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Abstract. The reflexivity, the (semi-)ordinariness, the dimension of dual varieties and the

structure of Gauss maps are discussed for Segre varieties, where a Segre variety is the image

of the product of two or more projective spaces under Segre embedding. A generalization is

given to a theorem of A. Hefez and A. Thorup on Segre varieties of two projective spaces.

In particular, a new proof is given to a theorem of F. Knop, G. Menzel, I. M. Gelfand, M.

M. Kapranov and A. V. Zelevinsky that states a necessary and sufficient condition for Segre

varieties to have codimension one duals. On the other hand, a negative answer is given to a

problem raised by S. Kleiman and R. Piene as follows: For a projective variety of dimension

at least two, do the Gauss map and the natural projection from the conormal variety to the

dual variety have the same inseparable degree?

0. Introduction

Segre varieties are one of the most fundamental examples of projective varieties. The
purpose of this article is to study the Segre varieties from the view-point of projective
geometry, where a Segre variety is the image of the product of two or more projective
spaces under the Segre embedding. Precisely speaking, we discuss four points, namely, the
reflexivity, the (semi-)ordinariness, the dimension of dual varieties, and the structure of
Gauss maps for Segre varieties (see §1 for the terminology).

A. Hefez and A. Thorup [3] studied the first three points for Segre varieties of just two
projective spaces. According to their result [3, Theorem 2], such varieties are all reflexive
for any characteristic of the ground field, for instance. However, this does not hold for
general cases. Our main result gives a generalization of the result of Hefez and Thorup,
as follows:

Theorem. Let X be the image of the Segre embedding of
∏r

i=1 P
ni over the ground field

K of characteristic p ≥ 0 with dimension n =
∑r

i=1 ni, and assume that ni ≥ 1 for all i
and r ≥ 2. Then we have:

(1) The dual variety X∗ is a hypersurface if and only if 2ni ≤ n for all i.
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(2) If 2ni > n, then
(a) X is reflexive with codim X∗ = 1 + 2ni − n, and
(b) X is semi-ordinary if and only if 2ni = n + 1.

(3) If 2ni ≤ n for all i, then the following conditions are equivalent:
(a) X is not reflexive (or equivalently, not ordinary).
(b) X is semi-ordinary.
(c) p = 2 and n is odd.

I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky [1] proved the statement (1) over
the complex number field C (see [1, Theorem 0.1]), which follows also from more general
results by F. Knop and G. Menzel [9]. Our proof is quite different from the known ones
and seems to be much simpler.

For the fourth point, we have

Proposition 1. The Gauss map γ of the Segre embedding of
∏r

i=1 P
ni with ni ≥ 1 for all

i and r ≥ 2 is always an embedding in any characteristic.

Thus it turns out that, combining Theorem (3) and Proposition 1, one obtains a negative
answer to a problem raised by S. Kleiman and R. Piene [8] as follows:

Problem (Kleiman-Piene [8, pp. 108–109]). For a projective variety X ⊆ PN of dimension
n ≥ 2, let γ : X 99K G(n,PN ) be the Gauss map, CX the conormal variety, X∗ the dual
variety, and π : CX → X∗ the natural projection. Then do γ and π have the same
inseparable degree?

Note that it is well-known that X is reflexive if and only if π is separable (see [7, (4.4)]),
and that the answer for the case n = 1 is known to be affirmative (see [2], [4], [5], [10]).

Related to this problem, although it has a slightly different flavour from the subject of
the present paper, we include the following result here since it is proved in a quite similar
way to the case of Proposition 1:

Proposition 2. Let Y ⊆ PN be a projective variety of dimension n ≥ 2, and let vd be the
Veronese embedding of PN of degree d ≥ 2. Then the Gauss map γ of vd(Y ) is generically
finite and separable, and moreover it is finite and unramified if Y is smooth.

It is known that in characteristic 2 the Gauss map of every projective curve has insep-
arable degree at least 2 (for a plane curve, this is a classical result, and for general cases,
see [5, Corollaries 2.2 and 2.3]). But, it turns out from Proposition 2 that this statement
does not hold for a higher dimensional case.

The contents of this article are organized as follows: In §1 we give basic definitions and
state a known fact due to Hefez and Thorup [3]. In §2 we show Propositions 1 and 2,
along with introducing some notation. In §3 we study the rank of symmetric matrices of a
certain form (see Lemma in §3), which plays the key role in our proof of Theorem. Finally
in §4 we prove Theorem.

To simplify the notation and arguments, we work over an algebraically closed field K.
But, all the results here are easily verified to be true over an arbitrary field by trivial
modification of the setup and proofs given here: In that case, Y in Proposition 2 should be
a closed subscheme of PN geometrically integral over K, and smooth over K in the latter
assertion.
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1. Preliminaries

For a projective variety X ⊆ PN , let CX◦ be the set of pairs (P, H) such that P is a
smooth point of X and H is a hyperplane tangent to X at P . The conormal variety of X,
denoted by CX, is by definition the closure of CX◦ in X × P̌N , and the dual variety of X,
denoted by X∗, is the image of CX in P̌N under the natural projection, where P̌N is the
dual space of PN . On the other hand, the Gauss map of X, denoted by γ, is by definition
the rational map X 99K G(n,PN ) that sends a smooth point P of X to the embedded
tangent space to X at P , where n is the dimension of X and G(n,PN ) is the Grassmann
variety of n-dimensional linear spaces in PN .

A projective variety X ⊆ PN is said to be reflexive if we have CX � C(X∗) via
PN × P̌N � P̌N × PN , and ordinary if X is reflexive and X∗ has codimension 1.

Moreover, for a general (hence, smooth) point P of X and for a rational function h on
PN defining a general hyperplane tangent to X at P by its zero locus, denote by H(X)
the Hessian matrix of the function hX on X at P , where hX is the restriction of h to X.
In general we have the following inequalities:

1 ≤ codim X∗ ≤ cork H(X) + 1.

A projective variety X ⊆ PN is said to be semi-ordinary if H(X) has corank 1.
For full details on those notions, we refer to [2], [6], [7], [8].

Fact (Hefez-Thorup [3, Lemma 3]). Let X ⊆ PN
Z

be a closed, integral subscheme, smooth
over Z, let K be an algebraically closed field, and denote by XK the fibre product X ×Z K.
Then we have:

(1) codim(XK)∗ = corkH(XC) + 1.
(2) XK is reflexive if and only if cork H(XK) = corkH(XC).

Remark. Hefez and Thorup [3] proved a corresponding statement for an arbitrary field K
with a more general setup.

2. The Gauss map

Proof of Proposition 1. Let (xi1, xi2, . . . , xini) = (1 : xi1 : xi2 : · · · : xini) be affine coordi-
nates of Pni for each i. For P = (xia)1≤i≤r,1≤a≤ni

∈
∏r

i=1 P
ni , the Segre embedding σ is

given by

σ(P ) = (1 : x11 : x12 : · · · : x1n1 : x21 : · · · : xrnr
: x11x21 : · · · : x1n1 · · ·xrnr

) ∈ PN ,

and the embedded tangent space at σ(P ) is spanned by n + 1 row vectors as follows:

σ(P ),
∂σ

∂x11
(P ), . . . ,

∂σ

∂x1n1

(P ),
∂σ

∂x21
(P ), . . . ,

∂σ

∂xrnr

(P ),

where N +1 =
∏r

i=1(ni+1) and n =
∑r

i=1 ni. Consider an (n+1)×(N +1)-matrix formed
by those row vectors . If we denote by ∆(j0, . . . , jn) its minor of degree n + 1 consisting
of columns j0, . . . , jn, then the Gauss map γ is given by

γ(P ) = (∆(j0, . . . , jn))1≤j0<···<jn≤N+1 ∈ PM
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via the Plücker embedding, where M+1 =
(

N+1
n+1

)
. Then we see that ∆(1, . . . , n, n+1) = 1,

and moreover that for any i with 1 ≤ i ≤ r and for any a with 1 ≤ a ≤ ni, there exist
integers l and m such that

∆(1, 2, . . . , l − 1, m, l + 1, . . . , n + 1) = xia,

where 1 ≤ l ≤ n + 1 < m ≤ N + 1: Indeed, for such i and a, there exists a column vector
in the (n + 1) × (N + 1)-matrix whose coordinates are given by

(xiaxjb, 0, . . . , 0, xjb, 0, . . . , 0, xia, 0, . . . )

with i < j or
(xjbxia, 0, . . . , 0, xia, 0, . . . , 0, xjb, 0, . . . )

with j < i. Thus, we see that γ is an embedding. �

Proof of Proposition 2. Let P0 be a smooth point of Y , let {x1, . . . , xn} be local parameters
of Y at P0, and denote by ι the embedding Y ↪→ PN : one may assume that ι around P0

is given by
ι(x1, . . . , xn) = (1 : x1 : · · · : xn : · · · ) ∈ PN ,

so that vd ◦ ι is given by

vd ◦ ι(x1, . . . , xn) = (1 : x1 : · · · : xn : q1 : · · · : qM : · · · ) ∈ PNd ,

where q1, . . . , qM are the monomials in the xi of degree 2, M =
(

n+1
2

)
and Nd+1 =

(
N+d

d

)
.

Then, we see that the Gauss map of vd(Y ) is locally an embedding around P0: Indeed, a
similar argument to the last part of the proof of Proposition 1 works by choosing reduced
monomials from the qi, where we need the assumption n ≥ 2. �

3. Symmetric matrices

Let n1, . . . , nr be positive integers, and set n :=
∑r

i=1 ni. Let Mkl be an nk ×nl-matrix
with k < l such that each component is an indeterminate, set Mlk :=t Mkl, and consider
an n × n-matrix as follows:

M(n1, . . . , nr) :=




0 M12 M13 · · · M1r

M21 0 M23 · · · M2r

M31 M32 0 · · · M3r
...

...
...

. . .
...

Mr1 Mr2 Mr3 · · · 0


 .

Denote by zij the (i, j)-th component of M(n1, . . . , nr) with i < j. Then M(n1, . . . , nr) is
a symmetric matrix over a polynomial ring Z[{zij |1 ≤ i < j ≤ n}].
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Lemma. For given positive integers n1, . . . , nr with n :=
∑r

i=1 ni, and for an arbitrary
field K of characteristic p ≥ 0, we have:

(1) If 2ni > n, then M(n1, . . . , nr) has corank 2ni − n over K.
(2) Assume 2ni ≤ n for all i. If p = 2, and n is odd, then M(n1, . . . , nr) has corank 1

over K; Otherwise, M(n1, . . . , nr) has corank 0 over K.

Proof. (1) Renumbering the indexes, one may assume that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nr.
Consider a partition of M(n1, . . . , nr) as follows:

M(n1, . . . , nr) =


M ′

11 M ′
12 M ′

13

M ′
21 0 0

M ′
31 0 0


 ,

where M ′
11 and M ′

12 are (n−nr)× (n−nr)-matrices, M ′
13 is an (n−nr)× (2nr −n)-matrix

and M ′
lk =t M ′

kl. Then, the first principal minor of degree 2(n − nr) is equal to

(−1)n−nr detM ′
12 detM ′

21 = (−1)n−nr (detM ′
12)

2,

whose coefficient in
z2
1,n−nr+1z

2
2,n−nr+2 · · · z2

n−nr,2n−2nr

is equal to ±1. On the other hand, any minor of degree 2(n − nr) + 1 is obviously zero.
Therefore, M(n1, . . . , nr) has rank 2(n − nr) over Q as well as over Z/pZ for all prime p,
hence over an arbitrary field K.

(2) It suffices to show:
(a) for odd n = 2m + 1, all the coefficient of detM(n1, . . . , nr) are divisible by 2, and

there exist integers i(1), . . . , i(m), j(1), . . . , j(m), k with i(t) < j(t) for all t and
j(m) < k such that

{i(1), . . . , i(m), j(1), . . . , j(m), k} = {1, . . . , n}

and the coefficient of detM(n1, . . . , nr) in

z2
i(1)j(1) · · · z2

i(m−1)j(m−1)zi(m)j(m)zi(m)kzj(m)k

is equal to ±2.
(b) for even n = 2m, there exist integers i(1), . . . , i(m), j(1), . . . , j(m) with i(t) < j(t)

for all t such that

{i(1), . . . , i(m), j(1), . . . , j(m)} = {1, . . . , n}

and the coefficient of detM(n1, . . . , nr) in

z2
i(1)j(1) · · · z2

i(m)j(m)

is equal to ±1;
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Indeed, if p �= 2 or n is even, then it clearly follows from (a) and (b) that M(n1, . . . , nr)
has rank n over an arbitrary field K. If p = 2 and n is odd, then it follows from (a)
that M(n1, . . . , nr) has rank at most n − 1. Moreover we see from (b) that the rank
is actually equal to n − 1, as follows: Renumbering the indexes, we may assume that
n1 ≥ n2 ≥ · · · ≥ nr ≥ 1. Consider an (n − 1) × (n − 1)-matrix M ′ by taking off the 1-st
row and column from M(n1, . . . , nr), which has the same form as M(n1 − 1, n2, . . . , nr).
Then it follows from (b) that M ′ has rank n − 1: Indeed, the sizes n1 − 1, n2, . . . , nr of
blocks in M ′ satisfy the assumption of (2), where we omit n1 − 1 if it is zero. To see this,
it suffices to verify the condition for n2: this is trivial for n1 − 1 by the assumption of (2).
Suppose the contrary, that is, suppose

n2 > (n1 − 1) + n3 + · · · + nr.

Then we have n2 ≥ n1+n3 ≥ n1, so that n1 = n2 and n3 = 0 with r = 2, which contradicts
our assumption of n being odd.

Now, let us show the statements (a) and (b). To show the former assertion of (a),
denote by Sn the permutation group of the set {1, 2, . . . , n}, and set

F := {g ∈ Sn|∃i, g(i) = i},
G+ := {g ∈ Sn \ F |#{i|g(i) > i} > n/2},
G− := {g ∈ Sn \ F |#{i|g(i) > i} < n/2}.

Since n is odd, we have Sn = F � G+ � G− and

detM(n1, . . . , nr) =
∑

g∈Sn

sign(g)z1g(1)z2g(2) · · · zng(n)

=
∑
g∈F

(· · · ) +
∑

g∈G+

(· · · ) +
∑

g∈G−

(· · · ).

Now, the sum over F is zero since the diagonal components of M(n1, . . . , nr) are zero.
On the other hand, the sum over G− is equal to the sum over G+ since M(n1, . . . , nr) is
symmetric: Indeed, since a map G+ → G−; g �→ g−1 is bijective and sign(g) = sign(g−1),
we have

∑
g∈G−

sign(g)z1g(1)z2g(2) · · · zng(n) =
∑

g∈G+

sign(g−1)z1g−1(1)z2g−1(2) · · · zng−1(n)

=
∑

g∈G+

sign(g)zg(1)1zg(2)2 · · · zg(n)n,

which is equal to that sum over G+ since zg(i)i = zig(i). This proves the former assertion
of (a).

For the remaining part, we use induction on n, where we allow the integers ni to be
zero. Assume n ≥ 4: Note that the determinant is equal to −z2

12 for n = 2, and equal to
2z12z13z23 for n = 3. Assume that n1 ≥ n2 ≥ · · · ≥ nr ≥ 1, as before, and consider an
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(n− 2)× (n− 2)-matrix M ′′ by taking off the 1-st and (n1 + 1)-th rows and columns from
M(n1, . . . , nr), which has the same form as M(n1 − 1, n2 − 1, n3, . . . , nr). Then, for M ′′

we may assume the hypothesis of induction: Indeed, the sizes n1 − 1, n2 − 1, n3, . . . , nr of
blocks of M ′′ satisfy the assumption of (2). To see this, it suffices to verify the condition
for n3 with r ≥ 3, as before. Suppose the contrary, that is, suppose

n3 > (n1 − 1) + (n2 − 1) + n4 + · · · + nr.

Then we have n3 ≥ n1 + n2 − 1 ≥ 2n3 − 1, so that n3 = 1, which implies n1 = n2 = 1 with
r = 3 and n = 3. This contradicts our assumption n ≥ 4.

Now, it follows from the hypothesis of the induction that there exist integers i(2), . . . ,
i(m), j(2), . . . , j(m), k satisfying

{i(2), . . . , i(m), j(2), . . . , j(m), k} = {1, . . . , n} \ {1, n1 + 1}

for n = 2m + 1 (respectively, there exist integers i(2), . . . , i(m), j(2), . . . , j(m) satisfying

{i(2), . . . , i(m), j(2), . . . , j(m)} = {1, . . . , n} \ {1, n1 + 1}

for n = 2m) such that the above property on the coefficient for M ′′ is satisfied. Then for
n = 2m + 1 the coefficient of det M(n1, . . . , nr) in

z2
1n1+1z

2
i(2)j(2) · · · z2

i(m−1)j(m−1)zi(m)j(m)zi(m)kzj(m)k

is equal to ±2, and for n = 2m the coefficient of det M(n1, . . . , nr) in

z2
1n1+1z

2
i(2)j(2) · · · · · · z2

i(m)j(m)

is equal to ±1, as is required. �

4. The Hessian matrix

Let P0 be the point of the Segre variety X with all xia being zero, and let h be a rational
function on PN corresponding to a general hyperplane tangent to X at P0, with the same
notation as in §2. Then we have

σ∗h =
∑

1≤i<j≤r,1≤a≤ni,1≤b≤nj

hab
ij xiaxjb + (terms of higher degree in xkc),

where the hab
ij are general elements of K. Therefore, the Hessian matrix at P0 is given as

follows:

H(X) =
[

∂2σ∗h

∂xia∂xjb
(P0)

]
=




0 H12 H13 · · · H1r

H21 0 H23 · · · H2r

H31 H32 0 · · · H3r
...

...
...

. . .
...

Hr1 Hr2 Hr3 · · · 0


 ,
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where Hij = [hab
ij ]1≤a≤ni,1≤b≤nj

and Hji =t Hij with 1 ≤ i < j ≤ r.

Proof of Theorem. (1) Using Fact (1), we see that the if-part follows from Lemma (2), and
the only-if-part follows from Lemma (1).

(2) The assertion (a) follows from Fact (2) and Lemma (1), and (b) also follows from
Lemma (1).

(3) Note that since codim X∗ = 1 by (1), X is reflexive if and only if X is ordinary.
Then, the equivalence (a) ⇔ (c) follows from Fact (2) and Lemma (2), and (b) ⇔ (c) also
follows from Lemma (2). �
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