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Secant varieties of Adjoint Varieties

KAJI, Hajime (Waseda University)
0. Introduction: The purpose of this talk is to illustrate the structure of adjoint varieties and
their secant varieties in case of type A, and to give new results for general cases: The former is
almost known; the latter is part of a joint work [KOY, KY] with O. Yasukura (Fukui University)
and M. Ohno (Waseda University).
1. Definitions:
Definition 1 [B1, B2]: For a complex simple Lie algebra g, let G be a simple algebraic group
with Lie algebra g, and denote by Ad : G y g the adjoint representation: If G ⊆ GL then Ad g is
just the conjugation by g ∈ G. Consider a natural action

G y P∗(g) := (g \ {0})/C×.

Then it is well-known [FH, H2] that since g is simple, there exists a unique closed orbit, denoted
by X(g). We call X(g) an adjoint variety associated to g. Note that since Ad G = Int g ⊆
GL(g), X(g) does not depend on the choice of G and is uniquely determined by g, where Int g :=
〈exp ad Y |Y ∈ g〉.

Take a Cartan subalgebra h and a base ∆ of the root system R with respect to h, and fix an
order on R defined by ∆ [H1]. Let λ be the highest root, and take a highest root vector Xλ ∈ g.
Then we have

X(g) = G · x+ = π(G · Xλ) ⊆ P∗(g),

where x+ := πXλ, and π : g \ {0} → P∗(g);Y 7→ C · Y is the canonical projection.
Definition 2 [FR, LV, Z]: Let X ⊆ PN

C be a complex projective variety. For distinct points
x, y ∈ X, we call the line joining x and y the secant line determined by x and y, denoted by x∗y.
Moreover set

Sec X :=
∪

x,y∈X,x ̸=y

x ∗ y ⊆ PN
C .

We call Sec X the secant variety of X ⊆ PN
C . This is a projective variety and usually has

singularities along at least X. Furthermore set

S(k)X :=
∪

x0,...,xk∈X,dim〈x0,...,xk〉=k

〈x0, . . . , xk〉,

where 〈x0, . . . , xk〉 is the linear subspace spanned by the points x0, . . . , xk. We call S(k)X the
variety of k-secants of X ⊆ PN

C . Of course S(0)X = X and S(1)X = Sec X.
3. Purpose: The purpose of our work is to study secants and secant varieties of adjoint varieties,
from view-point of projective geometry.
4. Exapmles of Adjoint Varieties:
4-1. Classical Type:

type g Int g λ Ad X(g) ⊆ P∗(g) dim g

Al≥1 sll+1 PSLl+1 ω1 + ωl K Pl × Pl ∩ (1) l2 + 2l

Bl≥2 so2l+1 PSO2l+1 ω2 ∧2V F1(Q2l−1)4l−5 2l2 + l

Cl≥3 sp2l PSp2l 2ω1 S2V v2(P2l−1) 2l2 + l

Dl≥4 so2l PSO2l ω2 ∧2V F1(Q2l−2)4l−7 2l2 − l
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Notations: For a group G, set PG := G/Z(G), where Z(G) is the center of G.
sll+1 := {Y ∈ Ml+1C| tr Y = 0}, SLl+1 := {g ∈ Ml+1C|det g = 1} y V := C⊕l+1; Z(SLl+1) =

µl+1, where µn denotes the group of n-th roots of unities. K := Ker(∧lV ⊗ V → ∧l+1V = C) ≅
Ker(V ∗ ⊗ V → C) via ∧lV ≅ V ∗.

son := {Y ∈ MnC|tY Q + QY = 0}, SOn := {g ∈ MnC|tgQg = Q,det g = 1} y V := C⊕n with

Q =
[

0 I[n/2]

I[n/2] 0

]
or Q =

 0 I[n/2] 0
I[n/2] 0 0

0 0 1

 ;

Z(SOn) = µ2 if n is even, and Z(SOn) is trivial if n is odd.
sp2l := {Y ∈ M2lC|tY Q + QY = 0}, Sp2l := {g ∈ M2lC|tgQg = Q} y V := C⊕2l with

Q =
[

0 Il

−Il 0

]
;

Z(Sp2l) = µ2.
We denote by F1(Qm)2m−3 the Fano variety of line in m-dimensional quadric hypersurface

Q ⊆ Pm+1, v2 the Veronese embedding, and ∩(1) cutting by a hyperplane. The notations for
fundamental dominant weights ωi are same as in [B].
4-2. Exceptional Type:

type λ dimX(g) dim g

E6 ω2 20 + 1 78
E7 ω1 32 + 1 133
E8 ω8 56 + 1 248
F4 ω1 14 + 1 52
G2 ω2 4 + 1 14

The adjoint variety of type G2 appears in the work of S. Mukai [M1] as a Fano 5-fold of index 3.
5. Al-case: We set G := PSLl+1, V := Cl+1, and consider the following subsets:

Hom(V, V )r := {ϕ ∈ Hom(V, V )| rkϕ ≤ r},
K := {ϕ ∈ Hom(V, V )| tr ϕ = 0} = Ker(V ∗ ⊗ V → C) = sll+1,
Kr := K ∩ Hom(V, V )r

in Hom(V, V ) = V ∗ ⊗ V = Ml+1C. Moreover we set H := diag(1,−1, 0, . . . , 0) ∈ Ml+1C, and
denote by X(k1···ks) a nilpotent matrix that is a direct sum of Jordan cells of sizes k1, . . . , ks.
Recall that the adjoint action Ad : G y K is just taking the conjugation in this case. Obviously
the algebraic set π(Kr \ {0}) ⊆ P∗(K) has defining equations of degree r + 1.
5-1. Adjoint Varieties:
Lemma 1 [FH]: G · πX(21···1) = π(K1 \ {0}).
Proof: The rank and trace are determined by conjugacy class, and a traceless rank one matrix
has Jordan normal form X(21···1). ¤
Lemma 2 [FH]: π(K1 \ {0}) = P∗(V ∗) × P∗(V ) ∩ P∗(K).
Proof: We have π(Hom(V, V )1 \{0}) = P∗(V ∗)×P∗(V ) since rk ϕ ≤ 1 ⇔ ϕ = f ⊗v (∃f ∈ V ∗, v ∈
V ) for ϕ ∈ Hom(V, V ) = V ∗ ⊗ V . ¤

From the above we obtain
Proposition 1 [FH]: X(Al) = π(K1 \ {0}) = P∗(V ∗) × P∗(V ) ∩ P∗(K).

In particular X(Al) is defined by quadric equations. Note that we also have π(K1 \ {0}) =
F(1, l, V ) = P(TPl(−1)) via P∗(Hom(V, V )) = P∗(V ∗ ⊗ V ) = P(V ∗ ⊗OPl), where F(1, l, V ) is a flag
variety defined by the incidence correspondence of 1- and l-subspaces of V in P∗(V ∗) × P∗(V ): In
fact, the first identification is given by ϕ ↔ (ϕ(V ) ⊆ Ker ϕ ⊆ V ); the second comes from the Euler
quotient V ∗ ⊗OPl ³ TPl(−1) on Pl = P(V ).
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5-2. Secant Varieties:
Proposition 2: Sec X(Al) = π(K2 \ {0}).
Proof: The inclusion (⊆) follows from Proposition 1 and an elementary fact that rk(A+B) ≤ rkA+
rkB. For (⊇), since the roots of the characteristic polynomial of Y ∈ K2 are {a,−a, 0, . . . , 0} (a ∈
C), the Jordan normal form of Y is one of the following:

aH, X(31···1), X(221···1), X(21···1).

Each of those matrices can be written as a sum of two elements of K1: for example,

2
[

1 0
0 −1

]
=

[
1 1
−1 −1

]
+

[
1 −1
1 −1

]
. ¤

Observation 1: We see from the proof above that SecX(Al) consists of 4 orbits through πH,
πX(31···1), πX(221···1) and πX(21···1) if rk g = l ≥ 2. Computing the stabilizers one obtains that
those orbits have dimension 4l − 2, 4l − 3, 4l − 5 and 2l − 1, respectively.

In particular, we have
Proposition 3: Sec X(Al) = G · πH and dimSec X(Al) = 2 dim X(Al).
5-2A. Higher Secant Varieties: Moreover we have
Theorem 0: S(k)X(Al) = π(Kk+1 \ {0}) and codim(S(k)X(Al), P∗(K)) = (l + 1 − k)2, for
0 ≤ ∀k ≤ l + 1.

This follows from Proposition 1 and the following lemmas:
Lemma 3: S(k)(P∗(V ∗) × P∗(V )) = π(Hom(V, V )k+1 \ {0}) for 0 ≤ ∀k ≤ l + 1.

Proof: We have ϕ =
∑k

i=0 fi ⊗ vi (∃fi ∈ V ∗, vi ∈ V ) ⇔ rkϕ ≤ k + 1 for ϕ ∈ Hom(V, V ). ¤
Lemma 4 [H]: codim(Hom(V, V )k, Hom(V, V )) = (l + 1 − k)2 for 0 ≤ ∀k ≤ l + 1.
Lemma 5 [K]: For a non-singular projective variety X ⊆ PN and for a hyperplane L of PN , if
dimSec X < 2 dim X + 1 and X ∩ L is non-singular, then S(k)(X ∩ L) = S(k)X ∩ L for ∀k ≥ 0.

From this theorem one can deduce
Corollary (Is this trivial?): Any traceless rank r matrix is written as a sum of r traceless rank
1 matrices.

It might be interesting to compare Theorem 0 with the following: Let

C(m,n) := {[aij ] ∈ Mm,nC|aij = ai+1j−1 (∀i, j)},

that is, the catalecticant space, and denote by Rd ⊆ Pd the rational normal curve of degree d.
Then
Theorem (R. K. Wakerling) [E]: S(k)Rm+n−2 = π(C(m,n)k+1 \ {0}) for ∀k ≥ 0.
5-3. Tangent Loci: For z ∈ P∗(g) denote by Θz the tangent locus with respect to z, that is, set

Θz := {x ∈ X(g)|z ∈ TxX(g)},

where TxX(g) ⊆ P∗(g) denotes the embedded tangent space to X(g) at x.
In the simplest case l = 1, we have X(A1) = {ξζ + η2 = 0} ⊆ P2 = P∗(sl2C) via

(ξ : η : ζ) ↔ ξXλ + ηH + ζX−λ =
[

η ξ
ζ −η

]
.

Since Tx+X(A1) = {ζ = 0} and Tx−X(A1) = {ξ = 0}, it follows Tx+X(A1) ∩ Tx−X(A1) = {h},
where x+ := πXλ = (1 : 0 : 0), x− := πX−λ = (0 : 0 : 1), and h := πH = (0 : 1 : 0). Conversely,
Observation 2: Θh = {x+, x−} for X(A1). More generally for an arbitrary z ∈ Sec X(A1) \
X(A1) we have Θz = {x, y} for ∃x ̸= y ∈ X(A1). We have z = gh for ∃g ∈ G since Sec X(A1) \
X(A1) = G ·h, hence {x, y} = {gx+, gx−}. Thus for a general point z ∈ Sec X(Al), the points x, y
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of tangents through z are corresponding to the highest and lowest root vectors with respect to a
Cartan subalgebra h′ = C · H ′, where H ′ is a non-zero element in g such that πH ′ = z.
6. General Cases:
Graded Lie Algebras of Contact Type [A1, A2]: For highest and lowest root vectors, Xλ

and X−λ, there exists H ∈ C · [Xλ, X−λ] such that

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, g±2 = C · X±λ,

where gi := {Y ∈ g|[H,Y ] = iY } an eigenspace of ad H. It follows from the Jacobi identity that
[gi, gj ] ⊆ gi+j . This element H ∈ h is called a characteristic element.

We see dim X(g) = dim g1 + 1 since it follows Tx+X(g) = P∗([g, Xλ]) = P∗(C · H ⊕ g1 ⊕ g2).
Dynkin’s Normal Forms [Y1]: Let D : g × g → C be a symmetric bilinear form on g defined
by a scalar multiple of the Killing form such that D(H,H) = 2, where H is the characteristic
element above. We call D the Dynkin’s normal form. For example, it turns out that D(Y,Z) =
tr(Y Z) (Y,Z ∈ K = sll+1) in Al-case .
Theorem 1 (defining equations of adjoint varieties) [KOY]: X(g) = π(W \ {0}), where

W := {Y ∈ g|(adY )2Z + 2D(Y,Z)Y = 0 (∀Z ∈ g)}.

Theorem 2 (dimension of secant varieties) [KOY]:

dimSec X(g) = 2 dim X(g).

From this one sees that codim(Sec X(g), P∗(g)) = dim g0 − 1 ≥ rk g − 1, and in particular,
Sec X(g) ̸= P∗(g) if rk g ≥ 2.
Theorem 3 (orbits in secant varieties): Sec X(g) = G · h ([KOY]). Moreover, we have

rk g ≥ 2 ⇒ Sec X(g) % X(g) ⊔ G · h,

where h := πH.
Theorem 4 (tangent loci):

Θh = {x+, x−},

where x± := πX±λ.
Therefore for a general z ∈ Sec X(g) we have z = gh for ∃g ∈ G, and since Θz = {gx+, gx−}, the

points of tangents through z are corresponding to graded pieces g′±2 with respect to a characteristic
element H ′ = gH with πH ′ = z.
7. Proofs of Theorems 3 and 4: The key ingredient in the proofs is
Symplectic Triple Systems [A1, A2, YA]: For P,Q,R ∈ g1, define 2〈P,Q〉Xλ := [P,Q],
2P ×Q := [P [Q,X−λ]] + [Q[P,X−λ]], and [P,Q,R] := [R,P ×Q] : One obtains a skew-symmetric
form 〈, 〉, a symmetric product ×, and, triple product [, , ] on g1 as follows:

〈, 〉 : g1 × g1 → C, × : g1 × g1 → g0, [, , ] : g1 × g1 × g1 → g1.

Then
(g1, [, , ], 〈, 〉)

has the structure of a symplectic triple system, that is, for P,Q,R, S, T ∈ g1 the following holds:
(STS1) [PQR] = [QPR];
(STS2) [PQR] − [PRQ] = 〈P,R〉Q − 〈P,Q〉R + 2〈Q,R〉P ;
(STS3) [ST [PQR]] = [[STP ]QR] + [P [STQ]R] + [PQ[STR]].

The notion of symplectic triple system was introduced by H. Asano [A1, A2] (Yokohama City
Univesity).
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Now consider
M := {Y ∈ g1|Y × Y = 0} = {Y ∈ g1|(adY )2X−λ = 0}.

Using Theorem 1 one can prove
Lemma 6:

W ∩ g1 ⊆ M.

Proof of the main part of Theorem 3: Since it follows SecX(g) ⊇ Tx+X(g) ⊇ P∗(g1) and P∗(g1)∩
G · h = ∅, we have

Sec X(g) \ (X(g) ⊔ G · h) ⊇ P∗(g1) \ X(g).

If P∗(g1) ⊆ X(g), then it follows from Lemma 6 that g1 ⊆ M , which implies that [g1g1g1] = 0.
But this contradicts to the fact [A1, A2] that (g1, [, , ], 〈, 〉) is simple as a symplectic triple system
if rk g ≥ 2. Thus P∗(g1) \ X(g) ̸= ∅. ¤

For the proof of Theorem 4, consider moreover the decomposition of a reductive Lie algebra g0

into a direct sum of its semi-simple part, denoted by D0, and its abelian part, C · H:

g0 = D0 ⊕ C · H.

It can be shown that D0 = {Z ∈ g0|(adZ)Xλ = 0} = {Z ∈ g0|(adZ)X−λ = 0}, and the
decomposition is then explicitly obtained from an exact sequence,

ad X±λ

0 → D0 → g0 → C · X±λ → 0,

which splits by the map, adX∓λ : g0 ← C · X±λ, with adX∓λ(C · X±λ) = C · H. It follows from
the Jacobi identity that

[g0, g0] ⊆ D0, g1 × g1 ⊆ D0.

The key in our proof is the following lemmas (for proofs see [KY]):
Lemma 7 (decomposition formula): For Y ∈ g−1, P ∈ g1, we have

[Y, P ] = Y + × P − 〈Y +, P 〉H,

where Y + := [Xλ, Y ].
Lemma 8: For P,Q ∈ g1, we have

P × Q = 0, P ∈ M ⇒ 〈P,Q〉 = 0.

Proof of Theorem 4: It suffices to show that if h ∈ Tgx+X with g ∈ G, then gx+ ∈ {x+, x−}. Since
Tgx+X(g) = P∗([g, gXλ]), in terms of Lie algebra this is equivalent to saying that for g ∈ G, Y ∈ g,

H = [Y, gXλ] ⇒ gXλ ∈ g2 ∪ g−2.

Using Theorem 1 one can show that gXλ ∈ gi for ∃i, and may assume that Y ∈ g−i. Our claim is
now i = ±2.

First of all i ̸= 0 . Suppose i = 0: it follows

H = [Y, gXλ] ∈ [g0, g0] ⊆ D0,

that is, H ∈ D0. This contradicts to [H,Xλ] = 2Xλ ̸= 0. Thus we have i ̸= 0.
Next i ̸= ±1. Suppose i = 1: we have Y ∈ g−1, gXλ ∈ g1, and it follows from Lemma 7 that

H = [Y, gXλ] = Y + × gXλ − 〈Y +, gXλ〉H.
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Taking account of the decomposition g0 = D0 ⊕ C · H, comparing both sides above, one gets

Y + × gXλ = 0, 〈Y +, gXλ〉 = −1.

Since gXλ ∈ g1∩W ⊆ M (Lemma 6), by Lemma 8 one obtains from the former that 〈Y +, gXλ〉 = 0.
But this contradicts to the latter. Thus, i ̸= 1. Similarly we see i ̸= −1.

Therefore i = 2 or i = −2. ¤
8. Appendix: It can be shown that π(M \ {0}) ⊆ P∗(g1) is a projective variety that is a
homogeneous space of (an algebraic group with) Lie algebra D0 [Y2]. On the other hand, it is
known [A, M2, YA] that the adjoint varieties X(g) correspond to the meta-symplectic geometry
while the Severi varieties [FR, LV, Z] correspond to the projective geometry, in the magic square
of H. Freudenthal [F] as follows:

elliptic geometry B1 A2 C3 F4

projective geometry A2 A2 + A2 A5 E6

symplectic geometry C3 A5 D6 E7

metasymplectic geometry F4 E6 E7 E8

In this context π(M \ {0})) correspond to the symplectic geometry, and are called cubic Veronese
varieties in [M2].

Now our result is
Theorem 5 (homogeneous spaces M of D0):

X(g) ∩ P∗(g1) = π(M \ {0}).

Note that P∗(g1) is a linear subspace of Tx+X of codimension 2: In fact, Tx+X is spanned by
the point x+ of contact x+, the point h corresponding to the characteristic element, and this linear
space P∗(g1).

In our proof for this result, Theorem 1 as well as Lemma 8 are essential (for details see [KY]).

References

A. K. Atsuyama, Freudenthal’s projective geometries (in Japanese), Proc. Symp. Algebraic Geometry, “Pro-

jective Varieties/Projective Geometry of Algebraic Varieties 2 + Singularities”, Waseda University, JAPAN,
1997, pp. 1–62.

A1. H. Asano, On triple systems (in Japanese), Yokohama City Univ. Ronso, Ser. Natural Sci. 27 (1975), 7–31.
A2. H. Asano, Symplectic triple systems and simple Lie algebras (in Japanese), RIMS Kokyuroku, Kyoto Univ.

308 (1977), 41–54.
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