉.

Therefore, using (S1) and Lemma 2, we have

〈[abc], d〉 − 〈[cda], b〉 = 〈[acb], d〉 − 〈[cad], b〉 = 〈[acb], d〉+ 〈b, [acd]〉 = 0. �

Proposition 3. For any x ∈ V and D, E ∈ D0, we have:
(1) (Asano [2]) L(Dx, x) = 0.
(2) 〈Dx, x〉 = 0.
(3) 〈Dx, Ex〉 = 0.
(4) L(Dx, Ex)x = 0.

Proof. By virtue of Lemma 1, it suffices to show these formulas for D, E ∈ D0 of the
form L(a, b) with a, b ∈ g1.

(1) It follows from (S3), (S1) and x ∈ V that

0 = [ab[xxc]] = [[abx]xc] + [x[abx]c] + [xx[abc]] = 2[[abx]xc].

(2) This follows from (1) and Proposition 1 (1). This follows from Proposition 2 as
well: Indeed, we have 〈L(a, b)x, x〉 = 〈L(x, x)a, b〉 = 0.

(3) It follows from Proposition 2 and (1) that

〈L(a, b)x, L(c, d)x〉 = 〈L(x, L(c, d)x)a, b〉 = 0.

(4) It follows from (S2) that

L([abx], [cdx])x = [[abx]x[cdx]] + 〈[abx], x〉[cdx]− 〈[abx], [cdx]〉x + 2〈[cdx], x〉[abx],

which is equal to zero: Indeed, L([abx], x) = 0 follows from (1), 〈[abx], x〉 = 〈[cdx], x〉 = 0
from (2), and 〈[abx], [cdx]〉 = 0 from (3). �
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Proposition 4. If S = ∅, then T = ∅ and V = ∅.

Proof (Asano [4]). For any a, b ∈ g1 and λ, µ ∈ C, we have

0 = q(λa + µb) =λ4q(a) + λ3µ(〈b, [aaa]〉+ 〈a, [baa]〉+ 〈a, [aba]〉+ 〈a, [aab]〉)
+ λ2µ2(· · · ) + · · ·+ µ4q(b).

In particular, we have 〈b, [aaa]〉+ 〈a, [baa]〉+ 〈a, [aba]〉+ 〈a, [aab]〉 = 0. Since it follows
from (S1) and (S2) that

(†) [baa] = [aba] = [aab]− 3〈a, b〉a,

and it follows from Lemma 2 that 〈a, [aab]〉 = 〈b, [aaa]〉, we have

(‡) 〈a, [baa]〉 = 〈a, [aba]〉 = 〈a, [aab]〉 = 〈b, [aaa]〉.

Therefore we have 4〈b, [aaa]〉 = 0 for any b ∈ g1, so that [aaa] = 0 since 〈, 〉 is non-
degenerate.

Similarly to the argument above, we obtain from [aaa] = 0 that [baa]+[aba]+[aab] =
0. Using (†), we have

3[aab] = 6〈a, b〉a.

Therefore, if L(a, a) = 0, then 〈a, b〉a = 0 for any b ∈ g1, so that a = 0 since 〈, 〉 is
non-degenerate. �

Proposition 5. For any a ∈ g1, we have:

(1) L(a, [aaa]) = 0.
(2) L(a, a)2a = 3q(a)a.
(3) L([aaa], [aaa]) = −3q(a)L(a, a). In particular, a ∈ T if and only if [aaa] ∈ V.
(4) [[aaa][aaa][aaa]] = −9q(a)2a.
(5) q([aaa]) = 9q(a)3.

Proof. (1) Setting v = w = x = y := a in (S3), using (S1), we have 2[[aaa]az] = 0.
(2) It follows from (S2) and (1) that

[aa[aaa]] = [a[aaa]a] + 〈a, [aaa]〉a− 〈a, a〉[aaa] + 2〈a, [aaa]〉a = 3〈a, [aaa]〉a.

(3) It follows from (S3) that

[aa[[aaa]az]] = [[aa[aaa]]az] + [[aaa][aaa]z] + [[aaa]a[aaz]].

Then it follows from (1) and (2) that 0 = 3q(a)[aaz] + [[aaa][aaa]z].
(4) It follows from (3) and (2) that

L([aaa], [aaa])[aaa] = −3q(a)L(a, a)[aaa] = −9q(a)2a.

(5) This follows from (4). �
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Proposition 6. For any D ∈ D0 and x ∈ V, we have q(Dx) = 0.

Proof. It follows from Proposition 3 (4) and Lemma 3 that

0 = D([DxDxx]) = [D2xDxx] + [DxD2xx] + [DxDxDx],

so that [DxDxDx] = −2[D2xDxx]. Hence it follows from Proposition 3 (3) that

〈Dx, [DxDxDx]〉 = −2〈Dx, [D2xDxx]〉 = 0. �

Proposition 7. For a = u + v with [uuu] = 0 and v ∈ V, we have:
(1) L(a, a) = L(u, u) + 2L(u, v).
(2) [aaa] = 3[uuv]− 6〈u, v〉(u− v).
(3) q(a) = 12〈u, v〉2.

Proof. (1) This follows from (S1) and v ∈ V.
(2) It follows from (1), [uuu] = 0, (S2) and Proposition 1 (1) that

[aaa] = [uuu] + [uuv] + 2[uvu] + 2[uvv]

= [uuv] + 2([uuv] + 〈u, u〉v − 〈u, v〉u + 2〈v, u〉u) + 2(3〈u, v〉v)

= 3[uuv]− 6〈u, v〉u + 6〈u, v〉v.

(3) It follows from (2), Lemma 2, Proposition 3 (2) and [uuu] = 0 that

q(a) = 3〈u, [uuv]〉+ 3〈v, [uuv]〉 − 6〈u, v〉〈u + v, u− v〉
= −3〈[uuu], v〉+ 12〈u, v〉2

= 12〈u, v〉2. �

Remark. It is easily shown that V ⊆ P∗(g1) has no trisecant line, where a trisecant line
of V ⊆ P∗(g1) is by definition a projective line L in P∗(g1) such that 3 ≤ #(L∩V ) <∞.
Indeed, suppose that there exist x, y ∈ V such that πx �= πy and {πx, πy} ( πx∗πy∩V ,
so that we may assume that x + y ∈ V. Then it follows from Proposition 7 (1) that
λx + µy ∈ V for any λ, µ ∈ C, that is, πx ∗ πy ⊆ V .

Proposition 8. For u ∈ g1 with [uuu] = 0 and v ∈ V, we have:
(1) L(u, [uuv]) = 2〈u, v〉L(u, u).
(2) [uuv] ∈ V ∪ {0}. Moreover, Cv + C[uuv] ⊆ V ∪ {0}.

Proof. (1) Setting a := u + v, we have

0 = L(a, [aaa]) (* Proposition 5 (1))

= L(u + v, 3[uuv]− 6〈u, v〉(u− v)) (* Proposition 7 (2))

= 3L(u, [uuv]) + 3L(v, [uuv])− 6〈u, v〉L(u + v, u− v)

= 3L(u, [uuv])− 6〈u, v〉L(u, u) (* Proposition 3 (1), (S1), v ∈ V).

(2) Similarly to the above, setting a := u + v, we have

0 = L([aaa], [aaa]) + 3q(a)L(a, a) (* Proposition 5 (3))

= 9{L([uuv], [uuv])− 4〈u, v〉L(u, [uuv]) + 4〈u, v〉2(L(u, u)− 2L(u, v))}
+ 36〈u, v〉2(L(u, u) + 2L(u, v)) (* Propositions 7, 3 (1), (S1), v ∈ V)

= 9{L([uuv], [uuv])− 4〈u, v〉L(u, [uuv]) + 8〈u, v〉2L(u, u)}.
Then, using (1), we obtain L([uuv], [uuv]) = 0. It follows from Proposition 3 (1) that
L(v, [uuv]) = 0, so that the latter part follows as well. �
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Proposition 9. For a ∈ g1, we have:
(1) 3L(a, a)2b = 8〈b, [aaa]〉a + 8〈a, b〉[aaa] + 〈a, [aaa]〉b for any b ∈ g1.
(2) If a ∈ S, then the linear map L(a, a) has full rank.

Proof. (1) It follows from (S2) that

L(a, a)2b = [aa[aba]] + 3〈a, b〉[aaa].

Moreover it follows from (S2) that [aa[aba]] = [a[aba]a] + 3〈a, [aba]〉a. Since 〈a, [aba]〉 =
〈b, [aaa]〉 by Proposition 2, we have

(#) [aa[aba]] = [a[aba]a] + 3〈b, [aaa]〉a.

On the other hand, it follows from (S1) and (S3) that [ab[aaa]] = 2[a[aba]a] + [aa[aba]],
while it follows from (S2) and Proposition 5 (1) that [ab[aaa]] = 〈a, [aaa]〉b−〈a, b〉[aaa]+
2〈b, [aaa]〉a. Therefore, we have

(##) 2[a[aba]a] + [aa[aba]] = 〈a, [aaa]〉b− 〈a, b〉[aaa] + 2〈b, [aaa]〉a.

Thus it follows from (#) and (##) that

3[aa[aba]] = 〈a, [aaa]〉b− 〈a, b〉[aaa] + 8〈b, [aaa]〉a.

Therefore, combining this with the first formula, we obtain the required result.
(2) (Asano [5]) Note that g1 = Ca⊕C[aaa]⊕ (Ca⊕C[aaa])⊥: Indeed, it follows from

〈a, [aaa]〉 �= 0 that Ca ∩ C[aaa] = (Ca + C[aaa]) ∩ (Ca + C[aaa])⊥ = {0}, and from the
non-degeneracy of 〈, 〉 that dim(Ca + C[aaa]) + dim(Ca + C[aaa])⊥ = dim g1.

Now, it is clear from (1) that

L(a, a)2|Ca+C[aaa] = 3〈a, [aaa]〉1Ca+C[aaa],

L(a, a)2|(Ca+C[aaa])⊥ =
1
3
〈a, [aaa]〉1(Ca+C[aaa])⊥ .

Therefore L(a, a)2 has full rank if 〈a, [aaa]〉 �= 0, so does L(a, a). �

2. Proofs and Corollaries

Proof of Theorem A. (1) We first show the assertion for secant loci: we prove the
following

Theorem A’. For any s ∈ S there exists a unique pair {x, y} ⊆ V such that s = x+y,
and we have

{x, y} =

{
1
2
s +

1
2
√

3q(s)
[sss],

1
2
s− 1

2
√

3q(s)
[sss]

}
.

Proof. If z = λs+µ[sss] with λ, µ ∈ C, then it follows from (S1), Proposition 5 (1) and
(3) that

L(z, z) = λ2L(s, s) + 2λµL(s, [sss]) + µ2L([sss], [sss])

= (λ2 − 3µ2q(s))L(s, s).
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Taking λ := 1/2 and µ := ±1/2
√

3q(s), we see that λ2 − 3µ2q(s) = 0, so that x, y ∈ V
with s = x + y.

For the uniqueness, it follows from Proposition 7 (2) and (3) that

x− y = ± 1√
3q(s)

[sss]

for such a pair {x, y}. Therefore {x, y} is uniquely determined by s. �

Before proving the remaining part of Theorem A, we give some corollaries to Theorem
A’, and show Theorem B and its corollaries.

Corollary A1. S = {x + y ∈ g1|x, y ∈ V, 〈x, y〉 �= 0}.

Proof. This follows from Proposition 7 (3) and Theorem A’. �

Corollary A2 (Cf. [18, (5.8), (3)]). If V �= ∅, then V is non-degenerate in P∗(g1),
and moreover V is a variety with one apparent double point. In particular, for any
a ∈ g1 \ {0}, there exists x ∈ V such that 〈a, x〉 �= 0 if V �= ∅.

Proof. Recall that V is said to be non-degenerate if there is no hyperplane in P∗(g1)
containing V . To prove the non-degeneracy of V , suppose that there exists a proper
subspace s of g1 such that V ⊆ P∗(s). Since πS is a non-empty (Proposition 4), Zariski
open subset of an irreducible space P∗(g1), πS is dense in P∗(g1). Therefore, there exists
a point R ∈ πS \ P∗(s), and, according to Theorem A’, we have R ∈ P ∗ Q for some
P, Q ∈ V . Then we have P ∗ Q ⊆ P∗(s), so that R ∈ P∗(s). This is a contradiction,
and V is non-degenerate. Moreover it follows from Theorem A’ that for any point R in
the dense open πS, there exists a unique secant line through R, that is, P ∗ Q above,
so that V is a variety with one apparent double point.

For the last part, since 〈, 〉 is non-degenerate, a⊥ := {b ∈ g1|〈a, b〉 = 0} is a proper
subspace of g1. Therefore we have V \ a⊥ �= ∅ since V is non-degenerate. �

Corollary A3. S = ∅ if and only if V = ∅, that is, V = ∅, and in that case T = ∅.

Proof. This follows from Proposition 4 and Theorem A’. �

Proof of Theorem B. We prove

Theorem B’. We have:

(1) G acts transitively on each of irreducible components of V, and txV = D0x for
any x ∈ V, where txV is the Zariski tangent space to V at x.

(2) D0x = (D0x)⊥ with 2 dimD0x = dim g1 for any x ∈ V, and g1 = D0x ⊕ D0y
for any x, y ∈ V with 〈x, y〉 �= 0.

Proof. (1) Let G0 be the connected, closed subgroup of Int g with Lie algebras g0. We
first show

Claim. G0 acts transitively on S.

Proof of Claim. We may assume that S �= ∅, so that S is irreducible since it is a Zariski
open subset of an irreducible space g1. Moreover, since S is stable under the action of
G0, it suffices to show that

[g0, s] = g1
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for any s ∈ S. Take an arbitrary a ∈ g1. It follows from Proposition 9 (2) that there
exists b ∈ g1 such that a = L(s, s)b. On the other hand, it follows from (S2) that
L(s, s)b = (L(s, b) + 3〈s, b〉 adH)s ∈ [g0, s]. Thus, we have a ∈ [g0, s]. �

Now, it follows from g0 = D0⊕CH that G0 = G ·C×. Taking account of Proposition
1 (2), we see that to show (1) of Theorem B’ it suffices to show that G0 acts transitively
on each of irreducible components of V. Take an arbitrary x ∈ V. There exists y ∈ V
such that 〈x, y〉 �= 0 by Corollary A2. Then we show that for any x′ in a Zariski open
neighborhood V \ y⊥ of x in V, there exists g ∈ G0 such that gx = x′, which implies
the required result. Since it follows from Proposition 7 (3) that x + y, x′ + y ∈ S, there
exists g ∈ G0 such that g(x+ y) = x′ + y by Claim, where we note that gx, gy ∈ V since
V is G0-stable. Therefore, it follows from Theorem A’ that

{gx, gy} = {x′, y}.

If gx = x′, then there is nothing to prove: Otherwise, we have gx = y and gy = x′, so
that g2x = x′. This completes the proof.

(2) We note that

(♣) dimD0x ≤
1
2

dim g1

holds for any x ∈ V: Indeed, it follows from Proposition 3 (3) that D0x ⊆ (D0x)⊥, and
from the non-degeneracy of 〈, 〉 that dim(D0x)⊥ = dim g1 − dimD0x.

Now, we show that

(♠) g1 = D0x + D0y.

Take an arbitrary a ∈ g1, and set s := x+y. Since 〈x, y〉 �= 0, it follows from Proposition
7 (3) that s ∈ S. Then, it follows from Proposition 9 (2) that there exists b ∈ g1 such
that a = L(s, s)b. On the other hand, it follows from x, y ∈ V and (S2) that

L(s, s)b = [xyb] + [yxb]

= [xby] + 〈x, b〉y − 〈x, y〉b + 2〈y, b〉x
+ [ybx] + 〈y, b〉x− 〈y, x〉b + 2〈x, b〉y

= ([byx] + 3〈y, b〉x) + ([bxy] + 3〈x, b〉y),

which is contained in D0x + D0y by Proposition 1 (2). Thus we have a ∈ D0x + D0y.
Combining (♣) and (♠), we obtain that D0x∩D0y = 0 for any y ∈ V with 〈x, y〉 �= 0:

We note that for any x ∈ V there exists y ∈ V such that 〈x, y〉 �= 0 (Corollary A2).
Thus the equality holds in (♣), and the required results follow. �

Remark 1. It follows from Claim above that D0s = [sss]⊥ for any s ∈ S: Indeed, note
that it follows from Lemma 1, Propositions 2 and 5 (1) that D0a ⊆ [aaa]⊥ for any
a ∈ g1 since 〈L(b, c)a, [aaa]〉 = 〈L(a, [aaa])b, c〉 = 0. Since [sss]⊥ has codimension 1 in
g1, the assertion follows from D0s + Cs = g0s = g1.

Remark 2. One can deduce Theorem B’ (1) from Linear Section Theorem [15, Theorem
B], using a generalization of a theorem of Richardson [24, Lemma, p. 469], as well as
from Theorem B’ (2), using the finiteness theorem for the number of nilpotent orbits
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[24, Proposition 2, p. 469]: Note that both of those proofs depend essentially on the
argument [24, Lemma, p. 469]. On the other hand, (2) follows from (1) in Theorem B’
by Theorem A’, as follows:

Proof of (1) ⇒ (2) in Theorem B’. Similarly to the proof of (2) above, it suffices to
show (♠) for x, y ∈ V with 〈x, y〉 �= 0. Take an arbitrary a ∈ g1, and consider a line in
g1 as follows:

σ : C→ g1;λ #→ (x + y) + λa.

Since σ(0) = x + y ∈ S by Proposition 7 (3), for a sufficiently small ε > 0 we have
σ(λ) ∈ S for any λ ∈ ∆, where we set ∆ := {λ ∈ C||λ| < ε}. Then it follows from
Theorem A’ that there exist curves ξ, η : ∆ → V such that ξ(0) = x, η(0) = y and

σ(λ) = ξ(λ) + η(λ)

for any λ ∈ ∆. Then we have

a =
d

dλ

∣∣∣∣
λ=0

σ(λ) =
d

dλ

∣∣∣∣
λ=0

ξ(λ) +
d

dλ

∣∣∣∣
λ=0

η(λ) ∈ txV + tyV.

According to (1), we have txV = D0x and tyV = D0y, so that a ∈ D0x + D0y. �

Recall that the tangent variety of V , denoted by TanV , is the union of embedded tan-
gent spaces to V , and the projective dual of V , denoted by V ∨, is the set of hyperplanes
tangent to V (see, for example, [9, §3]): In other words, we set

TanV :=
⋃

P∈V

TP V ⊆ P∗(g1), V ∨ :=
⋃

P∈V

(TP V )∨ ⊆ P∗(g1)∗,

where we define P∗(g1)∗ to be P∗(g∗1), that is, the set of hyperplanes in P∗(g1), and for
a linear subspace s ⊆ g1, we define P∗(s)∨ to be P∗(Ker(g∗1 � s∗)) ⊆ P∗(g1)∗, that is,
the set of hyperplanes containing P∗(s). From Theorem B’ we immediately obtain

Corollary B1. Assume that V �= ∅. Then we have:

(1) V is equi-dimensional with 2 dimV + 1 = dimP∗(g1).
(2) TP V = P∗(D0x) for any P ∈ V with x ∈ π−1P .
(3) (Cf. [18, (5.8), (4)]) TP V = (TP V )∨ for any P ∈ V .
(4) (Cf. [18, (5.8), (1)]) TanV = V ∨.

Here we identify P∗(g1) with its dual space P∗(g1)∗ by means of the non-degenerate,
skew-symmetric form 〈, 〉.

Proof. (1) follows directly from Theorem B’. For (2), it follows from Theorem B’ (1)
that TP V = P∗(Cx + D0x) (see, for example, [14, Lemma 2.1]), which is equal to
P∗(D0x) by Proposition 1 (2). Now, (3) follows from Theorem B’ (2) since we have
(D0x)⊥ = Ker(g∗1 � (D0x)∗), and (4) follows as well. �

Remark. Since V is not necessarily irreducible, Corollary B1 (1) does not follow directly
from Corollary A2.
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Corollary B2. If V is neither empty nor irreducible, then V ⊆ P∗(g1) is a disjoint
union of two linear varieties of dimension n− 1 in P2n−1:

V $ Pn−1 � Pn−1,

where 2n = dim g1.

Proof. Let {Vi}1≤i≤k be the set of irreducible components of V with k ≥ 2, and let si

be the linear subspace of g1 spanned by π−1Vi. It follows from Theorem B that each Vi

is an orbit of G, so that si is G-stable. Moreover, by virtue of an argument by Zak [26,
pp. 49–50] we see that si is an irreducible G-module. Since P∗(si) has a unique closed
orbit of G (see, for example, [22, Ch. 1, §4.6.1, Lemma]), we see that si∩ sj = 0 if i �= j.
Taking account of the non-degeneracy of V (Corollary A2), we obtain

g1 = s1 ⊕ · · · ⊕ sk.

On the other hand, we have dim si ≥ dimπ−1Vi = n by Corollary B1 (1). Therefore, it
follows that g1 = s1 ⊕ s2 with k = 2 and Vi = P∗(si) $ Pn−1. �

Corollary B3. If V �= ∅ and U �= ∅, then V is covered by the lines in P∗(g1) contained
in V .

Proof. We may assume that V is irreducible: Otherwise the claim is obvious from
Corollary B2. Take an arbitrary u ∈ U . It suffices to show that

V \ (L(u, u)V ∪Ker L(u, u)) �= ∅.

Indeed, if v ∈ V \ (L(u, u)V ∪ Ker L(u, u)), then πv �= π[uuv] ∈ P∗(g1), and it follows
from Proposition 8 (2) that the secant line πv∗π[uuv] is contained in V . Taking account
of the homogeneity of V (Theorem B’ (1)), we see that this holds for any v ∈ V.

Now, we have L(u, u)V ⊆ L(u, u)g1 ⊆ u⊥ since 〈[uua], u〉 = −〈a, [uuu]〉 = 0 for any
a ∈ g1 by Lemma 2. Therefore we have

V \ (L(u, u)V ∪Ker L(u, u)) ⊇ V \ (u⊥ ∪Ker L(u, u)).

On the other hand, we have V \(u⊥∪Ker L(u, u)) �= ∅: Indeed, u⊥ as well as Ker L(u, u)
are proper subspaces of g1, and V is irreducible and non-degenerate (Corollary A2).
Thus the claim follows. �

Corollary B4. If V is irreducible, then the linear map L(u, u) has rank at least 2 for
any u ∈ U .

Proof. We have rkL(u, u) ≥ 1 since L(u, u) �= 0. Suppose rkL(u, u) = 1: we set

Q := P∗(L(u, u)g1) ∈ P∗(g1).

Since π[uuv] = Q for any v ∈ V \ Ker L(u, u), it follows from Proposition 8 (2) that
P ∗Q ⊆ V for any P ∈ V \ P∗(KerL(u, u)) with P �= Q. Since V is irreducible, V is a
cone with vertex Q. On the other hand, it follows from Theorem B that V is smooth.
Therefore V is a linear variety. This contradicts to Corollaries A2 and B1 (1). �

Now we return to proving Theorem A.
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Proof of Theorem A (continued). (1) For the tangent locus, suppose that πs ∈ TπxV
for some x ∈ V. Then it follows from Corollary B1 (2) that s = Dx for some D ∈ D0,
and from Proposition 6 that q(s) = q(Dx) = 0. This contradicts to s ∈ S.

(2) For the secant locus, the assertion easily follows from Proposition 7: Indeed,
suppose that πt ∈ πx ∗ πy for some x, y ∈ V. Then we may assume that t = x + y.
We see from Proposition 7 (2) and (3) that [ttt] �= 0 implies 〈x, y〉 �= 0, which implies
q(t) = 12〈x, y〉2 �= 0. This contradicts to t ∈ T .

Next for the tangent locus, it follows from Proposition 5 (3) that [ttt] ∈ V. Moreover,
we have t ∈ D0[ttt]: Indeed, for any a, b ∈ g1, it follows from Propositions 2 and 5 (1)
that 〈L(a, b)[ttt], t〉 = 〈L([ttt], t)a, b〉 = 0, so that 〈D0[ttt], t〉 = 0 by Lemma 1. Now,
our claim follows from Theorem B’ (2). Therefore it follows from Corollary B1 (2) that
π[ttt] ∈ Θπt.

To complete the proof, it suffices to show that for any t ∈ T , if t ∈ txV for some
x ∈ V, then πx = π[ttt]. We may assume that there is a curve ξ : ∆ → V such that
ξ(0) = x and

lim
λ→0

1
λ
{ξ(λ)− ξ(0)} = t,

where ∆ := {λ ∈ C||λ| < ε} with a sufficiently small ε > 0. Setting

τ(λ) :=
1
λ
{ξ(λ)− ξ(0)}

with λ ∈ ∆ \ {0}, we have limλ→0 τ(λ) = t. Moreover, by the assumption [ttt] �= 0,
taking ε smaller if necessary, we may assume that [τ(λ)τ(λ)τ(λ)] �= 0 for any λ ∈ ∆\{0}.
On the other hand, it follows from Proposition 7 (2) that

λ3[τ(λ)τ(λ)τ(λ)] = −6〈ξ(λ),−ξ(0)〉(ξ(λ) + ξ(0)).

Thus it follows that 〈ξ(λ),−ξ(0)〉 �= 0, so that τ(λ) ∈ S by Proposition 7 (3). Now, it
follows from Theorem A (1) that

{πξ(λ), πξ(0)} = Σ◦
πτ(λ) =

{
π

(
[τ(λ)τ(λ)τ(λ)]±

√
3q(τ(λ))τ(λ)

)}
.

Therefore, using limλ→0 q(τ(λ)) = q(t) = 0, we have

πx = lim
λ→0

πξ(λ) = lim
λ→0

π
(
[τ(λ)τ(λ)τ(λ)]±

√
3q(τ(λ))τ(λ)

)
= lim

λ→0
π ([τ(λ)τ(λ)τ(λ)])

= π[ttt]. �

(3) It follows from Corollary A2 that there exists v ∈ V such that 〈u, v〉 �= 0. If
z = λu + µ[uuv] with λ, µ ∈ C, then it follows from Proposition 8 that

L(z, z) = λ2L(u, u) + 2λµL(u, [uuv]) + µ2L([uuv], [uuv])

= λ(λ + 4µ〈u, v〉)L(u, u).

Taking (λ, µ) = (1,−1/4〈u, v〉), (0, 1/4〈u, v〉) with λ(λ + 4µ〈u, v〉) = 0, we set

{x, y} :=
{

u− 1
4〈u, v〉 [uuv],

1
4〈u, v〉 [uuv]

}
.
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Then we have that u = x + y with x, y ∈ V: Note that it follows from Proposition 8 (1)
that [uuv] �= 0 since L(u, u) �= 0 and 〈u, v〉 �= 0.

Thus we see that π[uuv] ∈ Σ◦
πu for any v ∈ V with 〈u, v〉 �= 0, so that

π(L(u, u)(V \ u⊥) \ {0}) ⊆ Σ◦
πu.

Since V is irreducible, we obtain π(L(u, u)V \ {0}) ⊆ Σπu. On the other hand, it
follows from Corollary A2 that π(L(u, u)V \ {0}) is non-degenerate in P∗(L(u, u)g1),
so that dimπ(L(u, u)V \ {0}) ≥ 1 since dimP∗(L(u, u)g1) ≥ 1 by Corollary B4 and
π(L(u, u)V \ {0}) is irreducible. Thus we obtain dim Σπu ≥ 1.

Next for the tangent locus, we note that for u ∈ U and v ∈ V it follows

(F) 〈u, v〉 = 0, [uuv] �= 0⇒ u ∈ D0[uuv].

Indeed, for any a, b ∈ g1 it follows from Propositions 2 and 8 (1) that

〈L(a, b)[uuv], u〉 = 〈L([uuv], u)a, b〉 = 2〈u, v〉〈L(u, u)a, b〉 = 0.

Therefore, we have 〈D0[uuv], u〉 = 0 by Lemma 1, so that u ∈ D0[uuv] by Theorem B’
(2), where one should note that [uuv] ∈ V ∪ {0} by Proposition 8 (2).

Now, we see from (F) that

π(L(u, u)(V ∩ u⊥) \ {0}) ⊆ Θπu.

On the other hand, since V is irreducible and non-degenerate in P∗(g1) as above, V ∩
P∗(u⊥) is also non-degenerate in P∗(u⊥). Therefore, it follows from Corollary B4 that
V ∩ P∗(u⊥) �⊆ P∗(KerL(u, u)), so that π(L(u, u)(V ∩ u⊥) \ {0}) �= ∅. Thus we obtain
Θπu �= ∅. �

Corollary A4. If V �= ∅, then U = {x + y ∈ g1|x, y ∈ V, 〈x, y〉 = 0, L(x, y) �= 0}.
Proof. This follows from Proposition 7 (1), (2) and the first paragraph of the proof of
Theorem A (3). �

Corollary A5 (Cf. [18, (5.8), (1)]). If V is irreducible, then TanV is a quartic hyper-
surface in P∗(g1) defined by q.

Proof. Denote by T the quartic hypersurface:

T := π({t ∈ g1|q(t) = 0, t �= 0}) = πT � πU � V.

Note that it follows from Proposition 4 that q is not identically zero since V �= ∅. Then,
we see that Tan V ⊆ T follows from Proposition 6 and Corollary B1 (2), and TanV ⊇ T
follows from Theorem A (2) and (3). �

Corollary A6. If V is irreducible, then the singular locus of TanV is an algebraic set
in P∗(g1) defined by the system of cubic equations, [uuu] = 0, with variables in u over
g1.

Proof. By virtue of Corollary A5, it suffices to show that the hypersurface defined by
q = 0 has a singularity at a ∈ g1 if and only if [aaa] = 0, that is,

dq(a) = 0⇔ [aaa] = 0,
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for a ∈ g1. Using (‡) in the proof of Proposition 4, for λ ∈ C and b ∈ g1 we have

1
λ
{q(a + λb)− q(a)} = 〈b, [aaa]〉+ 〈a, [baa]〉+ 〈a, [aba]〉+ 〈a, [aab]〉+ λ(· · · )

= 4〈b, [aaa]〉+ λ(· · · )
→ 4〈b, [aaa]〉 (λ → 0).

Therefore dq(a) = 0 if and only if 〈b, [aaa]〉 = 0 for any b ∈ g1, which is equivalent to
[aaa] = 0 since 〈, 〉 is non-degenerate. �

Remark. It follows from Proposition 5 (4) that the rational map

γ : P∗(g1) 99K P∗(g1)

given by a #→ [aaa] is a Cremona transformation of P∗(g1) of order 2 (see, for example,
[21, III]), that is, a birational automorphism of P∗(g1) with γ2 = 1, and the base locus
is πU . It follows from Proposition 5 that γπT ⊆ πV and πT = γ−1πV, and that γ gives
an automorphism of πS. Moreover it follows from Proposition 5 (3) and Theorem A (2)
that γ−1P = TP V ∩ πT for any P ∈ V . From the proof of Corollary A6 we see that γ
is explicitly given by the partial differentials of q.

Appendix. Proof of (S3)

We firstly show (S2), since it is partly used in showing (S3) below.

Proof of (S2) (Asano [3]). It follows from the Jacobi identity that [[x, y]E−] = [[x, E−]y]
+[x[y, E−]], so that [x[y, E−]] = [y[x, E−]] + 2〈x, y〉H. Adding [y[x, E−]] on the both
sides, applying 1

2 ad z, we get

(*) [xyz] = [z[y[x, E−]]]− 〈x, y〉z.

Therefore it follows from the Jacobi identity that

[xyz]− [xzy] = {[z[y[x, E−]]]− 〈x, y〉z} − {[y[z[x, E−]]]− 〈x, z〉y}
= 〈x, z〉y − 〈x, y〉z + [[x, E−], [y, z]]

= 〈x, z〉y − 〈x, y〉z + 2〈y, z〉[[x, E−]E+].

Thus, we get the formula since we have [[x, E−]E+] = x. �

Proof of (S3) (Asano [3]). It suffices to show that

(♥) [L(x, x), L(y, y)] = 2L(L(x, x)y, y).

Indeed, setting x := v + w in (♥), and using (♥) again, we obtain

[L(v, w), L(y, y)] = 2L(L(v, w)y, y).

Moreover setting y := x + y in this formula, and using (♥) again, we obtain

[L(v, w), L(x, y)] = L(L(v, w)x, y) + L(x, L(v, w)y).

Then we have

[L(v, w), L(x, y)] = L(L(v, w)x, y) + L(x, L(v, w)y)

⇔ L(v, w)L(x, y) = L(L(v, w)x, y) + L(x, L(v, w)y) + L(x, y)L(v, w),

and the latter is nothing but (S3).

To prove (♥), we show the following
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Lemma. Denote by xy∗ the map z #→ 〈z, y〉x, and set x̃ := [x[x, E−]]. Then:
(1) L(x, y) = − ad y ◦ adx ◦ adE− − 2xy∗ − 2yx∗ − 〈x, y〉1.
(2) y(L(x, x)y)∗ = −yy∗ ◦ L(x, x).
(3) adL(x, x)y = [ad y, ad x̃].
(4) ad x̃ ◦ adE− = adE− ◦ ad x̃.

Proof. (1) This follows from (*) and the Jacobi identity: Indeed, we have

L(x, y)z = [z[y[x, E−]]]− 〈x, y〉z
= [[z, y][x, E−]] + [y[z[x, E−]]]− 〈x, y〉z
= 2〈z, y〉[E+[x, E−]] + [y[[z, x]E−]] + [y[x[z, E−]]]− 〈x, y〉z
= −2〈z, y〉x + 2〈z, x〉[y[E+, E−]] + [y[x[z, E−]]]− 〈x, y〉z
= −2〈z, y〉x− 2〈z, x〉y − [y[x[E−, z]]]− 〈x, y〉z.

(2) Using Lemma 2 in §1, we have

y(L(x, x)y)∗z = 〈z, L(x, x)y〉y = −〈L(x, x)z, y〉y = −yy∗(L(x, x)z).

(3) Since it follows from (*) that L(x, x) = −(ad x̃)|g1, we have

[L(x, x)y, z] = −[[x̃, y]z] = [[y, z]x̃] + [[z, x̃]y] = [ad y, ad x̃]z.

(4) Since [[x, E−]E−] = 0, we have [x̃, E−] = 0, so that [x̃[E−, z]] = [E−[x̃, z]]. �

Proof of (♥).

[L(x, x), L(y, y)]− {L(L(x, x)y, y) + L(y, L(x, x)y)}
= [L(x, x),−(ad y)2 ◦ adE− − 4yy∗]

− {− ad y ◦ adL(x, x)y ◦ adE−

− 2(L(x, x)y)y∗ − 2y(L(x, x)y)∗ − 〈L(x, x)y, y〉1}
− {− adL(x, x)y ◦ ad y ◦ adE−

− 2y(L(x, x)y)∗ − 2(L(x, x)y)y∗ − 〈y, L(x, x)y〉1}
(* Lemma (1))

= [ad x̃, (ad y)2 ◦ adE−]− [L(x, x), 4yy∗]

+ ad y ◦ [ad y, ad x̃] ◦ adE− + [ad y, ad x̃] ◦ ad y ◦ adE−

+ 4y(L(x, x)y)∗ + 4(L(x, x)y)y∗

(* L(x, x) = − ad x̃|g1 and Lemma (3))

= ad x̃ ◦ (ad y)2 ◦ adE− − (ad y)2 ◦ adE− ◦ ad x̃

− 4L(x, x) ◦ yy∗ + 4yy∗ ◦ L(x, x)

+ (ad y)2 ◦ ad x̃ ◦ adE− − ad y ◦ ad x̃ ◦ ad y ◦ adE−

+ ad y ◦ ad x̃ ◦ ad y ◦ adE− − ad x̃ ◦ (ad y)2 ◦ adE−

+ 4y(L(x, x)y)∗ + 4(L(x, x)y)y∗

= −4L(x, x) ◦ yy∗ + 4yy∗ ◦ L(x, x) + 4y(L(x, x)y)∗ + 4(L(x, x)y)y∗
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(* Lemma (4))

= −4L(x, x) ◦ yy∗ + 4(L(x, x)y)y∗ (* Lemma (2)).

The last term is equal to zero, since we have

(L(x, x) ◦ yy∗)(z) = L(x, x)(〈z, y〉y) = 〈z, y〉L(x, x)y = (L(x, x)y)y∗(z). �
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