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0. INTRODUCTION

Let X be a projective variety of dimension n in P defined over an algebraically closed
field K of characteristic p > 0. The Gauss map of X C PV, denoted by 7, is by definition
the rational map from X to the Grassmann variety G(n,P") which sends each smooth
point z of X to the embedded tangent space T, X to X at x in PV ([13, §1, (e)], [32, I,
§2]). To avoid trivial exceptions we treat v only for a non-linear X C PV. According to
a theorem of F. L. Zak [32, I, 2.8. Corollary]|, 7 is finite for a smooth X, and it is well
known that a general fibre of 7 is linear if p = 0 ([13, (2.10)], [32, I, 2.3. Theorem]); hence
~v is birational for a smooth X in p = 0.

In this article we introduce an intrinsic property of a projective variety X as follows:

there exists an embedding v of X into some PM such that
(GMRZ) .
the Gauss map -y is of rank zero.
Here the rank of a rational map is defined to be the rank of its differential at a general
point, and the differential of a rational map is by definition the induced K-linear map
between Zariski tangent spaces. Note that a variety X satisfies (GMRZ) only if p > 0,
since the rank of a rational map is equal to the dimension of its image if p = 0.

The theory of rational curves on projective varieties was initiated by an epoch-making
work [27] of S. Mori about 30 years ago, settling the Hartshorne conjecture on character-
isation of projective spaces in the affirmative. A central and significant notion there has
been a “minimal free rational curve.” Here, a rational curve (or a morphism) f: P! — X
is said to be free if the pull-back f*Tx of the tangent bundle Tx on X is generated by
its global sections ([9, p. 85], [25, I1.3.1]), and a free f minimal if f*Tx is isomorphic to
Op1(2) B Op (1) 20 Oy T with d = deg(—f*Kx) ([9, p. 93], [25, IV.2.8]; it is addressed
as standard in [17]). In fact, a family of minimal free rational curves has been employed
essentially in various situations, for instance, characterisations of projective spaces and
quadric hypersurfaces ([1], [4], [7], [8], [26]), studies of Fano varieties ([2], [3], [28]), theo-
ries of varieties of minimal rational tangents ([17], [18], [19], [20], [23]), and so on. Those
beautiful works are all established on the existence of a family of minimal free rational
curves.

One of the most basic results in characteristic zero case to guarantee that existence is

Theorem A ([25,1V.2.10]). Let X be a smooth projective variety in p = 0. If there exists
a free rational curve on X, then there exists a minimal free rational curve on X.

Note that for a smooth X in arbitrary characteristic p > 0, the existence of free rational
curves is equivalent to the separable uniruledness ([25, IV.1.9]).
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In positive characteristic case, however, the conclusion of Theorem A turns out to fail,
as we will see below. The property (GMRZ) imposes strong restrictions on rational curves
on algebraic varieties: In fact, first of all we have

Theorem 0.1. Let X be a projective variety, and assume that X satisfies (GMRZ) with
an embedding v : X — PM™. Let f : P' — X be a minimal free rational curve such that X
is smooth along f(P), and set a := deg f*1*Opn(1). Then one of the following holds:
(1) deg(—f*Kx)=n+1,a>pandp|a—1.
(2) deg(—f*Kx)=p=2and 2| a.
In particular, we have a > 1.

Using Theorem 0.1, one can give a counter-example for Theorem A, that is, a projective
variety which admits a free rational curve, but no minimal free rational curve, in each
characteristic p > 0 (Theorem 2.2; Cf. [25, IV.2.10.1]).

Theorem 0.1 is derived basically from the following:

Theorem 0.2. Let X be a projective variety, let f : P* — X be an unramified morphism,
and denote by Ny the dual of the kernel of the natural homomorphism f*: f*Q% — Q.
Assume that X is smooth along f(P') and Ny ~ @,._, Op (i) for some non-negative
integers r; (i > —1). Then we have:
(1) If X satisfies (GMRZ), then r;_yr; =0 for any i > 0.
(2) Moreover if r_y > 0, then p|deg f*1*Opn (1) — 1 for any embedding v : X — PM
with Gauss map of rank zero, and if r; > 0 for some i > 0, then p =2 or p|i + 1.

Theorem 0.2 is proved by investigating bundles of principal parts (§1). As a consequence
of Theorem 0.2, we have

Theorem 0.3. (1) Let X be a projective variety with a non-constant morphism m to

a variety Y, and assume that there exists a smooth pointy of Y such that the fibre
X, = 7 (y) is isomorphic to a projective space P' and 7 is smooth along X,,.
Then X satisfies (GMRZ) only if p =2 and | = 1. Moreover, a product [ [,.,., P™
of two or more projective spaces (r > 2,n; > 1) satisfies (GMRZ) if and only if
p=2andn; =1 for any 1.

(2) A Grassmann variety G(l,1+m) of I-dimensional subspaces of an (I + m)-dimen-
sional vector space (I,m > 1) satisfies (GMRZ) if and only if | =1 or m = 1.

(3) A smooth quadric hypersurface Q in PN (N > 3) satisfies (GMRZ) if and only if
p=2and N = 3.

(4) A smooth cubic hypersurface X in PN (N > 3) satisfies (GMRZ) only if p = 2.

For a higher dimensional cubic hypersurface, we moreover have

Theorem 0.4. A smooth cubic hypersurface X in PN with N > 5 satisfies (GMRZ) if
and only if p =2 and X 1is projectively equivalent to a Fermat hypersurface.

We will also consider a general hypersurface of low degree with (GMRZ):

Theorem 0.5. A general hypersurface X in PN of degree d with 3 < d < 2N — 3 satisfies
(GMRZ) only if p=2 and d = 2N — 3.

To obtain Theorems 0.4 and 0.5 above, we need in addition detailed studies on pro-
jective geometry on cubic hypersurfaces with Gauss map of rank zero (§4) and on the
normal bundles of conics in a hypersurface (§5), respectively: In fact, we establish a char-
acterisation theorem of a Fermat cubic X in PV, in terms of the Gauss map 7, induced
from the original embedding X C PV (Theorem 3.2), and we show that the splitting type
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of N¢/x has ‘good’ bounds for a general hypersurface X and for a general conic C' in X
(Corollary 4.3).

This paper is a brief summary of a joint work [10] with Satoru Fukasawa and Katsuhisa
Furukawa.

1. BUNDLES OF PRINCIPAL PARTS

For a line bundle £ on a projective variety X, we denote by P+ (L) the bundle of
principal parts of £ of first order ([14, §16], [30, §2]), which is equipped with a natural
exact sequence,

0-Qx®L—-Px(L)—=L—0 (&)
A generically surjective homomorphism a' : H°(PN, Opn (1)) @ Ox — Px(Ox(1)) is
associated to a projective variety X in PV. The Gauss map 7 of X is formally defined to
be the rational map X --» G(n,P") associated with a' by the universality of G(n,P"),
where n := dim X.

If a vector bundle £ on P! is isomorphic to Op: (a;) @+ - -®Op1 (@)™, then [a}', ..., a"m]
is called the splitting type of £. Note that, according to a theorem of A. Grothendieck
([15, V, Exercise 2.6]), every vector bundle on P! splits into a direct sum of line bundles,
as above. By abuse of notation, a vector bundle of splitting type [a}', ..., a"] is denoted
by the same symbol, for simplicity.

Proposition 1.1. Let X be a projective variety, let f : P! — X be an unramified mor-
phism, and denote by Ny the dual of the kernel of the natural homomorphism f* : f*Q% —
Qpi. Assume that X is smooth along f(P'), and Ny = [-1"-1,07,...,4",...]. Then for

an embedding v : X — PM, we have

l[a—2,a—1"1a™" a+ 1" a+2"2,...;a+i"%, ...], ifpla,

[a —1m1%2 gm0 a+ 1" a+27,...,a+1",...], otherwise,

fPx (1" Opu(1)) = {

where a := deg f*1*Opn (1).

Proposition 1.2. Let X be a projective variety, let f : P! — X be a morphism, and
assume that X is smooth along f(P'). If X satisfies (GMRZ), then the splitting type of
[Py (1*Opr (1)) is divisible by p.

Proof of Theorem 0.2. According to Proposition 1.1, if both r_; and ry were positive, then
a — 1 and a would be divisible by p by Proposition 1.2. If both ry and r; were positive,
then a and a + 1 would be divisible by p. Similarly for any ¢ > 2, if both r;,_; and r; were
positive, then a +7 — 1 and a + ¢ would be divisible by p. Anyway this is a contradiction.
Moreover, using Propositions 1.1 and 1.2, we see that if r_; > 0, then pla — 1. If o > 0,
then pla — 2 and p|a; hence p = 2. Furthermore we see that r; > 0 implies p|i + 1 for any
odd i > 1, and that r; > 0 implies p = 2 or p|i + 1 for any even ¢ > 2. This completes the
proof. 0

Example 1.3. Let X be an n-fold product (P!)" of P! in p = 2, set
I :=A(a, ... an) € {0, 1,2}"[#{jla; = 1} = k},
and let ¢ : X ——» PM be a rational map defined by
(Loyn) x oo x (Lryn) = (U1 Yn"(aryan)eloU

where M +1 = 2""1(n+2). Then by a direct computation as in [11, Proof of Proposition]
one can verify that ¢ gives an embedding of X with Gauss map of rank zero; hence (P!)"
in p = 2 satisfies (GMRZ).
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Proof of Theorem 0.3. Each only-if-part of (1-4) follows from the splitting type of the
normal bundles of a projective line L in X and Theorem 0.2, where we note that every X

in question contains a projective line L. The if-parts of (1) and (3) follow from Example
1.3, and that of (2) follows from [12, Example 3.1]. O

2. ABSENCE OF MINIMAL FREE RATIONAL CURVES

Proof of Theorem 0.1. 1t follows from [25, IV, 2.11] that a minimal free f is unramified.
Theorem 0.2 implies N} = [—1"""] or [0"7"].

Suppose N} = [=1"7']. Then we have deg(—f*Kx) = n + 1, and it follows from
Theorem 0.2 that p | a — 1. We show a # 1 as follows: Assume a = 1, and identify
X with ¢«(X) C PM. Then L := f(P') is a line in P¥. We fix a point z = f(0) € L
with o € P!, where z is a smooth point of X. Since h'((f*Tx)(—1)) = 0, it follows
from [25, II, 1.7] that Hom(P', X;0 +— x) is smooth at f. For an irreducible component
V C Hom(P!, X; 0 — x) containing f, we consider the evaluation morphism F : P! xV —
X. Since f*Tx = [2,1"71], it follows from [25, II, 3.10] that rkd, ;)" = n; hence F is
dominant. On the other hand, setting F := F*Opum(1), we see from [25, II. 3.9.2] that
the image of a morphism g € V is a line in X passing through x, which implies that X is
a cone with vertex x. Since X is non-linear by our convention, X is singular at . Thus
we reach a contradiction.

If Ny = [0"""], then we have deg(—f*Kx) = 2; hence it follows from Proposition 1.1
that p =2 and p | a. O

Remark 2.1. Both cases (1-2) in Theorem 0.1 actually occur:
(1) According to [12, Example 3.1], P" satisfies (GMRZ), and we have Tpn|;, = [1"71, 2]
for each line L C P".
(2) Let X = (P')" with p = 2, which satisfies (GMRZ) by Example 1.3. Let us
consider an embedding f : P* — X such that f(P!) is a product of P! and a point
in (P1)"~!. Then f is minimal free with f*Tx = [0"!,2].
Theorem 2.2. Assume p > 0, and let X be a Fermat hypersurface of degree ep + 1 in
PN with e € N. Then X satisfies (GMRZ), and we have:

(1) X has no minimal free line, or equivalently, no free line.

(2) If N > e(p+ 1), then X has no minimal free rational curve.

(3) If N > 2ep+ 1, then X has a free f : P! — X with deg f*Ox (1) = ep.
Thus a Fermat hypersurface X C PN of degree ep + 1 with N > 2ep + 1 gives a counter-
example for Theorem A in each characteristic p > 0.

Remark 2.3. Let X be a Fermat hypersurface of degree p” + 1 in PV, Tt follows from [9,
pp. 50-51] that N,x = [1 — p", 1773 for each line L C X, from which one can deduce
that Theorem 2.2 (1) holds for this X.

3. CHARACTERISATION OF A CUBIC HYPERSURFACE WITH (GMRZ)
Let X be a smooth cubic hypersurface in PV with N > 3. We denote the Gauss map
of X CPY by 79: X — G(N — 1,PN) =PV,
Proposition 3.1. We assume that N > 5, p =2 and NX/X = [-1773.1] for any projec-
tive line L C X. Then, the Gauss map o of X in PV is of rank zero.
Theorem 3.2. Let X be a smooth cubic hypersurface in PN with N > 3 in p = 2. Then,

the Gauss map vy of X C PV is of rank zero if and only if X is projectively equivalent to
the Fermat cubic hypersurface.
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Proof of Theorem 0.4. Denote by 7, the Gauss map of the embedding of X in PV as a
cubic hypersurface, as before. For the if-part, it is easily verified by a direct computation
that v is of rank zero; hence X satisfies (GMRZ). For the only-if-part, it follows from
Theorem 0.2 that NE//X ~ [-1N73 1] for any projective line L C X. Then, v, is of

rank zero by Proposition 3.1; hence X is projectively equivalent to a Fermat by Theorem
3.2. O

4. GENERAL CONICS ON GENERAL HYPERSURFACES

First we have the following:

Proposition 4.1. A general hypersurface X in PN of degree d with 3 < d < 2N — 3
satisfies (GMRZ) only if p =2 and either d = 2N —3 ord = N — 1.

To complete the proof of Theorem 0.5, we study normal bundles of general conics on
X. Let R be the set of (irreducible reduced) conics in PY. Here R is an open subvariety
of Hilb***(PV /K), the Hilbert scheme attached to the Hilbert polynomial 2¢ 4 1. For an
integer d > 1, we set H := |Opn (d)|, and

[ ={(X,C)eHxR|CCX},

which is a projective space bundle over R, with projections py : [ — H and pr : [ — R.
We moreover set I° := { (X,C) € I | X is smooth along C'}, and

pe :==3N —2d — 2+ (N — 2)¢,

where we note that pe = x(f*Neyx @ Opi(€)) for any (X,C) e I°.
Fix a conic C, and take an embedding f : P* — PV with f(P!) = C. From the exact
sequence, 0 — Z2 — I — N} /By 0 on PV, we obtain the following K-linear map,

b¢ : H'(PY,Ze(d)) — D := Homo,, (f*Neyp, f*Opn (d)),
which gives each X € py(pz'(C) N I°) a natural homomorphism of normal bundles,
oc(X) : f*Nepn — [*Nxpv = f*Opn(d).

In addition, we have a decomposition, f*N¢/x = @f\:ﬁ Op1(b;(C/ X)) for some integers
b;(C'/X) determined by (X,C) € I'. Then, we set

g = {(X,C0) € I" | min{ b;(C/X) } > £},

Ii<g = {(X,C) € I" | max{b;(C/X) } < ¢ },
where we note that Ij>¢ (resp. Ij<¢) is an open subset of I by virtue of the upper semi
continuity of —min{ b;(C/X)} (resp. max{ b;(C/X)}) for (X,C) ([25, II, (3.9.2)]).

Proposition 4.2. (1) I;>¢ is not empty if p_¢—1 >0 and £ < 2.
(2) Ii<g is not empty if p_¢—1 <0 and § < 2d.

Corollary 4.3. Assume pg = 3N —2d —2 > 0. Then for a general hypersurface X in
PV of degree d, there exists a conic C lying in X. Moreover for a general conic C C X,
we have:
(1) max{b;(C/X)} <1 if po=po—2(N—2)
(2) min{b;(C/X)} 20 if poy = po — (N = 2) =
Hence if N —2 < pg < 2(N —2) (ie,—N/2+ N +1 < d < N), then f*Ng x =
[—12(N=d) (N-2-2(N-d)]
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Proof of Theorem 0.5. Let X C PV be a general hypersurface of degree d > 3 such that
X satisfies (GMRZ). From Proposition 4.1, it is sufficient to show that the case of p = 2
and d = N — 1 does not occur.

Assume p = 2 and N = d+ 1 > 4. It follows from Corollary 4.3 that f*Ng/X =

[—12,0V71] for a general conic C' C X. Hence Theorem 0.2 implies N = 4 and 2|a — 1,
where we set a := deg f*1*Opu (1) for an embedding ¢ : X — PM with Gauss map of
rank zero. On the other hand, from the Lefschetz theorem [15, III, Exercise 11.6 (c)], it
follows Pic X = PicP* for X C P*; hence a is divisible by 2 = deg f*(Ops(1)|x). This is
a contradiction. O
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