
        

ある種のフロイデンタール多様体の射影幾何について

Projective geometry of Freudenthal varieties of certain type

Hajime Kaji

0. Introduction

H. Freudenthal constructed, in a series of his papers (see [10] and its references), the exceptional
Lie algebras of type E8, E7, E6 and F4, with defining various projective varieties. The purpose of
our work is to study projective geometry for his varieties of certain type, which are called varieties
of planes in the symplectic geometry of Freudenthal (see [10, 4.11], [24, 2.3]).

Let g be a graded, simple, finite-dimensional Lie algebra over the complex number field C with
grades between −2 and 2, dim g2 = 1 and g1=/ 0, namely a graded Lie algebra of contact type:
g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 (see §1). We set

V := {x ∈ g1 \ {0}|(adx)2g−2 = 0},

and define an algebraic set V in P(g1) to be the projectivization of V:

V := π(V),

where π : g1 \ {0} → P(g1) is the natural projection. Then we call V ⊆ P(g1) (with the reduced
structure) the Freudenthal variety associated to the graded Lie algebra g of contact type, which is
a natural generalization of Freudenthal’s varieties mentioned above: Note that V is not necessarily
connected in this general setting. We here consider moreover the projectivization of a closed set
{x ∈ g1|(adx)k+1g−2 = 0}, and denote it by Vk: we have

∅ = V0 ⊆ V1 ⊆ V2 ⊆ V3 ⊆ V4 = P,

where we set P := P(g1) for short. Clearly, V3 is a quartic hypersurface, V2 is an intersection of
cubics and V1 = V is an intersection of quadrics, with a few exceptions.

In the literature, several results have been known about the structure of g1 as a g0-space,
case-by-case for each exceptional Lie algebra of types E8, E7, E6 and F4, from the view-point
of the invariant theory of prehomogeneous vector spaces (see [13], [15], [20], [23]). By virtue of
those results, it can be shown, for example, that the stratification of P given by the differences
of Vk’s exactly corresponds to the orbit decomposition of the g0-space g1 for those exceptional
Lie algebras, and also that Freudenthal varieties V associated to the algebras of type E8, E7, E6

and F4 are respectively projectively equivalent to the 27-dimensional E7-variety arising from the
56-dimensional irreducible representation, the orthogonal Grassmann variety of isotropic 6-planes
in C12 (namely, the 15-dimensional spinor variety), the Grassmann variety of 3-planes in C6 and
the symplectic Grassmann variety of isotropic 3-planes in C6, with dimP = 55, 31, 19 and 13,
respectively (see Appendix 1): for those homogeneous projective varieties, we refer to [12, §23.3].

In this article we study the Freudenthal varieties V with the filtration {Vk} of the ambient
space P, from the view-point of projective geometry, not individually but systematically in terms

シンポジウム「代数曲線論」@神奈川工科大学 (2004/12/12, 13:30–14:30)

1



        

2 HAJIME KAJI

of abstract Lie algebras, without depending on the classification of simple Lie algebras as well as
on the known results for each case of types E8, E7, E6 and F4.

Before stating the main result, we note that the Lie bracket g1 × g1 → g2 � C defines a non-
degenerate skew-symmetric form on g1, so that this form allows us to identify g1 with its dual
space, hence P with its dual space, and g1 is even-dimensional. Moreover, the quartic form on
g1 defining V3 has a differential which via the symplectic form defines a vector field on g1, and
this vector field defines a 1-dimensional distribution on P away from the singular locus of V3 (see
Proposition A1). We denote by LP the (closure of the) integral curve of this distribution passing
through P ∈ P \ Sing V3. On the other hand, we have a rational map γ : P 99K P defined by
x �→ (adx)3g−2 with base locus V2, which turns out to be a Cremona transformation of P: It is
deduced that γ−1(V ) = V3 \V2, γ−1(P \V3) = P \V3, γ2 = 1 on P \V3, and γ is explicitly given by
the partial differentials of q (see Proposition A2). Note that our γ is a special case of the Cremona
transformations in [7, Theorem 2.8 (ii)].

Our main results are summarized as follows (see Theorems A, B, C, D, E, Corollaries A2, B1,
B3 and C):

Theorem. Assume that V is irreducible. Then we have:
(1) V is a Legendrian subvariety of P, that is, the projectivization of a Lagrangian subvariety

of g1, with dimV = n− 1, spans P, and is an orbit of the group of inner automorphisms of
g with Lie algebra g0, hence smooth, where dim g1 = 2n. In particular, the projective dual
V ∗ of V is equal to the union of tangents to V via the symplectic form.

(2) V2 is the singular locus of V3, and for any P ∈ P \ V2, LP is the line in P joining P and
γ(P ). Moreover, we have:
(a) If P ∈ P \ V3, then LP is a unique secant line of V passing through P , there is

no tangent line to V passing through P , LP ∩ V consists of harmonic conjugates
with respect to P and γ(P ), and LP \ V ⊆ P \ V3. Moreover, γ preserves LP , and
the automorphism of LP induced from γ leaves each point in LP ∩ V invariant and
permutes P and γ(P ).

(b) If P ∈ V3 \ V2, then there is no secant line of V passing through P , LP is a unique
tangent line to V passing through P , LP ∩V = γ(P ), and LP \V ⊆ V3\V2. Moreover,
LP is contracted by γ to the contact point γ(P ), and conversely the fibre of γ on Q ∈ V
consists of the points P ∈ V3 \ V2 such that Q ∈ LP , or equivalently, P lies on some
tangent to V at Q.

In particular, V is a variety with one apparent double point, and V3 is the union of tangents
to V .

(3) For any P ∈ V2 \ V , the family of secants of V passing through P is of dimension at least
1, and all of those secants are isotropic with respect to the symplectic form: In particular,
V2 \ V is covered by isotropic secants of V .

(4) For any Q, R ∈ V , the secant line joining Q and R is isotropic if and only if the tangents
to V at Q and at R are disjoint.

(5) For any P ∈ V3 \ V2 and Q ∈ V , if the secant line joining Q and the contact point γ(P )
of LP is not isotropic, then there is a twisted cubic curve contained in V to which LP and
LR are tangent at γ(P ) and at Q, respectively, where R is a point on some tangent to V
at Q away from V2, determined by P and Q.

(6) If V2=/ V , then V is ruled, that is, covered by lines contained in V .
(7) For any P ∈ V , the double projection from P gives a birational map from V onto Pn−1,

and by the inverse V is written as the closure of the image of a cubic Veronese embedding
of a certain affine space An−1 under some projection to P.

We show also that the three conditions, V = ∅, V3 = P and V2 = P are equivalent to each
other (see Corollary A1), and that if V is neither empty nor irreducible, then g1 decomposes
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naturally into two irreducible g0-submodules of dimension n and V is the (disjoint) union of the
projectivizations of those summands (see Corollary B2).

Finally we should mention that S. Mukai announced a theorem [22, (5.8)] on cubic Veronese
varieties without proofs. Our work was originated by looking for proofs of the corresponding
statements for Freudenthal varieties (Corollaries A2, B1, C and Theorem D): In fact, we see from
his list [22, (5.10)] of cubic Veronese varieties (and the list in Appendix 1) that the notion of our
Freudenthal varieties coincides with that of his cubic Veronese varieties. Our result gives a partial
explanation for this coincidence (see Theorem D).

This is a joint work with Osami Yasukura. For proofs of the results here, see [19].

1. Preliminaries

For a finite-dimensional, simple Lie algebra g of rank ≥ 2, a graded decomposition of contact
type is obtained as follows: Take a Cartan subalgebra h of g and a basis ∆ of the root system
R with respect to h, and fix an order on R defined by ∆. Denote by ρ the highest root of g,
let E+ and E− be highest and lowest weight vectors, respectively, and set H := [E+, E−]. By
multiplying suitable scalars, one may assume that (E+, H, E−) form an sl2-triple, that is, those
vectors have the following standard relations: [H, E+] = 2E+, [H, E−] = −2E− and [E+, E−] = H.
Then, the eigenspace decomposition of g with respect to adH gives g a graded decomposition of
contact type: In other words, if we set gλ := {x ∈ g|[H, x] = λx} for λ ∈ C, then it follows that
g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, dim g2 = 1 and g1=/ 0: In fact, g1 = 0 if and only if g = sl2. In terms
of root spaces of g, we have

g0 = h⊕
⊕

α∈R+\(Rρ∪{ρ})
(gα ⊕ g−α) , g±1 =

⊕
α∈Rρ

g±α, g±2 = g±ρ = CE±,

where R+ is the set of positive roots and Rρ := {α ∈ R+|ρ − α ∈ R}: Indeed, let sρ be the
subalgebra of g spanned by E+, H and E−, which is isomorphic to sl2. Then the irreducible
decomposition of g as an sl2-module gives the decomposition above (see, for full details, [27]).
Conversely, for a graded decomposition g =

∑
gi of contact type, taking suitable bases E+ for

g2 and E− for g−2 with H := [E+, E−], one may assume that (E+, H, E−) form an sl2-triple, as
before. Then, we see that E+ and E− are some highest and lowest weight vectors, respectively,
and each gi is recovered as an (ad H)-eigenspace. Therefore, the graded decompositions of contact
type are unique up to automorphism of g, so that the Freudenthal variety V is essentially unique
and determined by g itself (see Appendix 1).

Now, we define a symmetric product × : g1 × g1 → g0 by the formula:

−2a × b = [b, [a, E−]] + [a, [b, E−]],

which induces a symmetric map L : g1×g1 → Hom(g1, g1) and a ternary product [, , ] : g1×g1×g1 →
g1 by

[a, b, c] = L(a, b)c = [a × b, c].

Note that the adjoint action of g0 on g1 is faithful since g is simple (see [27, Lemma 3.2 (1)]):
we may assume g0 ⊆ Hom(g1, g1), so that we identify L(a, b) with a × b. We think of g1 as an
g0-module via the adjoint action: For example, we often write Dx instead of (adD)x and [D, x]
for D ∈ g0 and x ∈ g1. As the skew-symmetric form 〈, 〉 : g1 × g1 → C and the quartic form on g1

defining V3 mentioned in Introduction, we use the ones determined by

2〈a, b〉E+ = [a, b], 2q(x)E+ = (adx)4E−.

Note that the skew-symmetric form 〈, 〉 is non-degenerate since g is simple (see [27, Lemma 3.2
(2)]).
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With the notation above, it follows that

V = V1 = π ({x ∈ g1 \ {0}|x × x = 0}) ,

V2 = π ({x ∈ g1 \ {0}|[xxx] = 0}) ,

V3 = π ({x ∈ g1 \ {0}|〈x, [xxx]〉 = 0}) ,

and q(x) = 〈x, [xxx]〉. Note that V0 = ∅ since [[x, E−]E+] = x for any x ∈ g1: Indeed, it
follows from the Jacobi identity that [[x, E−]E+] = [[x, E+], E−]+ [x[E−, E+]] = [x,−H] = x since
[x, E+] ∈ g3 = 0. On the other hand, it follows from Lemma 1 below that V =/ P.

Lemma 1. Let g00 be the subalgebra of g0 defined by g00 := Ker(adE+|g0) = Ker(adE−|g0). Then
we have g0 = g00 ⊕ CH, and g00 is linearly spanned by the elements in g0 of the form a × b with
a, b ∈ g1. In particular, g00=/ 0, and x × x=/ 0 for some x ∈ g1.

Lemma 2 (Asano [3]). For any a, b, c ∈ g1 and D ∈ g00, we have
(1) 〈Da, b〉 + 〈a, Db〉 = 0.
(2) D(a × b) = Da × b + a × Db.
(3) D[abc] = [(Da)bc] + [a(Db)c] + [ab(Dc)].

If we denote by G00 the group of inner automorphisms of g with Lie algebra g00, then Lemma
2 tells that the symplectic form 〈, 〉, the symmetric product × and the ternary product [, , ] are
equivariant with respect to the action of G00, so that each Vi is stable under the action of G00,
that is, a union of some orbits of G00. We should mention that the above proofs of (2) and (3) in
Lemma 2 are due to the referee, much simpler than the ones in [3].

Lemma 3 (Asano [3]). We have [abc] − [acb] = 〈a, c〉b − 〈a, b〉c + 2〈b, c〉a for any a, b, c ∈ g1.

2. Basic Results

Proposition 1. If x ∈ V, then [axx] = 3〈a, x〉x for any a ∈ g1 (Asano [2]). In particular,
Cx ⊆ g00x, and if a × x = 0, then 〈a, x〉 = 0.

Proposition 2. We have 〈[abc], d〉 = 〈[cda], b〉 for any a, b, c, d ∈ g1.

Proposition 3. If x ∈ V and D, E ∈ g00, then Dx×x = 0 (Asano [2]), 〈Dx, x〉 = 0, 〈Dx, Ex〉 = 0
and [(Dx)(Ex)x] = 0.

Proposition 4. For any a ∈ g1, we have:
(1) [aaa] × a = 0.
(2) [aa[aaa]] = 3q(a)a.
(3) [aaa] × [aaa] = −3q(a)a × a.
(4) [[aaa][aaa][aaa]] = −9q(a)2a.
(5) q([aaa]) = 9q(a)3.

Proposition 5. If b = a + x with a ∈ g1 and x ∈ V, then we have:
(1) b × b = a × a + 2a × x.
(2) [bbb] = [aaa] + 3[aax] + 6〈x, a〉(a − x).
(3) q(b) = q(a) + 4〈x, [aaa]〉 + 12〈x, a〉2.

Proposition 6. For any a ∈ g1, we have:
(1) 3[aa[aab]] = 8〈b, [aaa]〉a + 8〈a, b〉[aaa] + 〈a, [aaa]〉b for any b ∈ g1.
(2) If q(a)=/ 0, then the linear map L(a, a) has full rank.

Proposition 7. For any a ∈ g1 and x ∈ V, we have
(1) [aaa] × x + 3[aax] × a + 6〈x, a〉a × a = 0.
(2) 3[aax] × [aax] + 8〈x, [aaa]〉a × x − 8〈x, a〉[aaa] × x = 0. In particular, if [aaa] = 0, then

[aax] × [aax] = 0, and moreover, Cx + C[aax] ⊆ V ∪ {0}.
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3. A Line Field and a Cremona Transformation

Proposition A1. The quartic form q on g1 has a differential at a ∈ g1 as follows:

dq(a) : tag1 → C; b �→ 4〈b, [aaa]〉,

where tag1 is the Zariski tangent space to g1 at a, naturally identified with g1. In particular, the
singular locus of V3 is equal to V2. The vector field on g1 corresponding to dq via 〈, 〉 induces a
1-dimensional distribution D on P away from Sing V3 = V2, which is given by

D : π(a) �→ (Ca + C[aaa])/Ca,

where π(a) ∈ P\V2 and we naturally identify the Zariski tangent space tπaP with the quotient space
g1/Ca.

Proposition A2. Let γ : P 99K P be a rational map induced from the cubic, a �→ [aaa]. Then：
(1) γ−1(V ) = V3 \ V2.
(2) γ−1(P \ V3) = P \ V3.
(3) γ2 = 1 on P \ V3, hence γ gives an automorphism of P \ V3.
(4) γ is explicitly given by the partial differentials of q.

In particular, γ is a Cremona transformation of P(g1) with order 2 if V2=/ P.

A secant line of V is by definition a line in P which passes through at least two distinct points
of V and is not contained in V . We note that for a line L in P if the scheme-theoretic intersection
L ∩ V has length more than 2, then L ⊆ V : Indeed, V is an intersection of quadric hypersurfaces.

Theorem A. Let LP be the closure of the integral curve of D through P ∈ P \ V2, where D is the
1-dimensional distribution on P \ V2 induced from the quartic form q. Then we have:

(1) For any P ∈ P \ V2, LP is the line in P joining P and γ(P ).
(2) If P ∈ P \ V3, then we have:

(a) LP is a secant line of V , and LP ∩ V consists of harmonic conjugates with respect to
P and γ(P ).

(b) LP \ V ⊆ P \ V3.
(c) LP is a unique secant line of V passing through P .
(d) There is no tangent line to V passing through P .
(e) γ(LP \ V ) = LP \ V , and the automorphism of LP induced from γ leaves each point

in LP ∩ V invariant and permutes P and γ(P ).
(3) If P ∈ V3 \ V2, then we have:

(a) LP is a tangent line to V , and LP ∩ V = {γ(P )}.
(b) LP \ V ⊆ V3 \ V2.
(c) There is no secant line of V passing through P .
(d) LP is a unique tangent line to V passing through P .
(e) γ(LP \ V ) = γ(P ), and γ−1(Q) = {P ∈ V3 \ V2|Q ∈ LP } = TQV \ V2 for any Q ∈ V ,

where TQV is the embedded tangent space to V at Q.

Corollary A1. The three conditions, V = ∅, V3 = P and V2 = P are equivalent to each other.

Remark A. It can be shown that V = ∅ if and only if the Lie algebra g is of type C (see Appendix):
In fact, using a theorem of Asano [30, 1.6.Theorem], [4], one can show that if q ≡ 0, then g � sp2n+2,
where dim g1 = 2n; The converse is checked by an explicit computation.

Recall that a projective variety V ⊆ P is called a variety with one apparent double point if for
a general point P ∈ P there exists a unique secant line of V passing through P (see [25, IX]).

Corollary A2. If V =/ ∅, then V is a variety with one apparent double point. In particular, V is
non-degenerate in P.
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4. The Homogeneity

Theorem B. Let G00 be the group of inner automorphisms of g with Lie algebra g00, where g00

is the subalgebra of g0 defined by g00 := Ker(adE±|g0). Then we have:
(1) G00 acts transitively on each of irreducible components of V. In particular, we have txV =

g00x for any x ∈ V, where txV is the Zariski tangent space to V at x.
(2) g00x = (g00x)⊥ with 2 dim g00x = dim g1 for any x ∈ V, and g1 = g00x ⊕ g00y for any

x, y ∈ V with 〈x, y〉=/ 0.

Recall that the tangent variety of V , denoted by TanV , is the union of embedded tangent spaces
to V , and the projective dual of V , denoted by V ∗, is the set of hyperplanes tangent to V (see, for
example, [11, §3]).

Corollary B1. Assume that V =/ ∅. Then we have:
(1) G00 acts transitively on each of irreducible components of V , and V is smooth, equi-

dimensional of dimension n − 1, where dim g1 = 2n.
(2) Denote by L∗ the set of hyperplanes containing a linear subspace L ⊆ P. Then we have

(TQV )∗ = TQV for any Q ∈ V , hence

TanV = V ∗,

where we identify P with its dual space P∨ := P(g∗1) via the symplectic form 〈, 〉.
Corollary B2. If V is neither empty nor irreducible, then there are irreducible g00-modules s1
and s2 of dimension n such that g1 = s1 ⊕ s2, and we have

V = P(s1) � P(s2),

where dim g1 = 2n.

Remark B1. It is known that V is irreducible unless g is of type A or C (see Appendix 1): In fact,
if g = som, then V is a Segre embedding of P1 ×Q in P2m−9, where Q is a quadric hypersurface in
Pm−5; if g is of type G2, then V is a cubic Veronese embedding of P1 in P3; for other exceptional
Lie algebras g, see Introduction. Conversely, it follows from a direct computation that we are in
the case above if g = sln+2 with n ≥ 1.

Corollary B3. If V =/ ∅ and V2=/ V , then V is ruled, that is, covered by lines contained in V .

Remark B2. It can be shown that V = V2 if and only if g is of type G2.

5. Isotropic Secants

Proposition C. For P = π(u) ∈ P, let ΦP : P 99K P be a rational map induced from L(u, u) with
base locus BP = P(KerL(u, u)). If V is irreducible and P ∈ V2 \ V , then dim ΦP (V \ BP ) ≥ 1,
hence dim ΦP (P \ BP ) ≥ 1 and codim BP ≥ 2.

Remark C1. The irreducibility condition for V is essential in Proposition C: In fact, there is an
example of u satisfying the assumption above such that rkL(u, u) = 1 in case of g = slm, where V
is not irreducible (see Remark B3).

Remark C2. It follows easily from Proposition 6 that dim ΦP (P \ BP ) ≥ 1 if P �∈ V2, and
codim ΦP (P \ BP ) ≥ 1 if P ∈ V3, though we do not use these facts in this article.

Recall that the secant locus ΣP as well as the tangent locus ΘP of V with respect to a given
point P ∈ P are defined by

Σ◦
P :={Q ∈ V |∃R ∈ V \ {Q}, P ∈ Q ∗ R}, ΣP := Σ◦

P ,

ΘP :={Q ∈ V |P ∈ TQV },
where we denote by Q ∗R the line in P joining Q and R, and by TQV the embedded tangent space
to V at Q in P (see, for example, [11]).



         

FREUDENTHAL VARIETIES 7

Theorem C. Assume that V is irreducible. Then we have:
(1) For any x, y ∈ V, 〈x, y〉 = 0 if and only if g00x∩g00y=/ 0. In particular, a secant line joining

Q, R ∈ V is isotropic with respect to the symplectic form if and only if TQV ∩ TRV =/ ∅.
(2) V2 \ V is covered by isotropic secants of V . More precisely, for any u ∈ g1, we have that

[uuu] = 0 and u× u=/ 0 if and only if u = x + y for some x, y ∈ V such that 〈x, y〉 = 0 and
x × y=/ 0.

(3) If P ∈ V2\V , then ΦP (V \BP ) ⊆ ΣP and ΦP (V ∩P⊥\BP ) ⊆ ΘP , where ΦP : P 99K P is the
rational map induced from L(u, u) with base locus BP = P(KerL(u, u)) and P⊥ = P(u⊥)
with P = π(u).

(4) We have dim ΣP ≥ 1 for any P ∈ V2 \ V .

Remark C3. The irreducibility condition for V is essential in (1) above: In fact, it is easily seen
that the conclusion does not hold in case of g = slm.

Corollary C. If V is irreducible, then V3 = TanV .

6. Double Projections

Proposition D. For any x, y ∈ V, let Ψxy : g1 → g1 be a linear map defined by Ψxy(a) :=
[axy] + 〈a, x〉y. Then:

(1) If 〈x, y〉=/ 0, then Ker Ψxy = g00x and Ψxy(g1) = g00y. In particular, a rational map
ΨPQ : P 99K P induced from Ψxy is a double projection from P with image TQV , that is, a
projection with center TP V onto TQV , hence defines a morphism

ΨPQ : P \ TP V → TQV,

where TP V is the embedded tangent space to V at P with P = π(x) and Q = π(y).
(2) Moreover for any R ∈ V , the four points R, [PQR], ΨPR(Q) and ΨQR(P ) are collinear,

and [PQR] is the harmonic conjugate of R with respect to ΨPR(Q) and ΨQR(P ), where we
set [PRR] := π([xyz]) with R = π(z). In particular, this holds for general P, Q, R ∈ V and
gives a geometric meaning of our ternary product.

Remark D1. In terms of the Lie bracket, we have Ψab(c) = [b[a[c, E−]]].

Theorem D. For any P, Q ∈ V , if the secant line joining P and Q is not isotropic, that is,
TP V ∩ TQV = ∅, then we have:

(1) V \ P⊥ = (ΨPQ|V \TP V )−1(TQV \ P⊥).
(2) The double projection ΨPQ gives an isomorphism V \P⊥ → TQV \P⊥. In fact, a rational

map ΓQP : TQV 99K V induced from a map Γyx : g00y → V ∪ {0} defined by

Γyx(t) := 〈x, [ttt]〉x + 3〈x, t〉[ttx] + 12〈x, t〉2t

gives the inverse of ΨPQ|V \P⊥ , where P = π(x) and Q = π(y).
(3) The base locus of ΓQP is TQV ∩ P⊥ ∩ V2.

In particular, if V is irreducible, then ΨPQ gives a birational map from V to TQV , and V is the
closure of the image of a composition of a cubic Veronese embedding of the affine space TQV \P⊥

with some projection to P.

Remark D2. The morphism ΨPQ : V \ TP V → TQV is not necessarily surjective: In fact, if g is
of type G2, then for any P ∈ V , P⊥ is the osculating plane to the twisted cubic V ⊆ P3 at P ,
V ∩ P⊥ = {P}, and ΨPQ(V \ TP V ) = TQV \ P⊥ for any Q ∈ V with P=/ Q.

Remark D3. We have proved in the above that Ψxy : V \ x⊥ → g00y \ x⊥ is an isomorphism.
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Remark D4. We here give another expression of the inverse map of the double projection ΨPQ.
We first note that there is an isomorphism of affine spaces,

ι : g00y ∩ x⊥ → TQV \ P⊥

defined by ι(a) := π(a + y). Indeed, the inverse is given by ι−1(π(t)) := 〈x,y〉
〈x,t〉 t − y for π(t) ∈

TQV \P⊥, where TQV = P(g00y) and P⊥ = P(x⊥). Now let ρ : g00y∩x⊥ → V be the composition
of ι with the rational map ΓQP : TQV 99K V in Theorem D (2). Then ρ is the inverse of ΨPQ via
ι, and it follows from part (1) and (4) of Proposition 3 that

ρ(a) = π

( 〈x, [aaa]〉
12〈x, y〉2 x +

1
4〈x, y〉 [aax] + a + y

)
.

In particular, the Freudenthal variety V is equal to the closure of the image of the affine space
g00y ∩ x⊥ under the cubic Veronese embedding ρ.

7. Twisted Cubic Curves

Proposition E. For any P ∈ V3 \ V2 and Q ∈ V , if the secant line joining Q and the contact
point γ(P ) of LP is not isotropic, then we have:

(1) Q ∈ LΦP (Q) and Φ3
P (Q) = γ(P ) ∈ LP = LΦ2

P (Q) with ΦP (Q),Φ2
P (Q) ∈ V3 \ V2.

(2) LP ∩ LΦP (Q) = ∅, hence Q,ΦP (Q),Φ2
P (Q) and Φ3

P (Q) are linearly independent in P.

Theorem E. For any P ∈ V3 \ V2 and Q ∈ V such that the secant line joining Q and the contact
point γ(P ) of LP is not isotropic, that is, TQV ∩ Tγ(P )V = ∅, let PPQ be the linear subspace of
dimension 3 in P spanned by Q, ΦP (Q), Φ2

P (Q) (or equivalently P ) and Φ3
P (Q) = γ(P ), that is,

spanned by LP and LΦP (Q), the unique tangent lines to V passing through P and ΦP (Q). Then
we have:

(1) The intersection V ∩PPQ is a twisted cubic curve in PPQ � P3 given explicitly by the image
of LP under the cubic map Γγ(P )Q:

V ∩ PPQ = Γγ(P )Q(LP ).

(2) The twisted cubic curve in PPQ above has the following properties:
(a) LP and LΦP (Q) are respectively the tangent lines at γ(P ) and at Q, and
(b) γ(P )⊥ ∩ PPQ and Q⊥ ∩ PPQ are respectively the osculating planes at γ(P ) and at Q,

which are spanned by LP and ΦP (Q) and by LΦP (Q) and Φ2
P (Q), respectively.

Remark E1. The morphism Γγ(P )Q : LP → PPQ is given by (λ : µ) �→ (2λ3 : 6λ2µ : 9λµ2 : 9µ3) in
terms of homogeneous coordinate with respect to the basis {D2x, D3x} for LP and {x, Dx, D2x,
D3x} for PPQ.

Remark E2. Set E := L(Dx, Dx), F := [D, E] with D := L(t, t) as in the above, and denote by
g00PQ the subalgebra of g00 generated by D, E and F . Then it follows that

[F, D] =
4
3
〈D3x, x〉D, [F, E] = −4

3
〈D3x, x〉E,

so that g00PQ is isomorphic to the Lie algebra sl2. If we denote by g1PQ the subspace of g1 spanned
by x, Dx, D2x and D3x, then we see that g1PQ is an irreducible g00PQ-module of dimension 4
with

F (Dkx) = (2k − 3)
2
3
〈D3x, x〉Dkx,

and the twisted cubic curve V ∩ PPQ = Γγ(P )Q(LP ) is a unique closed orbit in PPQ = P(g1PQ)
under the natural action of the group of inner automorphisms of g00 with Lie algebra g00PQ.

Thus, for any P ∈ V3 \ V2 and Q ∈ V with Tγ(P )V ∩ TQV = ∅, a subalgebra g00PQ of g00

isomorphic to sl2 and an irreducible g00PQ-submodule g1PQ of g1 with dimension 4 are associated
to P and Q. If g is of type G2, then g00PQ and g1PQ are respectively equal to g00 and g1 themselves.
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Appendix 1. A Classification of Freudenthal Varieties

We here give a classification of Freudenthal varieties V in terms of the root data of g. It would
be interesting to compare V with the adjoint variety associated to g since those varieties are
closely related to each other: In fact, for a simple graded Lie algebra g =

∑
gi of contact type,

denote by V the Freudenthal variety associated to g, as before, and denote by X the orbit of the
inner automorphism group of g through π(E+) in P(g), which is the minimal closed orbit in P(g),
called the adjoint variety associated to g (see [16]). Then, according to [17, Theorem B], we have
V = X ∩ P(g1).

Adjoint Varieties and Freudenthal Varieties

g X ⊆ P(g) g00 V ⊆ P(g1)

slm (Pm−1 × Pm−1) ∩ (1) ⊆ Pm2−2 gl1 ⊕ slm−2 Pm−3 � Pm−3 ⊆ P2m−5

som Gorthog.(2, m) ⊆ P( m
2 )−1 sl2 ⊕ som−4 P1 × Qm−6 ⊆ P2m−9

sp2m v2P
2m−1 ⊆ P( 2m+1

2 )−1 sp2m−2 ∅ ⊆ P2m−3

e6 E6(ω2)21 ⊆ P77 sl6 G(3, 6) ⊆ P19

e7 E7(ω1)33 ⊆ P132 so12 S5 = Gorthog.(6, 12) ⊆ P25−1

e8 E8(ω8)57 ⊆ P247 e7 E7(ω6) ⊆ P55

f4 F4(ω1)15 ⊆ P51 sp6 Gsympl.(3, 6) ⊆ P13

g2 G2(ω2)5 ⊆ P13 sl2 v3P
1 ⊆ P3

Notation: We denote by ∩(1) cutting by a general hyperplane, and by vd the Veronese embedding of degree d.

We denote by G(r, m) a Grassmann variety of r-planes in Cm, and denote by Gorthog.(r, m) and by Gsymp.(r, m)

respectively an orthogonal and a symplectic Grassmann varieties of isotropic r-planes in Cm. A simple exceptional

Lie algebra of Dynkin type G is denoted by the lowercase of G in the German character, as in [12], a simple algebraic

group of type G is denoted by just G, and for a dominant integral weight ω of G, the minimal closed orbit of G

in P(Vω) is denoted by G(ω), where Vω is the irreducible representation space of G with highest weight ω: For

example, g2 in the list is the simple Lie algebra of type G2, and G2(ω2) is the minimal closed orbit of an algebraic

group of type G2 in P(Vω2 ), where ω2 is the second fundamental dominant weight with the standard notation of

Bourbaki [6].

Appendix 2. The Filtration of The Ambient Space

• e6,7,8, f4 • g2

◦ P ◦ P3

| |
◦ V3 = TanV ◦ V3 = TanV

| |
◦ V2 = Sing V3 ◦ (V2)red = Sing V3 = V = v3P

1

| |
◦ V ◦ ∅
|
◦ ∅
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• slm≥3

◦ P2m−5

|
◦ (V3)red = V2 = Z(

∑
xiyi)

|
◦ V = Pm−3 � Pm−3 = Z(x0, . . . , xm−3) � Z(y0, . . . , ym−3)
|
◦ ∅

• sp2m

◦ P2m−3 = V3 = V2

|
◦ V = ∅

• so8 g00 = so4 ⊕ sl2 � sl2 ⊕ sl2 ⊕ sl2

◦ P7 g1 = C2 ⊗ C4 � C2 ⊗ C2 ⊗ C2 = M2,2,2

|
◦ V3 = TanV = Z(hyper-determinant for M2,2,2)

� | �(
P3 × P1 ◦ ◦ ◦ P1 × P3

)
· · · · · ·V2 = Sing V3

� | �
◦ V = P1 × P1 × P1

|
◦ ∅

• som≥9 g00 = sl2 ⊕ som−4

◦ P2m−9 g1 = C2 ⊗ Cm−4 = Mm−4,2

| V20 = π({X ∈ Mm−4,2| rkX = 2,τXX = 0})
◦ V3 = TanV = {[a ⊗ c + b ⊗ d]|[a] ∗ [b] = P1, [c] ∗ [d] ⊆ Q}

� � : dim 2m − 12
(V20 ◦ ◦ V11) · · ·V2 = Sing V3

� �

◦ V = P1 × Qm−6 V11 = π({X ∈ Mm−4,2| rkX = 1, rkτXX = 1})
| = P1 × Pm−5

◦ ∅
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