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Introduction

The purpose of our work is to study projective geometry of adjoint varieties, and
the purpose here is to illustrate the structure of adjoint varieties and their secant
varieties in case of type A, and to give new results for general cases: The former is
almost known; the latter is part of joint works [KOY, KY] with O. Yasukura (Fukui
University) and M. Ohno (Waseda University).

In this article, we first give fundamental definitions in §1 and some known results
on adjoint varieties in §2. Then in §3 we look at Al-case in detail and make a few ob-
servations. We next state our results for general cases in §4 and give proofs for some
of those results in §5. To investigate the structure of adjoint varieties, we need to
investigate that of Lie algebras in detail, and for this purpose we briefly introduce in
§5 the notion of symplectic triple systems that is the key in our proofs. This notion
was firstly introduced by H. Asano (Yokohama City University). In Appendix A
we prove a result on certain homogeneous spaces that appear in proofs of our main
results. The homogeneous spaces in question are called cubic Veronese varieties
by S. Mukai [M2], and correspond to the symplectic geometry of H. Freudenthal
[F]. Finally in Appendix B we give defining equations of higher secant varieties of
adjoint varieties of type A. I believe that the results in Appendices are also new.

1. Definitions

Definition 1 [B1, B2]: For a complex simple Lie algebra g, let G be a simple
algebraic group with Lie algebra g, and denote by Ad : G y g the adjoint represen-
tation: If G is a closed subgroup of some GLnC, then Ad g is just the conjugation
by g ∈ G. Consider a natural action

G y P∗(g) := (g \ {0})/C×.

Then it is well-known [FH, H2] that since g is simple, there exists a unique closed
orbit in P∗(g), denoted by X(g). We call X(g) an adjoint variety associated to g,
which is a non-singular, non-degenerate projective variety in P∗(g).

1998/08/25, a manuscript for proceedings of a conference “School on Commutative Algebras

and Projective Varieties” (Nagano, 1998/03/12–14)



HAJIME KAJI

Note that since Ad G = Int g, X(g) does not depend on the choice of G and is
uniquely determined by g, where Int g := 〈exp adY |Y ∈ g〉 ⊆ GL(g). Therefore
adjoint varieties are completely classified by the Dynkin diagram (see §2 below)
since so are complex simple Lie algebras, as is well-known (see, e. g. [H1]).

Take a Cartan subalgebra h and a base ∆ of the root system R with respect to
h, and fix an order on R defined by ∆ [H1]. Let λ be the highest root, and take a
highest root vector Xλ ∈ g. Then we have

X(g) = Int g · x+ = π(G · Xλ) ⊆ P∗(g),

where x+ := πXλ, and π : g \ {0} → P∗(g);Y 7→ C · Y is the canonical projection.

Definition 2 [FR, LV, Z]: Let X ⊆ PN
C be a complex projective variety. For

distinct points x, y ∈ X, we call the line joining x and y the secant line determined
by x and y, which is denoted by x ∗ y. Moreover set

Sec X :=
∪

x,y∈X,x ̸=y

x ∗ y ⊆ PN
C

This is an irreducible algebraic set in PN
C , as is easily seen, and considered as

a projective variety with reduced structure. We call SecX the secant variety of
X ⊆ PN

C . Secant varieties of projective varieties usually have singularities along at
least X.

2. Table of Adjoint Varieties

The facts given in this section are well-known (see, e. g. [FH]).

Classical Type.

type g Int g λ Ad X(g) ⊆ P∗(g) dim g

Al≥1 sll+1 PSLl+1 ω1 + ωl K Pl × Pl ∩ (1) l2 + 2l

Bl≥2 so2l+1 PSO2l+1 ω2 ∧2V F1(Q2l−1) 2l2 + l

Cl≥3 sp2l PSp2l 2ω1 S2V v2(P2l−1) 2l2 + l

Dl≥4 so2l PSO2l ω2 ∧2V F1(Q2l−2) 2l2 − l

Notation. For a group G, set PG := G/Z(G), where Z(G) is the center of G.
Moreover for each type, set

(A) sll+1 := {Y ∈ Ml+1C| trY = 0}, SLl+1 := {g ∈ GLl+1C|det g = 1} y
V := C⊕l+1; Z(SLl+1) = µl+1, where µn denotes the group of n-th roots
of unities. K := Ker(∧lV ⊗ V → ∧l+1V = C) ≅ Ker(V ∗ ⊗ V → C) via
∧lV ≅ V ∗.

(B,D) son := {Y ∈ MnC|tY Q + QY = 0}, SOn := {g ∈ GLnC|tgQg = Q,det g =
1} y V := C⊕n with

Q =
[

0 I[n/2]

I[n/2] 0

]
or Q =

 0 I[n/2] 0
I[n/2] 0 0

0 0 1

 ;
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Z(SOn) = µ2 if n is even, and Z(SOn) is trivial if n is odd.
(C) sp2l := {Y ∈ M2lC|tY Q + QY = 0}, Sp2l := {g ∈ GL2lC|tgQg = Q} y

V := C⊕2l with

Q =
[

0 Il

−Il 0

]
;

Z(Sp2l) = µ2.
We denote by F1(Qm) the Fano variety of lines in m-dimensional quadric hyper-
surface Q ⊆ Pm+1, which is a (2m − 3)-dimensional subvariety of a Grassmann
variety G(2,m + 2) and the polarization here is defined by the Plücker embedding
of G(2,m+2). We also denote by v2 the Veronese embedding, and by ∩(1) cutting
by a hyperplane. The notation for fundamental dominant weights ωi are same as
in [B].

Exceptional Type.

type λ dimX(g) dim g

E6 ω2 20 + 1 78
E7 ω1 32 + 1 133
E8 ω8 56 + 1 248
F4 ω1 14 + 1 52
G2 ω2 4 + 1 14

The adjoint variety of type G2 appears in the work of S. Mukai [M1] as a Fano
5-fold of index 3.

3. The case of type A

We set G := PSLl+1, V := Cl+1, and consider the following subsets of Hom(V, V ) =
V ∗ ⊗ V = Ml+1C:

Hom(V, V )r := {ϕ ∈ Hom(V, V )| rkϕ ≤ r}
K := {ϕ ∈ Hom(V, V )| trϕ = 0} = Ker(V ∗ ⊗ V → C) = sll+1

Kr := K ∩ Hom(V, V )r.

Moreover we set
H := diag(1,−1, 0, . . . , 0) ∈ Ml+1C,

and denote by
X(k1···ks)

a nilpotent matrix in Ml+1C that is a direct sum of Jordan cells of sizes k1, . . . , ks.
Recall that the adjoint action Ad : G y K is just taking the conjugation in this
case. Obviously the algebraic set π(Kr \ {0}) ⊆ P∗(K) has defining equations of
degree r + 1.

3-1. Adjoint Varieties. We first recall a few descriptions of adjoint varieties of
type A: The results in this subsection are well-known or easily deduced (see, e. g.,
[FH, p. 389]).

Lemma 1: G · πX(21···1) = π(K1 \ {0}).
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Proof: Note that orbits are considered with the reduced structure, as usual, and
it follows from [E, Theorem 2.1] that the right hand side is reduced: In fact K is
l-generic. Therefore it suffices to show that the equality holds set-theoretically.

The inclusion ⊆ follows since the rank and trace are determined by conjugacy
class. The converse ⊇ follows since a traceless rank one matrix has Jordan normal
form X(21···1). ¤

Lemma 2: π(K1 \ {0}) = P∗(V ∗) × P∗(V ) ∩ P∗(K).

Proof: We have π(Hom(V, V )1\{0}) = P∗(V ∗)×P∗(V ) since for ϕ ∈ Hom(V, V ) =
V ∗ ⊗ V , rkϕ ≤ 1 if and only if ϕ = f ⊗ v for some f ∈ V ∗ and v ∈ V . ¤

From the above we obtain

Proposition 1: X(Al) = π(K1 \ {0}) = P∗(V ∗) × P∗(V ) ∩ P∗(K). ¤

In particular X(Al) is defined by quadric equations. Note that we also have

π(K1 \ {0}) = F(1, l, V ) = P(TPl(−1))

via P∗(Hom(V, V )) = P∗(V ∗ ⊗ V ) = P(V ∗ ⊗OPl), where P(∗) is the dual of P∗(∗),
and F(1, l, V ) is a flag variety defined by the incidence correspondence of 1- and
l-subspaces of V in P∗(V ∗) × P∗(V ): In fact, the first identification is given by
ϕ ↔ (ϕ(V ) ⊆ Ker ϕ ⊆ V ); the second comes from the Euler quotient V ∗ ⊗OPl ³
TPl(−1) on Pl = P(V ).

3-2. Secant Varieties. Using the description given in the previous subsection,
let us look at secant varieties of adjoint varieties of type A in detail. We first have

Proposition 2: Sec X(Al) = π(K2 \ {0}).

Proof: As in the proof of Lemma 1, it suffices to show that the equality holds
set-theoretically. The inclusion ⊆ follows from Proposition 1 and an elementary
fact that rk(A + B) ≤ rkA + rk B. For the converse ⊇, since the roots of the
characteristic polynomial of Y ∈ K2 are a,−a (a ∈ C) and 0 with multiplicity l−1,
the Jordan normal form of Y is one of the following:

aH, X(31···1), X(221···1), X(21···1).

Each of those matrices can be written as a sum of two elements of K1: For example,
we have

2
[

1 0
0 −1

]
=

[
1 1
−1 −1

]
+

[
1 −1
1 −1

]
. ¤

Observation 1: We see from the proof above that SecX(Al) consists of 4 orbits
through πH, πX(31···1), πX(221···1) and πX(21···1) if rk g = l ≥ 2. Computing the
stabilizers one obtains that those orbits have dimension 4l − 2, 4l − 3, 4l − 5 and
2l − 1, respectively.

Since secant varieties are irreducible, this implies

Proposition 3: Sec X(Al) = G · πH and dimSec X(Al) = 2 dim X(Al). ¤
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3-3. Tangent Loci. For z ∈ P∗(g) denote by Θz the tangent locus with respect
to z, that is, set

Θz := {x ∈ X(g)|z ∈ TxX(g)},

where TxX(g) ⊆ P∗(g) denotes the embedded tangent space to X(g) at x.
In the simplest case l = 1, we see that there are exactly two orbits, G · πX(2) =

X(Al) and G ·πH = P∗(g)\X(A1). In terms of homogeneous coordinates, we have

X(A1) = {(ξ : η : ζ)|ξζ + η2 = 0} ⊆ P2 = P∗(sl2C)

via

(ξ : η : ζ) ↔ ξXλ + ηH + ζX−λ =
[

η ξ
ζ −η

]
with Xλ = X(2) and X−λ =t X(2). Since Tx+X(A1) = {ζ = 0} and Tx−X(A1) =
{ξ = 0}, it follows that Tx+X(A1) ∩ Tx−X(A1) = {h}, where x+ := πXλ = (1 : 0 :
0), x− := πX−λ = (0 : 0 : 1), and h := πH = (0 : 1 : 0).

Observation 2: We have Θh = {x+, x−} for X(A1) since X(A1) is a conic. More
generally for an arbitrary z ∈ Sec X(A1) \ X(A1) we have Θz = {x, y} for some
points x ̸= y ∈ X(A1). We have z = gh for some g ∈ G since Sec X(A1)\X(A1) =
G·h, hence {x, y} = {gx+, gx−}. Thus for a general point z ∈ Sec X(A1), the points
x, y of tangents through z are corresponding to the highest and lowest root vectors
with respect to a Cartan subalgebra h′ = C ·H ′, where H ′ is a non-zero element in
g such that πH ′ = z.

4. General Cases

To state our results for general cases, we need

Graded Decompositions of Lie Algebras of Contact Type and Charac-
teristic Elements [A1, A2]. For highest and lowest root vectors, Xλ and X−λ, of
a simple Lie algebara g, there exists H ∈ C · [Xλ, X−λ] such that

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, g±2 = C · X±λ,

where we set
gi := {Y ∈ g|[H,Y ] = iY },

an eigenspace of ad H. It follows from the Jacobi identity that [gi, gj ] ⊆ gi+j . It
can be shown that g1 ̸= 0 if and only if rk g ≥ 2, and in this case the decompo-
sition above is said to be of contact type. The element H ∈ h above is called a
characteristic element of the gradation.

We see dim X(g) = dim g1 + 1 since we have

Tx+X(g) = P∗([g, Xλ]) = P∗(C · H ⊕ g1 ⊕ g2).

Dynkin’s Normal Forms [Y1]. Let

D : g × g → C

be a symmetric bilinear form on g defined by a scalar multiple of the Killing form
such that D(H,H) = 2, where H is the characteristic element above. We call D the
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Dynkin’s normal form. Similarly to the case of Killing forms, we have D(gi, gj) = 0
unless i + j = 0. For example, we have D(Y,Z) = tr(Y Z) (Y,Z ∈ K = sll+1) in
Al-case .

Now we can state our results:

Theorem 1 (defining equations of adjoint varieties) [KOY]:

X(g) = π(W \ {0}),

where

W := {Y ∈ g|(adY )2Z + 2D(Y,Z)Y = 0 (∀Z ∈ g)}.

Theorem 2 (dimension of secant varieties) [KOY]:

dimSec X(g) = 2 dim X(g).

From this one sees that

codim(Sec X(g), P∗(g)) = dim g0 − 1 ≥ rk g − 1,

and in particular, SecX(g) ̸= P∗(g) if rk g ≥ 2.

Theorem 3 (orbits in secant varieties): Sec X(g) = Int g · h ([KOY]). More-
over, we have

rk g ≥ 2 ⇒ Sec X(g) % X(g) ⊔ Int g · h,

where h := πH.

Theorem 4 (tangent loci):

Θh = {x+, x−},

where x± := πX±λ.

This result tells us that for a general point z ∈ Sec X(g), the relationship among
z and the points in Θz is described as follows: For a general z ∈ Sec X(g) there
exists a characteristic element H ′ ∈ g of graded decomposition of contact type
such that z = πH ′, and Θz = P∗(g′−2) ∪ P∗(g′2), where g′±2 are graded piece of the
decomposition of degree ±2 with respect to H ′. Because for a general z ∈ Sec X(g)
it follows from the former part of Theorem 3 that z = gh for some g ∈ Int g, and it
follows from Threorem 4 that Θz = {gx+, gx−} with {gx±} = P∗(g′±2).

5. Proofs of Theorems

We here give proofs of the latter part of Theorem 3 and Theorem 4. For proofs of
Theorems 1, 2 and the former part of Theorem 3, see [KOY].

The key ingredient in the proofs here is
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Symplectic Triple Systems [A1, A2, YA]. Choosing the highest and lowest root
vectors X±λ so that [Xλ, X−λ] = H, we define

2〈P,Q〉Xλ :=[P,Q],

2P × Q :=[P [Q,X−λ]] + [Q[P,X−λ]],

[P,Q,R] :=[R,P × Q].

for P,Q,R ∈ g1. One obtains a skew-symmetric form 〈, 〉, a symmetric product ×
and a triple product [, , ] on g1 as follows:

〈, 〉 : g1 × g1 → C, × : g1 × g1 → g0, [, , ] : g1 × g1 × g1 → g1.

Then, according to [A1, A2], if rk g ≥ 2, a triplet

(g1, [, , ], 〈, 〉)

has the structure of a symplectic triple system, that is, the skew-symmetric form
〈, 〉 is not trivial and for P,Q,R, S, T ∈ g1 the following holds:

[PQR] = [QPR];(STS1)

[PQR] − [PRQ] = 〈P,R〉Q − 〈P,Q〉R + 2〈Q,R〉P ;(STS2)

[ST [PQR]] = [[STP ]QR] + [P [STQ]R] + [PQ[STR]].(STS3)

In general, a vector space with a triple product [, , ] and a non-trivial skew-symmetric
form 〈, 〉 satisfying the conditions (STS1-3) above is called a symplectic triple sys-
tem. The notion of symplectic triple systems was firstly introduced by H. Asano
[A1, A2] (Yokohama City Univesity).

Remark (O. Yasukura): It can be shown that for the graded piece g1 of a complex
simple Lie algebra g, the following are equivalent:

(1) g1 ̸= 0.
(2) the skew-symmetric form 〈, 〉 is non-trivial;
(3) the triple product [, , ] is non-trivial;

The implication (1)⇒(2) is involved in [A1, A2] though there is no proof; (2)⇒(3)
follows from (STS2); and, (3)⇒(1) is trivial.

Now consider the following subset of g1:

M := {Y ∈ g1|Y × Y = 0} = {Y ∈ g1|(adY )2X−λ = 0}.

Lemma 3:
W ∩ g1 ⊆ M.

Proof: If Y ∈ W , then we have

(ad Y )2X−λ + 2D(Y,X−λ)Y = 0.

Moreover if Y ∈ g1, then we have D(Y,X−λ) = 0 since X−λ ∈ g−2. Thus we obtain
(adY )2X−λ = 0, and hence Y × Y = 0, that is, Y ∈ M . ¤
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Proof of the latter part of Theorem 3: Since ad Y is nilpotent on g for Y ∈ g1 but
ad H is not, we see that

P∗(g1) ∩ Int g · h = ∅.

On the other hand, we have

Sec X(g) ⊇ Tx+X(g) ⊇ P∗(g1).

Therefore we have

Sec X(g) \ (X(g) ⊔ Int g · h) ⊇ P∗(g1) \ X(g).

If P∗(g1) ⊆ X(g), then it follows from Lemma 3 that g1 ⊆ M . This implies that
[PPQ] = 0 for any P,Q ∈ g1, hence we have [g1g1g1] = 0 since [, , ] is symmetric
in the first and second variables. According to Remark above, we have rk g ≤ 1.
Therefore if rk g ≥ 2, then P∗(g1)\X(g) is not empty, so is Sec X(g)\(X(g)⊔Int g·h),
as required. ¤

To prove Theorem 4, consider moreover

D0 := {Z ∈ g0|(adZ)Xλ = 0} = {Z ∈ g0|(adZ)X−λ = 0},

and a decomposition of g0 as follows:

g0 = D0 ⊕ C · H.

The decomposition is obtained from an exact sequence,

ad X±λ
0 → D0 → g0 → g±2 → 0,

which splits by the map, adX∓λ : g0 ← g±2, with adX∓λ(g±2) = C · H.
Then we have

Lemma 4: [g0, g0] ⊆ D0.

Proof: Since [g0,H] = 0, we have [g0, g0] = [D0 ⊕ C · H, D0 ⊕ C · H] = [D0, D0].
On the other hand, it follows from the Jacobi identity that for Z1, Z2 ∈ D0 we have

[[Z1, Z2]Xλ] = −[[Z2, Xλ]Z1] − [[Xλ, Z1]Z2] = −[0, Z1] − [0, Z2] = 0,

hence, [Z1, Z2] ∈ D0. Therefore [D0,D0] ⊆ D0. ¤
In fact the above is the decomposition of a reductive Lie algebra g0 into a direct

sum of its semi-simple part, denoted by D0, and its abelian part, C · H (see [A1,
H1]). So we have moreover that [D0, D0] = D0. But we do not use these facts.

Lemma 5: g1 × g1 ⊆ D0.

Proof: It follows from the Jacobi identity that for P1, P2 ∈ g1 we have

[[Pi[Pj , X−λ]]Xλ] = −[[[Pj , X−λ], Xλ]Pi] − [[Xλ, Pi], [Pj , X−λ]]

= −[Pj , Pi] − [0, [Pj , X−λ]]

= [Pi, Pj ],
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so that

2[P1 × P2, Xλ] = [[P1[P2, Xλ]] + [P2[P1, Xλ]], Xλ] = [P1, P2] + [P2, P1] = 0.

Therefore we have P1 × P2 ∈ D0. ¤

The key in our proof is the following propositions:

Proposition 4 (decomposition formula): For Y ∈ g−1, P ∈ g1, we have

[Y, P ] = Y + × P − 〈Y +, P 〉H,

where we set Y + := [Xλ, Y ].

Proof: Dividing into two, applying the Jacobi identity to the latter term below, we
have

[Y, P ] = [[X−λ, Y +]P ] =
1
2
[[X−λ, Y +]P ] +

1
2
[[X−λ, Y +]P ]

=
1
2
[[X−λ, Y +]P ] +

1
2

(
−[[Y +, P ]X−λ] − [[P,X−λ]Y +]

)
=

1
2
[[X−λ, Y +]P ] +

1
2
[X−λ[Y +, P ]] +

1
2
[[X−λ, P ]Y +]

=
1
2

(
[[X−λ, Y +]P ] + [[X−λ, P ]Y +]

)
+ [X−λ, 〈Y +, P 〉Xλ]

= Y + × P − 〈Y +, P 〉H. ¤

Proposition 5: For P,Q ∈ g1, we have

P × Q = 0, P ∈ M ⇒ 〈P,Q〉 = 0.

Proof: In (STS2), set R := P . Then we have

[PQP ] − [PPQ] = 〈P, P 〉Q − 〈P,Q〉P + 2〈Q,P 〉P.

Since it follows from the assumption that [PQP ] = [P, P × Q] = [P, 0] = 0 and
[PPQ] = [Q,P × P ] = [Q, 0] = 0, we obtain

〈P,Q〉P = 0.

Therefore it follows 〈P,Q〉 = 0 whether P = 0 or not. ¤

Proof of Theorem 4: It suffices to show that if h ∈ Tgx+X with g ∈ Int g, then
gx+ ∈ {x+, x−}. Since Tgx+X(g) = P∗([g, gXλ]), in terms of Lie algebra this is
equivalent to showing that for g ∈ Int g, Y ∈ g, we have

H = [Y, gXλ] ⇒ gXλ ∈ g2 ∪ g−2.

Here we have
gXλ ∈ gi
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for some i with −2 ≤ i ≤ 2: Indeed, since gXλ ∈ W , it follows

[H, gXλ] = [[Y, gXλ], gXλ] = (ad gXλ)2Y = −2D(Y, gXλ)gXλ,

hence gXλ is an eigenvector of adH. If we write Y =
∑2

j=−2 Yj (Yj ∈ gj), then we
have

H = [Y, gXλ] =
2∑

j=−2

[Yj , gXλ].

Since H ∈ g0 and [Yj , gXλ] ∈ gi+j , taking the component of degree 0, we obtain

H = [Y−i, gXλ].

Thus setting Y := Y−i, we may assume Y ∈ g−i.
Now we first have i ̸= 0 . Suppose i = 0: it follows from Lemma 4 that

H = [Y, gXλ] ∈ [g0, g0] ⊆ D0,

that is, H ∈ D0. This contradicts to [H,Xλ] = 2Xλ ̸= 0. Thus we have i ̸= 0.
Next we have i ̸= ±1. Suppose i = 1: we have Y ∈ g−1, gXλ ∈ g1, and it follows

from Proposition 4 that

H = [Y, gXλ] = Y + × gXλ − 〈Y +, gXλ〉H.

Taking account of the decomposition g0 = D0 ⊕C ·H, comparing both sides above,
one gets

Y + × gXλ = 0 and 〈Y +, gXλ〉 = −1.

Since it follows from Lemma 3 that gXλ ∈ g1 ∩ W ⊆ M , by Proposition 5 one
obtains from the former that 〈Y +, gXλ〉 = 0. But this contradicts to the latter.
Thus, i ̸= 1. Similarly we obtain i ̸= −1.

Therefore i = 2 or i = −2. ¤
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Appendix A: Homogeneous spaces M

It can be shown that π(M \ {0}) ⊆ P∗(g1) is a projective variety that is a ho-
mogeneous space of (an algebraic group with) Lie algebra D0 [Y2]. On the other
hand, it is known [A, M2, YA] that the adjoint varieties X(g) correspond to the
meta-symplectic geometry while the Severi varieties [FR, LV, Z] correspond to the
projective geometry, in the magic square of H. Freudenthal [F] as follows:

elliptic geometry B1 A2 C3 F4

projective geometry A2 A2 + A2 A5 E6

symplectic geometry C3 A5 D6 E7

metasymplectic geometry F4 E6 E7 E8

In this context π(M \ {0})) correspond to the symplectic geometry, and are called
cubic Veronese varieties in [M2].

Now our result is

Theorem 5 (homogeneous spaces M of D0):

X(g) ∩ P∗(g1) = π(M \ {0}).

Note that P∗(g1) is a linear subspace of Tx+X of codimension 2: In fact, Tx+X is
spanned by the point x+ of contact, the point h corresponding to the characteristic
element, and this linear space P∗(g1).

Proof of Theorem 5: We here show the inclusion ⊇: the converse is just Lemma
3. By virtue of Theorem 1 this is equivalent to showing that if Y ∈ M , then

(adY )2Z + 2D(Y,Z)Y = 0

for all Z ∈ g. Since this equation is linear on Z, it suffices to show that the equation
holds for Z ∈ gi with −2 ≤ i ≤ 2.

We first consider the case i ̸= −1. We then have D(Y,Z) = 0 since Y ∈ g1.
Therefore it suffices to show that

(adY )2Z = 0.

If i = 1, 2, then the claim follows since (ad Y )2Z ∈ gi+2 = 0 with i + 2 > 2. If
i = −2, then we have Z = cX−λ for some c ∈ C, and (adY )2Z = c(ad Y )2X−λ = 0
since Y ∈ M .

In case of i = 0, set Z1 := (adY )Z ∈ g1. Then the claim above is written as
[Y,Z1] = 0, that is, 〈Y,Z1〉 = 0. By virtue of Proposition 5 this is reduced to
showing the next

Claim: Y ∈ M,Z ∈ g0 ⇒ Y × Z1 = 0, where Z1 := (adY )Z.

Proof of Claim: By the definition we have Y ×Z1 = 1
2{[Y [Z1, X−λ]]+[Z1[Y,X−λ]]}.

For each term of the right hand, we have

[Y [Z1, X−λ]] = [Y [[Y,Z]X−λ]]

= −[Y [[Z,X−λ]Y ]] − [Y [[X−λ, Y ]Z]]

= 0 − [Y [[X−λ, Y ]Z]] (∵ [Z,X−λ] ∈ g−2, Y ∈ M)

= −[Y [[X−λ, Y ]Z]],
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and

[Z1[Y,X−λ]] = [[Y,Z], [Y,X−λ]]

= −[[Z, [Y,X−λ]]Y ] − [[[Y,X−λ]Y ]Z]

= −[[Z, [Y,X−λ]]Y ] − [0, Z] (∵ Y ∈ M)

= −[[Z, [Y,X−λ]]Y ]

= [Y [[X−λ, Y ]Z]].

Thus we obtain Y × Z1 = 0. ¤

This completes the proof when i ̸= −1, and we next consider the case i = −1.
In this case we show that

(adY )2Z = 4〈Y,Z+〉Y = −2D(Y,Z)Y,

where we set Z+ := [Xλ, Z] for Z ∈ g−1: note that one has Z = [X−λ, Z+].
We have (adY )2Z = 4〈Y,Z+〉Y : Indeed, applying the Jacobi identity twice, we

have

(adY )2Z = [Y [Y [X−λ, Z+]]]

= −[Y [X−λ[Z+, Y ]]] − [Y [Z+[Y,X−λ]]]

= −2〈Z+, Y 〉[Y [X−λ, Xλ]] + {[Z+[[Y,X−λ]Y ]] + [[Y,X−λ], [Y,Z+]]}
= −2〈Z+, Y 〉[Y,−Hλ] + [Z+, 0] + 2〈Y,Z+〉[[Y,X−λ]Xλ] (∵ Y ∈ M)

= 2〈Y,Z+〉Y + 0 + 2〈Y,Z+〉Y
= 4〈Y,Z+〉Y.

On the other hand, we have D(Y,Z) = −2〈Y,Z+〉: Indeed, we have D(Xλ, X−λ) =
1 and

D(Y,Z) = D(Y, [X−λ, Z+])

= −D(Y, [Z+, X−λ])

= −D([Y,Z+], X−λ)

= −2〈Y,Z+〉D(Xλ, X−λ)

= −2〈Y,Z+〉.

This completes the proof of Theorem 5. ¤
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Appendix B: Higher secant varieties

For a complex projective variety X ⊆ PN
C , set

S(k)X :=
∪

x0,...,xk∈X,dim〈x0,...,xk〉=k

〈x0, . . . , xk〉,

where 〈x0, . . . , xk〉 is the linear subspace of PN
C spanned by the points x0, . . . , xk.

We call S(k)X the variety of k-secants of X ⊆ PN
C . Of course S(0)X = X and

S(1)X = Sec X.
Our result is

Theorem 6 (defining equations of higher secant varieties):

S(k)X(Al) = π(Kk+1 \ {0})

for 0 ≤ k ≤ l + 1.

As in the proof of Lemma 1, by virtue of [E, Theorem 2.1] it suffices to show
that the equality holds set-theoretically.

From the definition of higher secant varieties and Proposition 1 we obtain the
inclusion ⊆ (see the proof of Proposition 1). The converse ⊇ follows from

Proposition 6 (decompoisiton of traceless matrices): For A ∈ MnC, if
tr A = 0 and rkA = r ≥ 1, then there exist A1, . . . , Ar ∈ MnC such that

A =
r∑

i=1

Ai, tr Ai = 0, rkAi = 1.

Proof: We show the assertion by induction on the rank r of A. Assume r ≥ 2: the
assertion is trivial in case of r = 1. It suffices to show

Claim: There exist A1, A0 ∈ MnC such that

A = A1 + A0, tr Ai = 0, rkA1 = 1, rkA0 = r − 1.

To show this, since the ground field C is algebraically closed, one may assume that
A is a Jordan normal form as follows:

A = J(n1, a1) ⊕ J(n2, a2) ⊕ · · · ⊕ J(nk, ak), (ni ∈ N, ai ∈ C),

where J(m, b) ∈ MmC denotes a Jordan cell with eigenvalue b ∈ C:

J(m, b) =


b 1

b
. . .
. . . 1

b

 ∈ MmC.
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We first consider the case when there exist i, j such that (ai − aj)aiaj ̸= 0. To
simplify the notation, write b := ai, c := aj , l := ni,m := nj , assume i = 1, j = 2,
and set

R :=
k⊕

i=3

J(ni, ai) ∈ Mn−l−mC.

Then we have
A = J(l, b) ⊕ J(m, c) ⊕ R

with (b − c)bc ̸= 0. Now set

S := Ol−1 ⊕
1

b − c

[
−bc bc
−bc bc

]
⊕ Om−1,

T := J(l, b) ⊕ J(m, c) − S,

where Om ∈ MmC denotes zero matrix. Then we have

T =



J(l − 1, b) 01

U
1

0 J(m − 1, c)


,

where we set

U :=
1

b − c

[
b2 −bc
bc −c2

]
.

We set
A1 := S ⊕ On−l−m, A0 := T ⊕ R.

These matrices have the required properties. Indeed, we have

A1 + A0 =(S + T ) ⊕ R = J(l, b) ⊕ J(m, c) ⊕ R = A,

tr A1 =trS = 0,

tr A0 =trT + trR = (tr J(l, b) ⊕ J(m, c) − tr S) + trR = trA = 0,

rkA1 =rk S = 1,

where one needs bc ̸= 0. Moreover, we have rkT < rkJ(l, b) ⊕ J(m, c): indeed,
det T = 0 since det U = 0, while det J(l, b) ⊕ J(m, c) = blcm ̸= 0. Therefore

rkA0 = rk T + rk R ≤ (rkJ(l, b) ⊕ J(m, c) − 1) + rk R = rkA − 1 = r − 1.

But the converse inequality is trivial since A = A1 + A0 with rkA1 = 1. Thus we
have

rkA0 = r − 1.

This completes the proof when there exist i, j such that (ai − aj)aiaj ̸= 0.
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We next consider the contrary case. We see that the eigenvalues ai take at most
2 values, that is,

{a1, . . . , ak} = {0, a}, (a ∈ C)
as sets. Moreover we find that a = 0: Because if a ̸= 0, then

0 = tr A = qa,

where q > 0 is the multiplicity of the eigenvalue a, and this is a contradiction since
the characteristic of C is zero. Thus A is nilpotent and the assertion now easily
follows. ¤

For several projective varieties and their secant varieties, determinantal realza-
tions are known, and it might be interesting to compare Theorem 6 with the fol-
lowing:

X ⊆ P matrices M matrices for S(k)X

Pm−1 × Pn−1 Mm,nC Mk+1

v2(Pm−1) SymmmC Mk+1

G(2,m) AltmC M2k+2

vm+n−2(P1) Catm,nC Mk+1

Notation. We denote by SymmmC and by AltmC the spaces of symmetric and
alternating matrices of degree m, respectively. We denote by Catm,nC the catalec-
ticant space of size m × n, that is,

Catm,nC := {[aij ] ∈ Mm,nC|aij = ai+1j−1 (∀i, j)}.
For a linear space M of matrices we denote by Mr the locus of matrices in M with
rank at most r, as before.

The table above reads as follows: The second row, for example, means that we
have

S(k)v2(Pm−1) = π((SymmmC)k+1 \ {0}),
for k ≥ 0, where π : SymmmC \ {0} → P∗(SymmmC) is the canonical projection;
note that to obtain the equality in the scheme-theoretic sense for AltmC one should
take Pfaffians insead of minors. For proofs, see [H].

One might expect some formulas similar to Theorem 6 would hold for other
adjoint varieties. But this is not straightforward: In fact, for exmple, the adjoint
variety associated to the simple Lie algebra AltmC, which is of type B or D, is not
a Grassmann Variety G(2, m) but a Fano variety of projective lines in a quadric
hypersurface in Pm−1

C , which is a subvariety of codimension 3 in G(2,m). Thus to
obtain defining equations for those adjoint varieties, one needs more polynomials
other than Pfaffians.

It is observed that for those varieties X in the table above including X(Al), the
varieties of k-secants, S(k)X, have defining equations of degree k + 2: In fact, the
defining equations of S(k)X for Grassmann varieties come from Pfaffians, and for
others from ordinary minors. On the other hand, according to W. Lichtenstein
[L], any homogeneous projective variety has defining equation of degree 2, where a
homogeneous projective variety is by definition a (unique) closed orbit in P∗(V ) of
the action of an algebraic group G induced by a rational representation G y V .
So it would be natural to pose
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Conjecture. The variety of k-secants, S(k)X, has defining equations of degree
k+2 if X is an adjoint variety, or more generally, if X is a homogeneous projective
variety.
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