Projective Geometry of Freudenthal's Varieties of Certain Type

KAJI, Hajime Department of Mathematical Sciences, Waseda University kaji@waseda.jp

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}	projective variety
elliptic geometry	B_1	A_2	C_3	F_4	Severi variety $\cap(1)$
projective geometry	A_2	$A_2 + A_2$	A_5	E_6	Severi variety
symplectic geometry	C_3	A_5	D_6	E_7	Freudenthal variety V
metasymplectic geometry	F_4	E_6	E_7	E_8	adjoint variety X

FREUDENTHAL'S MAGIC SQUARE

FREUDENTHAL VARIETIES

g	\mathfrak{g}_{00}	$V\subseteq \mathbb{P}(\mathfrak{g}_1)$	references
€8	\mathfrak{e}_7	$E_7(\omega_6) \subseteq \mathbb{P}^{55}$	[S.Harris] (1971)
\mathfrak{e}_7	\mathfrak{so}_{12}	$S_5 = \mathbb{G}_{\text{orthog.}}(6, 12) \subseteq \mathbb{P}^{2^5 - 1}$	[Ji.Igusa] (1970)
\mathfrak{e}_6	\mathfrak{sl}_6	$\mathbb{G}(3,6)\subseteq\mathbb{P}^{19}$	[T.Kimura] (1982)
\mathfrak{f}_4	\mathfrak{sp}_6	$\mathbb{G}_{\text{sympl.}}(3,6) \subseteq \mathbb{P}^{13}$	[Ji.Igusa] (1970)
\mathfrak{g}_2	\mathfrak{sl}_2	$v_3\mathbb{P}^1\subseteq\mathbb{P}^3$	$\begin{bmatrix} M.Sato-M.Kashiwara-\\T.Kimura-T.Oshima \end{bmatrix}$ (1980)
\mathfrak{so}_m	$\mathfrak{sl}_2\oplus\mathfrak{so}_{m-4}$	$\mathbb{P}^1\times Q^{m-6}\subseteq \mathbb{P}^{2m-9}$	$\begin{bmatrix} M.Sato-M.Kashiwara-\\T.Kimura-T.Oshima \end{bmatrix} (1980)$
\mathfrak{sp}_{2m}	\mathfrak{sp}_{2m-2}	$\emptyset \subseteq \mathbb{P}^{2m-3}$	
\mathfrak{sl}_m	$\mathfrak{gl}_1\oplus\mathfrak{sl}_{m-2}$	$\mathbb{P}^{m-3}\sqcup\mathbb{P}^{m-3}\subseteq\mathbb{P}^{2m-5}$	

Notation: We denote by $\cap(1)$ cutting by a general hyperplane, and by v_d the Veronese embedding of degree d. We denote by $\mathbb{G}(r,m)$ a Grassmann variety of r-planes in \mathbb{C}^m , and denote by $\mathbb{G}_{\text{orthog.}}(r,m)$ and by $\mathbb{G}_{\text{symp.}}(r,m)$ respectively an orthogonal and a symplectic Grassmann varieties of isotropic r-planes in \mathbb{C}^m . A simple exceptional Lie algebra of Dynkin type G is denoted by the lowercase of G in the German character, a simple algebraic group of type G is denoted by just G, and for a dominant integral weight ω of G, the minimal closed orbit of G in $\mathbb{P}(V_{\omega})$ is denoted by $G(\omega)$, where V_{ω} is the irreducible representation space of G with highest weight ω : For example, \mathfrak{g}_2 in the list is the simple Lie algebra of type G_2 , and $G_2(\omega_2)$ is the minimal closed orbit of an algebraic group of type G_2 in $\mathbb{P}(V_{\omega_2})$, where ω_2 is the second fundamental dominant weight with the standard notation of Bourbaki. **Aim**: study projective geometry of Freudenthal varieties *systematically* with *unified proofs*, not depending of the classification of simple Lie algebras

Notation:

$$\begin{split} &\mathfrak{g}=\mathfrak{g}_{-2}\oplus\mathfrak{g}_{-1}\oplus\mathfrak{g}_0\oplus\mathfrak{g}_1\oplus\mathfrak{g}_2, \text{ a simple, graded Lie algebra of contact type/\mathbb{C}}\\ &(E_+,H,E_-), \text{ the }\mathfrak{sl}_2\text{-triple associated to the decomposition }\mathfrak{g}=\sum\mathfrak{g}_i\text{ above }\\ &\mathfrak{g}_{00}:=\operatorname{Ker}(\operatorname{ad} E_+|_{\mathfrak{g}_0}), \text{ a subalgebra of }\mathfrak{g}_0 \text{ with }\mathfrak{g}_0=\mathfrak{g}_{00}\oplus\mathbb{C}\\ &G_{00}, \text{ a connected, algebraic group with Lie algebra }\mathfrak{g}_{00}\\ &\mathcal{V}:=\{x\in\mathfrak{g}_1\setminus\{0\}|(\operatorname{ad} x)^2\mathfrak{g}_{-2}=0\}\\ &V:=\pi(\mathcal{V})\subseteq\mathbb{P}(\mathfrak{g}_1), \text{ the }Freudenthal \ variety \ \text{associated to }\mathfrak{g}\\ &\pi:\mathfrak{g}_1\setminus\{0\}\to\mathbb{P}(\mathfrak{g}_1)=:\mathbb{P}, \text{ the natural projection}\\ &V_k:=\pi(\{x\in\mathfrak{g}_1\setminus\{0\}|(\operatorname{ad} x)^{k+1}\mathfrak{g}_{-2}=0\})\ \text{with }\emptyset=V_0\subseteq V_1\subseteq V_2\subseteq V_3\subseteq V_4=\mathbb{P} \ \text{and }V=V_1\\ &q, \text{ a quartic polynomial on }\mathfrak{g}_1\ \text{defining }V_3, \ \text{defined by }(\operatorname{ad} x)^4E_-=2q(x)E_+\\ &\langle,\rangle:\mathfrak{g}_1\times\mathfrak{g}_1\to\mathfrak{g}_2\simeq\mathbb{C}, \ \text{a non-degenerate skew-symmetric form defined by }[x,y]=2\langle x,y\rangle E_+\\ &\gamma:\mathbb{P}-\to\mathbb{P}, \ \text{the Cremona transformation defined by }x\mapsto(\operatorname{ad} x)^3\mathfrak{g}_{-2}\ \text{with base locus }V_2\\ &\mathcal{D}, \ \text{the 1-dimensional distribution on }\mathbb{P}\setminus \mathrm{Sing}\,V_3\ \text{defined by the differential }dq\\ &L_P, \ \text{the (closure of the) integral curve of }\mathcal{D}\ \text{ passing through }P\in\mathbb{P}\setminus\mathrm{Sing}\,V_3\\ \end{aligned}$$

Theorem (H.Kaji-O.Yasukura). Assume that V is irreducible. Then we have:

- (1) V is a Legendrian subvariety of \mathbb{P} , that is, the projectivization of a Lagrangian subvariety of \mathfrak{g}_1 , with dim V = n 1, spans \mathbb{P} , and is an orbit of the group of inner automorphisms of \mathfrak{g} with Lie algebra \mathfrak{g}_0 , hence smooth, where dim $\mathfrak{g}_1 = 2n$. In particular, the projective dual V^* of V is equal to the union of tangents to V via the symplectic form.
- (2) V_2 is the singular locus of V_3 , and for any $P \in \mathbb{P} \setminus V_2$, L_P is the line in \mathbb{P} joining P and $\gamma(P)$. Moreover, we have:
 - (a) If $P \in \mathbb{P} \setminus V_3$, then L_P is a unique secant line of V passing through P, there is no tangent line to V passing through P, $L_P \cap V$ consists of harmonic conjugates with respect to Pand $\gamma(P)$, and $L_P \setminus V \subseteq \mathbb{P} \setminus V_3$. Moreover, γ preserves L_P , and the automorphism of L_P induced from γ leaves each point in $L_P \cap V$ invariant and permutes P and $\gamma(P)$.
 - (b) If $P \in V_3 \setminus V_2$, then there is no secant line of V passing through P, L_P is a unique tangent line to V passing through P, $L_P \cap V = \gamma(P)$, and $L_P \setminus V \subseteq V_3 \setminus V_2$. Moreover, L_P is contracted by γ to the contact point $\gamma(P)$, and conversely the fibre of γ on $Q \in V$ consists of the points $P \in V_3 \setminus V_2$ such that $Q \in L_P$, or equivalently, P lies on some tangent to V at Q.

In particular, V is a variety with one apparent double point, and V_3 is the union of tangents to V.

- (3) For any $P \in V_2 \setminus V$, the family of secants of V passing through P is of dimension at least 1, and all of those secants are isotropic with respect to the symplectic form: In particular, $V_2 \setminus V$ is covered by isotropic secants of V.
- (4) For any $Q, R \in V$, the secant line joining Q and R is isotropic if and only if the tangents to V at Q and at R are disjoint.
- (5) For any $P \in V_3 \setminus V_2$ and $Q \in V$, if the secant line joining Q and the contact point $\gamma(P)$ of L_P is not isotropic, then there is a twisted cubic curve contained in V to which L_P and L_R are tangent at $\gamma(P)$ and at Q, respectively, where R is a point on some tangent to V at Q away from V_2 , determined by P and Q.
- (6) If $V_2 \neq V$, then V is ruled, that is, covered by lines contained in V.
- (7) For any $P \in V$, the double projection from P gives a birational map from V onto \mathbb{P}^{n-1} , and by the inverse V is written as the closure of the image of a cubic Veronese embedding of a certain affine space \mathbb{A}^{n-1} under some projection to \mathbb{P} .

It can be shown also that the three conditions, $V = \emptyset$, $V_3 = \mathbb{P}$ and $V_2 = \mathbb{P}$ are equivalent to each other, and that if V is neither empty nor irreducible, then \mathfrak{g}_1 decomposes naturally into two irreducible \mathfrak{g}_0 -submodules of dimension n and V is the (disjoint) union of the projectivizations of those summands.