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0. Introduction

Let X be a projective variety of dimension n in PN defined over an algebraically closed
field K of characteristic p ≥ 0. The Gauss map of X ⊆ PN , denoted by γ, is by definition
the rational map from X to the Grassmann variety G(n, PN) which sends each smooth
point x of X to the embedded tangent space TxX to X at x in PN ([13, §1, (e)], [32, I,
§2]). To avoid trivial exceptions we treat γ only for a non-linear X ⊆ PN . According to
a theorem of F. L. Zak [32, I, 2.8. Corollary], γ is finite for a smooth X, and it is well
known that a general fibre of γ is linear if p = 0 ([13, (2.10)], [32, I, 2.3. Theorem]); hence
γ is birational for a smooth X in p = 0.

In this article we introduce an intrinsic property of a projective variety X as follows:

there exists an embedding ι of X into some PM such that

the Gauss map γ is of rank zero.
(GMRZ)

Here the rank of a rational map is defined to be the rank of its differential at a general
point, and the differential of a rational map is by definition the induced K-linear map
between Zariski tangent spaces. Note that a variety X satisfies (GMRZ) only if p > 0,
since the rank of a rational map is equal to the dimension of its image if p = 0.

The theory of rational curves on projective varieties was initiated by an epoch-making
work [27] of S. Mori about 30 years ago, settling the Hartshorne conjecture on character-
isation of projective spaces in the affirmative. A central and significant notion there has
been a “minimal free rational curve.” Here, a rational curve (or a morphism) f : P1 → X
is said to be free if the pull-back f ∗TX of the tangent bundle TX on X is generated by
its global sections ([9, p. 85], [25, II.3.1]), and a free f minimal if f∗TX is isomorphic to
OP1(2)⊕OP1(1)d−2⊕On−d+1

P1 with d = deg(−f ∗KX) ([9, p. 93], [25, IV.2.8]; it is addressed
as standard in [17]). In fact, a family of minimal free rational curves has been employed
essentially in various situations, for instance, characterisations of projective spaces and
quadric hypersurfaces ([1], [4], [7], [8], [26]), studies of Fano varieties ([2], [3], [28]), theo-
ries of varieties of minimal rational tangents ([17], [18], [19], [20], [23]), and so on. Those
beautiful works are all established on the existence of a family of minimal free rational
curves.

One of the most basic results in characteristic zero case to guarantee that existence is

Theorem A ([25, IV.2.10]). Let X be a smooth projective variety in p = 0. If there exists
a free rational curve on X, then there exists a minimal free rational curve on X.

Note that for a smooth X in arbitrary characteristic p ≥ 0, the existence of free rational
curves is equivalent to the separable uniruledness ([25, IV.1.9]).
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In positive characteristic case, however, the conclusion of Theorem A turns out to fail,
as we will see below. The property (GMRZ) imposes strong restrictions on rational curves
on algebraic varieties: In fact, first of all we have

Theorem 0.1. Let X be a projective variety, and assume that X satisfies (GMRZ) with
an embedding ι : X ↪→ PM . Let f : P1 → X be a minimal free rational curve such that X
is smooth along f(P1), and set a := deg f ∗ι∗OPM (1). Then one of the following holds:

(1) deg(−f ∗KX) = n + 1, a > p and p | a − 1.
(2) deg(−f ∗KX) = p = 2 and 2 | a.

In particular, we have a > 1.

Using Theorem 0.1, one can give a counter-example for Theorem A, that is, a projective
variety which admits a free rational curve, but no minimal free rational curve, in each
characteristic p > 0 (Theorem 2.2; Cf. [25, IV.2.10.1]).

Theorem 0.1 is derived basically from the following:

Theorem 0.2. Let X be a projective variety, let f : P1 → X be an unramified morphism,
and denote by Nf the dual of the kernel of the natural homomorphism f∗ : f∗Ω1

X → Ω1
P1.

Assume that X is smooth along f(P1) and N∨
f ≅

⊕
i≥−1 OP1(i)ri for some non-negative

integers ri (i ≥ −1). Then we have:

(1) If X satisfies (GMRZ), then ri−1ri = 0 for any i ≥ 0.
(2) Moreover if r−1 > 0, then p| deg f ∗ι∗OPM (1) − 1 for any embedding ι : X ↪→ PM

with Gauss map of rank zero, and if ri > 0 for some i ≥ 0, then p = 2 or p|i + 1.

Theorem 0.2 is proved by investigating bundles of principal parts (§1). As a consequence
of Theorem 0.2, we have

Theorem 0.3. (1) Let X be a projective variety with a non-constant morphism π to
a variety Y , and assume that there exists a smooth point y of Y such that the fibre
Xy := π−1(y) is isomorphic to a projective space Pl and π is smooth along Xy.
Then X satisfies (GMRZ) only if p = 2 and l = 1. Moreover, a product

∏
1≤i≤r Pni

of two or more projective spaces (r ≥ 2, ni ≥ 1) satisfies (GMRZ) if and only if
p = 2 and ni = 1 for any i.

(2) A Grassmann variety G(l, l + m) of l-dimensional subspaces of an (l + m)-dimen-
sional vector space (l,m ≥ 1) satisfies (GMRZ) if and only if l = 1 or m = 1.

(3) A smooth quadric hypersurface Q in PN (N ≥ 3) satisfies (GMRZ) if and only if
p = 2 and N = 3.

(4) A smooth cubic hypersurface X in PN (N ≥ 3) satisfies (GMRZ) only if p = 2.

For a higher dimensional cubic hypersurface, we moreover have

Theorem 0.4. A smooth cubic hypersurface X in PN with N ≥ 5 satisfies (GMRZ) if
and only if p = 2 and X is projectively equivalent to a Fermat hypersurface.

We will also consider a general hypersurface of low degree with (GMRZ):

Theorem 0.5. A general hypersurface X in PN of degree d with 3 ≤ d ≤ 2N −3 satisfies
(GMRZ) only if p = 2 and d = 2N − 3.

To obtain Theorems 0.4 and 0.5 above, we need in addition detailed studies on pro-
jective geometry on cubic hypersurfaces with Gauss map of rank zero (§4) and on the
normal bundles of conics in a hypersurface (§5), respectively: In fact, we establish a char-
acterisation theorem of a Fermat cubic X in PN , in terms of the Gauss map γ0 induced
from the original embedding X ⊆ PN (Theorem 3.2), and we show that the splitting type
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of NC/X has ‘good’ bounds for a general hypersurface X and for a general conic C in X
(Corollary 4.3).

This paper is a brief summary of a joint work [10] with Satoru Fukasawa and Katsuhisa
Furukawa.

1. Bundles of principal parts

For a line bundle L on a projective variety X, we denote by P1
X(L) the bundle of

principal parts of L of first order ([14, §16], [30, §2]), which is equipped with a natural
exact sequence,

0 → Ω1
X ⊗ L → P1

X(L) → L → 0 (ξ).

A generically surjective homomorphism a1 : H0(PN ,OPN (1)) ⊗ OX → P1
X(OX(1)) is

associated to a projective variety X in PN . The Gauss map γ of X is formally defined to
be the rational map X 99K G(n, PN) associated with a1 by the universality of G(n, PN),
where n := dim X.

If a vector bundle E on P1 is isomorphic to OP1(a1)
r1⊕· · ·⊕OP1(am)rm , then [ar1

1 , . . . , arm
m ]

is called the splitting type of E . Note that, according to a theorem of A. Grothendieck
([15, V, Exercise 2.6]), every vector bundle on P1 splits into a direct sum of line bundles,
as above. By abuse of notation, a vector bundle of splitting type [ar1

1 , . . . , arm
m ] is denoted

by the same symbol, for simplicity.

Proposition 1.1. Let X be a projective variety, let f : P1 → X be an unramified mor-
phism, and denote by Nf the dual of the kernel of the natural homomorphism f∗ : f ∗Ω1

X →
Ω1

P1. Assume that X is smooth along f(P1), and N∨
f = [−1r−1 , 0r0 , . . . , iri , . . . ]. Then for

an embedding ι : X ↪→ PM , we have

f ∗P1
X(ι∗OPM (1)) =

{
[a − 2, a − 1r−1 , ar0+1, a + 1r1 , a + 2r2 , . . . , a + iri , . . . ], if p|a,

[a − 1r−1+2, ar0 , a + 1r1 , a + 2r2 , . . . , a + iri , . . . ], otherwise,

where a := deg f ∗ι∗OPM (1).

Proposition 1.2. Let X be a projective variety, let f : P1 → X be a morphism, and
assume that X is smooth along f(P1). If X satisfies (GMRZ), then the splitting type of
f ∗P1

X(ι∗OPM (1)) is divisible by p.

Proof of Theorem 0.2. According to Proposition 1.1, if both r−1 and r0 were positive, then
a − 1 and a would be divisible by p by Proposition 1.2. If both r0 and r1 were positive,
then a and a + 1 would be divisible by p. Similarly for any i ≥ 2, if both ri−1 and ri were
positive, then a + i− 1 and a + i would be divisible by p. Anyway this is a contradiction.
Moreover, using Propositions 1.1 and 1.2, we see that if r−1 > 0, then p|a − 1. If r0 > 0,
then p|a− 2 and p|a; hence p = 2. Furthermore we see that ri > 0 implies p|i + 1 for any
odd i ≥ 1, and that ri > 0 implies p = 2 or p|i + 1 for any even i ≥ 2. This completes the
proof. ¤
Example 1.3. Let X be an n-fold product (P1)n of P1 in p = 2, set

Ik := {(a1, . . . , an) ∈ {0, 1, 2}n|#{j|aj = 1} = k},
and let ι : X 99K PM be a rational map defined by

(1 : y1) × · · · × (1 : yn) 7→ (ya1
1 · · · yan

n )(a1,...,an)∈I0∪I1 ,

where M +1 = 2n−1(n+2). Then by a direct computation as in [11, Proof of Proposition]
one can verify that ι gives an embedding of X with Gauss map of rank zero; hence (P1)n

in p = 2 satisfies (GMRZ).
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Proof of Theorem 0.3. Each only-if-part of (1–4) follows from the splitting type of the
normal bundles of a projective line L in X and Theorem 0.2, where we note that every X
in question contains a projective line L. The if-parts of (1) and (3) follow from Example
1.3, and that of (2) follows from [12, Example 3.1]. ¤

2. Absence of minimal free rational curves

Proof of Theorem 0.1. It follows from [25, IV, 2.11] that a minimal free f is unramified.
Theorem 0.2 implies N∨

f = [−1n−1] or [0n−1].

Suppose N∨
f = [−1n−1]. Then we have deg(−f∗KX) = n + 1, and it follows from

Theorem 0.2 that p | a − 1. We show a ̸= 1 as follows: Assume a = 1, and identify
X with ι(X) ⊆ PM . Then L := f(P1) is a line in PM . We fix a point x = f(o) ∈ L
with o ∈ P1, where x is a smooth point of X. Since h1((f∗TX)(−1)) = 0, it follows
from [25, II, 1.7] that Hom(P1, X; o 7→ x) is smooth at f . For an irreducible component
V ⊆ Hom(P1, X; o 7→ x) containing f , we consider the evaluation morphism F : P1×V →
X. Since f ∗TX = [2, 1n−1], it follows from [25, II, 3.10] that rk d(o,f)F = n; hence F is
dominant. On the other hand, setting E := F ∗OPM (1), we see from [25, II. 3.9.2] that
the image of a morphism g ∈ V is a line in X passing through x, which implies that X is
a cone with vertex x. Since X is non-linear by our convention, X is singular at x. Thus
we reach a contradiction.

If N∨
f = [0n−1], then we have deg(−f ∗KX) = 2; hence it follows from Proposition 1.1

that p = 2 and p | a. ¤
Remark 2.1. Both cases (1–2) in Theorem 0.1 actually occur:

(1) According to [12, Example 3.1], Pn satisfies (GMRZ), and we have TPn|L = [1n−1, 2]
for each line L ⊂ Pn.

(2) Let X = (P1)n with p = 2, which satisfies (GMRZ) by Example 1.3. Let us
consider an embedding f : P1 → X such that f(P1) is a product of P1 and a point
in (P1)n−1. Then f is minimal free with f∗TX = [0n−1, 2].

Theorem 2.2. Assume p > 0, and let X be a Fermat hypersurface of degree ep + 1 in
PN with e ∈ N. Then X satisfies (GMRZ), and we have:

(1) X has no minimal free line, or equivalently, no free line.
(2) If N > e(p + 1), then X has no minimal free rational curve.
(3) If N ≥ 2ep + 1, then X has a free f : P1 → X with deg f∗OX(1) = ep.

Thus a Fermat hypersurface X ⊆ PN of degree ep + 1 with N ≥ 2ep + 1 gives a counter-
example for Theorem A in each characteristic p > 0.

Remark 2.3. Let X be a Fermat hypersurface of degree pr + 1 in PN . It follows from [9,
pp. 50–51] that NL/X = [1 − pr, 1N−3] for each line L ⊆ X, from which one can deduce
that Theorem 2.2 (1) holds for this X.

3. Characterisation of a cubic hypersurface with (GMRZ)

Let X be a smooth cubic hypersurface in PN with N ≥ 3. We denote the Gauss map
of X ⊆ PN by γ0 : X → G(N − 1, PN) = P̌N .

Proposition 3.1. We assume that N ≥ 5, p = 2 and N∨
L/X = [−1N−3, 1] for any projec-

tive line L ⊆ X. Then, the Gauss map γ0 of X in PN is of rank zero.

Theorem 3.2. Let X be a smooth cubic hypersurface in PN with N ≥ 3 in p = 2. Then,
the Gauss map γ0 of X ⊆ PN is of rank zero if and only if X is projectively equivalent to
the Fermat cubic hypersurface.
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Proof of Theorem 0.4. Denote by γ0 the Gauss map of the embedding of X in PN as a
cubic hypersurface, as before. For the if-part, it is easily verified by a direct computation
that γ0 is of rank zero; hence X satisfies (GMRZ). For the only-if-part, it follows from
Theorem 0.2 that N∨

L/X ≅ [−1N−3, 1] for any projective line L ⊆ X. Then, γ0 is of
rank zero by Proposition 3.1; hence X is projectively equivalent to a Fermat by Theorem
3.2. ¤

4. General conics on general hypersurfaces

First we have the following:

Proposition 4.1. A general hypersurface X in PN of degree d with 3 ≤ d ≤ 2N − 3
satisfies (GMRZ) only if p = 2 and either d = 2N − 3 or d = N − 1.

To complete the proof of Theorem 0.5, we study normal bundles of general conics on
X. Let R be the set of (irreducible reduced) conics in PN . Here R is an open subvariety
of Hilb2t+1(PN/K), the Hilbert scheme attached to the Hilbert polynomial 2t + 1. For an
integer d ≥ 1, we set H := |OPN (d)|, and

I := { (X,C) ∈ H ×R | C ⊆ X },

which is a projective space bundle over R, with projections pH : I → H and pR : I → R.
We moreover set I0 := { (X,C) ∈ I | X is smooth along C }, and

µξ := 3N − 2d − 2 + (N − 2)ξ,

where we note that µξ = χ(f ∗NC/X ⊗OP1(ξ)) for any (X,C) ∈ I0.
Fix a conic C, and take an embedding f : P1 → PN with f(P1) = C. From the exact

sequence, 0 → I2
C → IC → N∨

C/PN → 0 on PN , we obtain the following K-linear map,

δC : H0(PN , IC(d)) → D := HomOP1 (f
∗NC/PN , f ∗OPN (d)),

which gives each X ∈ pH(p−1
R (C) ∩ I0) a natural homomorphism of normal bundles,

δC(X) : f ∗NC/PN → f ∗NX/PN ≅ f∗OPN (d).

In addition, we have a decomposition, f ∗NC/X =
⊕N−2

i=1 OP1(bi(C/X)) for some integers
bi(C/X) determined by (X,C) ∈ I0. Then, we set

I[≥ξ] := { (X,C) ∈ I0 | min{ bi(C/X) } ≥ ξ },
I[≤ξ] := { (X,C) ∈ I0 | max{ bi(C/X) } ≤ ξ },

where we note that I[≥ξ] (resp. I[≤ξ]) is an open subset of I by virtue of the upper semi
continuity of −min{ bi(C/X) } (resp. max{ bi(C/X) }) for (X,C) ([25, II, (3.9.2)]).

Proposition 4.2. (1) I[≥ξ] is not empty if µ−ξ−1 ≥ 0 and ξ ≤ 2.
(2) I[≤ξ] is not empty if µ−ξ−1 ≤ 0 and ξ ≤ 2d.

Corollary 4.3. Assume µ0 = 3N − 2d − 2 ≥ 0. Then for a general hypersurface X in
PN of degree d, there exists a conic C lying in X. Moreover for a general conic C ⊆ X,
we have:

(1) max{ bi(C/X) } ≤ 1 if µ−2 = µ0 − 2(N − 2) ≤ 0,
(2) min{ bi(C/X) } ≥ 0 if µ−1 = µ0 − (N − 2) ≥ 0.

Hence if N − 2 ≤ µ0 ≤ 2(N − 2) (i.e.,−N/2 + N + 1 ≤ d ≤ N), then f ∗N∨
C/X =

[−12(N−d), 0N−2−2(N−d)].
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Proof of Theorem 0.5. Let X ⊆ PN be a general hypersurface of degree d ≥ 3 such that
X satisfies (GMRZ). From Proposition 4.1, it is sufficient to show that the case of p = 2
and d = N − 1 does not occur.

Assume p = 2 and N = d + 1 ≥ 4. It follows from Corollary 4.3 that f ∗N∨
C/X =

[−12, 0N−4] for a general conic C ⊆ X. Hence Theorem 0.2 implies N = 4 and 2|a − 1,
where we set a := deg f∗ι∗OPM (1) for an embedding ι : X ↪→ PM with Gauss map of
rank zero. On the other hand, from the Lefschetz theorem [15, III, Exercise 11.6 (c)], it
follows Pic X = Pic P4 for X ⊆ P4; hence a is divisible by 2 = deg f ∗(OP4(1)|X). This is
a contradiction. ¤
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