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Abstract

In this paper, we study the irreducible components of the moduli stack of torsion

free sheaves of rank 2 with fixed Mukai vector on a K3 surface of Picard number 1

and their dimensions.
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0 Introduction

It is well known that we can realize the moduli spaces of the line bundles on algebraic

varieties as Picard varieties (for example, [6]). However, although the moduli spaces of

vector bundles of rank 2 or more are known not to be realized as schemes because there

are too many objects to handle, it is also known that the moduli spaces are realized as

projective varieties by introducing stability (for example, [10]). Although we can simi-

larly construct the moduli schemes of vector bundles on higher dimensional varieties by

introducing stability, in this case, it is known that the moduli schemes does not generally

become projective schemes but quasi-projective schemes (ibid.). At this time, by replacing

1



a vector bundle by a torsion free sheaf which is a kind of generalization a vector bundle,

it is known that we can realized the moduli schemes of semi stable torsion free sheaves as

projective schemes (for example, [26]). The reason that a torsion free sheaf is a kind of

generalization is a toraion free sheaf is a vector bundle except for a part whose codimen-

sion 2 or more. In particular, a torsion free sheaf on a surface is a vector bundle except

for finite points (in detail, [19]).

Studying the structure of the moduli schemes of stable sheaves is interesting in itself.

However, they are not sufficient in that they can not parametrize all vector bundles or all

torsion free sheaves because we must make assumptions about the sheaves we treat when

constructing the moduli schemes of (semi)stable sheaves. But, it is known that when

thinking in the category of algebraic stacks, all vector bundles or torsion free sheaves

with fixed rank and Chern class are realized as an algebraic stack in the sense of Artin

stack (for example, [14]). By the way, the moduli stacks of (semi)stable sheaves are often

treated, but it seems that little has been done to study the moduli stacks of vector bundles

or torsion free sheaves. In particular, some results for the moduli stacks of torsion free

sheaves can be seen in detail in Strømme ([22]) or Walter ([23]). Additionally, in Walter

([23]), irreducible decomposition of the moduli stacks of the torsion free sheaves on ruled

surfaces and calculations of the dimensions of points in them.

By the way, for K3 surafces, by Mukai ([16], [17]), the dimensions of the moduli schemes

of stable sheaves can be written uniformly by using Mukai vector (in detail, definition 1.2),

and the dimensions are dependent only on the length of Mukai vector. That is,

Theorem 0.0 ([16],[17]). Let X be a K3 surface, and v be an element of Z⊕Pic(X)⊕Z,
H be an ample divisor on X. Then, the moduli scheme MH(v) of stable sheaves for H

with mukai vector is nonsingular and for any sheaf E ∈ MH(v)

dimE MH(v) = ⟨v, v⟩+ 2

It also seems that irreducible decomposition of the moduli stacks of torsion free sheaves

on K3 surfaces have not been done. Furthermore, we have a question that how we write

the dimensions of the points by using Mukai vector from the above result.This time, we

did irreducible decomposition of the moduli stack of the torsion free sheaves on K3 sur-

faces of Picard number 1 with fixed Mukai vector and computation of calculations of the

dimensions of points on it. Although the irreducible components are not finite, it turned

out that they can be divided into three types. The first is a component whose general

members are Gieseker-semistable sheaves, the second is a component whose general mem-

bers are not Gieseker-semistable but µ-semistable sheaves and the third is a component

whose general members are not µ-semistable sheaves. The last two kinds of components

are given closures of the stacks of Harder-Narasimhan filtrations. Let M tf(v) be the mod-

uli stack of torsion free sheaves on K3 surface X with Mukai vector v and M ss(v) be

the moduli stack of Gieseker-semistable sheaves (in detail, definition 1.6). The stacks of

Harder-Narasimhan filtrations are given as follows (in detail. definition 2.2).
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MHN
(v1,v2)

(v) :=

{
E ∈ M tf(v)

∣∣∣∣∣
∃(0 ⊂ E1 ⊂ E) : Harder-Narasimahn filtration

s.t. v(E1) = v1, v(E/E1) = v2

}

where, v := ([v]0, [v]1, [v]2), v1 := ([v1]0, [v1]1, [v1]2), v2 := ([v2]0, [v2]1, [v2]2) ∈ Z⊕Pic(X)⊕
Z.

In the following theorem, when we write v1, v2, they are always assumed to be elements

of Z⊕ Pic(X)⊕ Z. And we set

I := {(v1, v2) | v1 + v2 = v, [v1]0 = [v2]0 = 1}

J := {(v1, v2) | ⟨v1, v2⟩ < 1}

K := {(v1, v2) | 2[v1]1 = 2[v2]1 = [v]1}

The main theorem is the following.

Theorem 0.1. Let X be a K3 surface of ρ(X) = 1, and v0 : primitive ∈ Z⊕ Pic(X)⊕ Z
, m ∈ Z and set v := mv0.

We assume [v]0 = 2 and v satisfies one of the following disjoint conditions

(a) : ⟨v, v⟩ > 0

(b) : ⟨v, v⟩ < −2, ⟨v0, v0⟩ ̸= −2

(c) : ⟨v, v⟩ = 0,−2, v : primitive

then,

M tf(v) = M ss(v) ∪
∪

(v1,v2)∈S∪Seven

MHN
(v1,v2)

(v)

where,

S :=

(I ∩ J) \K if (a) or (c)

I \K if (b)

Seven :=


I ∩ J ∩K if (a) or (c), and 2|[v]1
I ∩K if (b), and 2|[v]1
∅ otherwise

Moreover, if (v1, v2) ∈ S, then the sheaves in MHN
(v1,v2)

(v) are not µ-semistable. If

(v1, v2) ∈ Seven, then the sheaves in MHN
(v1,v2)

(v) are not Gieseker-semistable but µ-semistable.

Remark 0.2. In the theorem 0.1, if v satisfies (b), then M ss(v) is an empty category.

Although the dimensions of the moduli stacks of semistable sheaves M ss(v) or Harder-

Narasimhan filtrations MHN
(v1,v2)

(v) are determined by Yoshioka ([12], [13]), all of these

are not necessarily irreducible components in M tf(v), so this alone can not determine

the dimensions of points in M tf(v). However, this time, we completely determined the

dimensions of the points in M tf(v) by the main results.
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Corollary 0.3. Under the notation of the theorem 0.1, for all E ∈ M tf(v), the dimension

dimE M tf(v) of M tf(v) at E is the following.

In the cases of (a) or (c),

dimE M tf(v) =

⟨v, v⟩ E ∈ M ss(v) or E ∈ MHN
(v1,v2)

(v) of ⟨v1, v2⟩ ≥ 1

⟨v1, v1⟩+ ⟨v2, v2⟩+ ⟨v1, v2⟩+ 2 E ∈ MHN
(v1,v2)

(v) of ⟨v1, v2⟩ < 1

In the case of (b),

dimE M tf(v) = ⟨v1, v1⟩+ ⟨v2, v2⟩+ ⟨v1, v2⟩+ 2

This result is similar to the result of Walter ([23]) for ruled surfaces. However, because

the canonical sheaves are obvious in the case of K3 surfaces, therefore if E is a coherent

sheaf, Ext2(E,E) ≃ Hom(W,E) ̸= 0 from Serre duality. This makes it difficult to calculate

the dimensions. In addtion, unlike ruled surfaces, K3 surfaces of Picard number 1 are not

fibered surfaces. From this point, the approach of the proof is different.

In the future, Brill-Noether theory is expected as an application of the main result.

Brill-Noether theory was originally conceived to study the detailed properties of algebraic

curves which can not be known just from Riemann-Roch Theorem. In detail, we define

Brill-Noether locus of an algebraic curve C.

W r
d (C) := {L ∈ Picd(C) | h0(C,L) ≥ r + 1}

where, Picd(C) is a connected component of Pic(C) which parametrizes the line bundles

whose degree are d. Then, for example, it is known that C is hyper elliptic is equivalent

to W 1
2 (C) ̸= ∅. In addtion, That C is a plane curve of degree d is equivalent to W 2

d ̸= ∅
(for example, [15]).

We can generalize the concept of Brill-Noehter locus. Under the notation of 0.0, We

set

W r
H(v) := {E ∈ MH(v) | h0(X,E) ≥ r + 1}

The above Brill-Noether locus for the moduli schemes of stable sheaves has been found

to be related to the birational geometry of the moduli schemes of stable sheaves (for

example, [3], [4]). In Walter ([23]), it is stated that the irreducible components of Brill-

Noether locus of Hilbert schemes of points on smooth projective surfaces correspond to

irreducible components satisfying a certain condition of some moduli stacks of torsion free

sheaves on them. By Göttsche and Huybrechts ([7]) or Yoshioka ([24]), it is also known

that for K3 surfaces birational maps between Hilbert schemes of points and some kinds

of moduli schemes of stable sheaves can be construct or that they can be deformation

equivalent under certain conditions. Combining these facts, it is expected that it will be

useful for further analysis of the structure of W r
H(v).
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1 Preliminaries

In this paper, a surface means 2 dimensional algebraic variety over C, an algebraic stack

means an Artin stack over C. In addtion, an open (resp. closed, resp. locally closed)

substack means a strictly substack whose inclusion map is open (resp. closed, resp. locally

closed) immersion (in detail, [21]).

1.1 K3 surfaces and Mukai vector1

Definition 1.1. Let X be a smooth projective surface over C. Then,
X is K3 surface if KX = 0 and H1(X,OX) = 0

Definition 1.2. Let X be a K3 surface and E be a coherent sheaf on X. Then,

v(E) := (rank(E), c1(E), c1(E)2

2 − c2(E)+rank(E)) ∈ Z ⊕ Pic(X) ⊕ Z

Definition 1.3. Let X be a K3 surface and

v := ([v]0, [v]1, [v]2), v
′ := ([v′]0, [v

′]1, [v
′]2) ∈ Z⊕ Pic(X)⊕ Z. Then,

⟨v, v′⟩ := −[v]0[v
′]2 + [v]1[v

′]1 − [v]2[v
′]0 ∈ Z

Definition 1.4. v ∈ Z⊕ Pic(X)⊕ Z is primitive

if [v′ ∈ Z⊕ Pic(X)⊕ Z, m ∈ Z, v = mv′] ⇒ m = 1 or − 1

Remark 1.5. • X is a K3 surface ⇒ Pic(X) = NS(X)

• For all v ∈ Z⊕ Pic(X)⊕ Z, ⟨v, v⟩ ∈ 2Z.

• E,E′ ∈ Coh(X), v(E) = v(E′)⇒ (rank(E), c1(E), c2(E)) = (rank(E′), c1(E
′), c2(E

′))

• ∀v ∈ Z⊕ Pic(X)⊕ Z, ∃E: Coh(X) s.t. v(E) = v

1.2 The moduli stacks of torsion free sheaves

Definition 1.6 (Moduli stacks of torsion free sheaves). Let X be a smooth projective

surface over C and (2, D, c2) ∈ Z⊕NS(X)⊕ Z
We define the moduli stack M tf(2, D, c2) of torsion-free sheaves with rank r and Chern

polynomial 1 +Dt+ c2t
2 to be the following category

1. Objects : (U , E), where

• U : scheme over C

1For further information about K3 surfaces, see [9]
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• E : quasi-coherent sheaf of finite presentation on X ×C U(=: Z), flat over U

s.t. Et : torsion free sheaves on Zt = Xk(t) s.t. rank(Et) = 2, c1(Et) = D |Xk(t)
,

c2(Et) = c2

2. Morphisms : we define the maps from (U,E) to (U ′, E′) as (φ : U → U ′, α : φ∗E →
E′ : isomorphism) 　

　

　　 　　
Remark 1.7. M tf(2, D, c2) is an algebraic stack.And, we can define the moduli stack of

coherent sheaves in the same way. We denote it by M (2, D, c2).　　

1.3 The topological spaces associating to algebraic stacks and dimension

of algebraic stacks

　

Definition 1.8 ([5], [14]). Let X be an algebraic stack over C

|X | :=
⨿

K/C:extension

X (Spec(K))/ ∼

where, E ∼ E′ def⇐⇒ ∃K ′′ : extension of K,K ′ such that E |XSpec(K′′)≃ E′ |XSpec(K′′)(
E ∈ X (Spec(K)), E′ ∈ X (Spec(K ′))

K,K ′/C : extension of C

)
Definition 1.9 ([5], [14]). Let X be an algebraic stack over C.

A set {U ⊆ |X | | ∃U : open substack of X such that |U | = U} is a family of subsets

of X satisfying the axiom of open set, by this, we can think of |X | as a topological set.

Remark 1.10. Let f : X → Y be a morphism of algebraic stacks, this induces a

continuous map |f | : |X | → |Y |

Definition 1.11 ([5], [14]). Let P : U → X be a smooth morphism from a scheme and

u ∈ U such that u 7→ x then, we define dimu(P ) as follows.

U ×X Spec(k) //

��

Spec(k)

x

��
U

P // X

2

then,

dimu(P ) := dimx(U ×X Spec(k))

Definition 1.12 ([5], [14]). Let X be an algebraic stack over C and x ∈ X (Spec(K))(K/C :

extension), P : U → X be a smooth morphism from a scheme , u ∈ U such that u 7→ x.

Then,

dimx(X ) := dimu(U)− dimu(P )

Remark 1.13. In general, −χ(E,E) + ext2(E,E) ≥ dim[E] M
tf(2, D, c2) ≥ −χ(E,E)
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1.4 Stability, Harder-Narasimhan filtration

Definition 1.14. Let X be a smooth projective surface over C, H be an ample divisor

on X, E is a torsion free sheaf on X. Then,

µ(E) :=
c1(E).H

rank(E)
P (E,m) := χ(E(mH)) =

dim(E)∑
i=0

αi

i!
mi p(E,m) :=

P (m)

αdim(E)

and,

E : µ-(semi)stable if µ(F ) <
(=)

µ(E)

(0 ̸= ∀F ⊂ E, rank(F ) < rank(E))

E : Gieseker-(semi)stable if p(F,m) <
(=)

p(E,m)

(0 ̸= ∀F ⊂ E)

where, p(F,m) <
(=)

p(E,m) if p(F,m) <
(=)

p(E,m)(m ≫ 0)

Theorem 1.15 (Harder-Narasimhan(HN) filtration). Let X be a smooth projective sur-

face over C H be an ample divisor on X, E be a torsion free sheaf on X.

Then, for E, there exists a unique filtration (we call this the Harder-Narasimhan(HN)

filtration of E for µ-semistable)

0 = E0 ⊂ E1 ⊂ · · · ⊂ Es−1 ⊂ Es = E

, s.t. Ei/Ei−1 : µ-semistable for H, i = 1, · · · s, and µ(E1/E0) > µ(E2/E1) > · · · >

µ(Es−1/Es−2) > µ(Es/Es−1)

In the same way, there exists a unique filtration (we call this the Harder-Narasimhan(HN)

filtration of E for Gieseker-semistable)

0 = E0 ⊂ E1 ⊂ · · · ⊂ Es−1 ⊂ Es = E

, s.t. Ei/Ei−1 : Gieseker-semistable for H, i = 1, · · · s, and p(E1/E0,m) > p(E2/E1,m) >

· · · > p(Es−1/Es−2,m) > p(Es/Es−1,m)

Definition 1.16. Let X be a smooth projective surface over C and H be an ample divisor

on X, E be a torsion free sheaf on X and Let

0 = E0 ⊂ E1 ⊂ · · · ⊂ Es−1 ⊂ Es = E

be the HN-filtration of E for H. Then, we can define the polygon which has as the

vertexes (0, 0), (rank(E1),degH(E1)), (rank(E1) + rank(E2), degH(E2)), · · · , (rank(E1) +

· · · + rank(Es−1), degH(Es−1)), (rank(E), degH(E)). We call this HN-polygon of E for

H.We denote it by HNP(E).

Here, as an example, we draw the polygon in case s = 5 as follows.
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rank

degH

O

E1

E2

E3

E4

E5 = E

rank(E1)

c1(E1).H

HN-polygon of E for H

2 Proof of Theorem 0.1 and Corollary 0.3

In this section, we always assume X is a K3 surface of ρ(X) = 1 and H is an ample divisor

generating Pic(X).

And we often denote M (2, D, c2)(resp.M tf(2, D, c2) by M (v)(resp.M tf(v)) where,

v := (2, dH, d
2H2

2 − c2 + 2) (we always assume v satisfies the assumption of the theorem

0.1.). And, We denote Gieseker-semistable part and µ-semistable part M tf(v) by M ss(v)

or M µss(v)(they become open substacks). p, p′ are points of a topological spaces, we

denote p⇝ p′ by {p} ∋ p′.

2.1 Irreducibility of substacks of the moduli stacks of torsion free sheaves

Definition 2.1. Let H0 be an ample divisor on X, and v ∈ Z
⊕

Pic(X)
⊕

Z. For

v := (r, dH, a),

degH0
(v) := dH.H0

Definition 2.2. As a full substack of M tf(2, D, c2), we define MHN
(v1,v2)

(v) to be the cat-

egory having the following objects , where vi = (ri, diH, ai) ∈ Z
⊕

Pic(X)
⊕

Z, i = 1, 2

s.t. degH(v1) > degH(v2) or degH(v1) = degH(v2) and a1 > a2

• Objects : (U,E) ∈ obM tf(v) s.t. ∀t ∈ U, ∃(0 ⊂ E1 ⊂ Et) : HN-filtration of Et s.t.

v(E1) = (r1, d1H|Xk(t)
, a1), v(Et/E1) = (r2, d2H|Xk(t)

, a2)

Lemma 2.3 ([25]). For ⟨v, v⟩ > 0, M µss(v) is an irreducible algebraic stack. 2
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Lemma 2.4. Let v1, v2 be elements of Z
⊕

Pic(X)
⊕

Z and we assume we can write them

as 2.2. Then, MHN
(v1,v2)

(v) is a locally closed substack of M tf(v).

Proof . For X, the elements of Z
⊕

Pic(X)
⊕

Z and the Hilbert polynomials for H is 1 to

1 correspondence. Actually, for E : coherent sheaf of rank = 2, let ct(E) = 1+dHt+c2t
2 be

the Chern polynomial of E. Then, we have td(X) = (1, 0, 2), ct(E) = 1+(d+2m)t+(m2+

dm+c2)t
2, ch(E(m)) = (rank(E), (d+2m)H, (m2H2+mdH2+ d2

2 −c2)), so by Hirzebrugh-

Riemann-Roch thoerem, χ(E,m) = H2m2+dH2m+(d
2

2 −c2)H
2+2. Therefore, when we

give a polynomial, d, c2 are uniquely determined. Then, from [8, Theorem 1.4], MHN
(v1,v2)

(v)

is a locally closed substack. 2

For the next lemma, we prepare some notation. v ∈ Z
⊕

Pic(X)
⊕

Z, QuotX(F, v) =

{F ↠ E | E : Xcoherent sheaf s.t.v(E) = v}, RN,m(v) = {φ : OX(−m)⊕N ↠ E ∈
QuotX(OX(−m)⊕N , v) | H0(φ(m) is an isomorphism,Hp(X,E(m)) = 0(∀p > 0)}. In this

case, RN,m(v) ⊆ QuotX(OX(−m)⊕N , v) is an open subscheme.

Lemma 2.5. MHN
(v1,v2)

(v) is an irreducible algebraic stack.

Proof . For the proof of this lemma, we consider the following stacks.

F (v1, v2) = {0 ⊂ E1 ⊂ E | E ∈ M (v), E1, E/E1 : µ-semistable, v(E1) = v1, v(E/E1) = v2}

Then, when degH(v1) > degH(v2) or degH(v1) = degH(v2) and a1 > a2, |F (v1, v2)| ∩
|M tf(v)| = |MHN

(v1,v2)
(v)|. Therefore, |F (v1, v2)| ∩ |M tf(v)| ⊆ |F (v1, v2)| : open subset, so

it is enough to prove |F (v1, v2)| is irreducible. The following fact is useful to prove this.

Lemma 1 ([13]). Let v1, v2 ∈ Z
⊕

Pic(X)
⊕

Z,

Fn(v1, v2) :=

{
0 ⊂ E1 ⊂ E ∈ F (v1, v2)

∣∣∣∣∣ E ∈ M (v), E1, E/E1 : µ-semistable

v(E1) = v1, v(E/E1) = v2,hom(E1, E/E1) = n

}
Rn(v1, v2) := {(E1, E2) ∈ RN ′,m′

(v1)×RN ′′,m′′
(v2) | E1, E2 : µ-semistable, hom(E1, E2) = n}

, where N ′, N ′′,m′,m′′ are non negative integers s.t. RN ′,m′
(v1) ∩ M µss(v) → M µss(v1),

RN ′′,m′′
(v2) ∩ M µss(v2) → M µss(v′′) : surjective. Then, there exists a vector bundle Y n

on Rn(v1, v2) and an algebraic group Gn acting on this s.t.

Fn(v1, v2) ≃ [Y n/Gn]

2

Now, if degH(v1) > degH(v2) or degH(v1) = degH(v2) and a1 > a2, then hom(E1, E/E1) =

0. For, if hom(E1, E/E1) ̸= 0, we have 0 ̸= ∃ϕ : E1 → E/E1. And E/E1 : torsion free,

so 0 ̸= Im(ϕ) implies rank(Im(ϕ)) = 1. Therefore, rank(Ker(ϕ) = 0. In the same way,

because E1 : torsion free, so we get Ker(ϕ) = 0 and E1 is a subsheaf of E/E1. Then, from

the assumption we have E/E1 is stable, p(E1) > p(E/E1) contradicts this. Therefore,

hom(E1, E/E1) = 0. Moreover, in this case, F (v1, v2) ≃ F 0(v1, v2). So, if we prove Y 0 is
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irreducible, from the above lemma, we can get F 0(v1, v2) ≃ [Y 0/G0] and Y 0 is an atlas

of [Y 0/G0]. In particular, from the fact Y 0 → [Y 0/G0] is surjective, we get [Y 0/G0] is

irreducible.

Next, we prove that RN ′,m′
(v1)

µss, RN ′′,m′′
(v2)

µss are irreducible. In particular, it is

enough to see RN ′,m′
(v1)

µss. Now, let v1 := (r1, d1H, a1), the following morphism is

isomorphism.

⊗OX(−d1) : RN ′,m′
(v1)

µss // RN ′,m′+d1((1, 0,−a1 −
d21H

2

2 ))µss

∈ ∈

(OX(−m)⊕N ↠ E) � // (OX(−m− d1)
⊕N ↠ E(−d1))

Then, the moduli scheme M(1,OX , a1 +
d21H

2

2 ) is a quotient of RN ′,m′+d1((1, 0,−a1 −
d21H

2

2 ))µss by an action of PGL(N). In addition, π : RN ′,m′+d1((1, 0,−a1 −
d21H

2

2 ))µss →
M(1,OX , a1+

d21H
2

2 ) is a principal PGL(N)-bundle and open map(because this is a quotient

map). And, this moduli scheme is isomorphic to a Hilbert scherme of points on X. i.e.,

M(1,OX , a1 +
d21H

2

2 ) ≃ Hilba1+
d21H

2

2 (X). At last, from [10, Theorem 6.A.1], we have

Hilba1+
d21H

2

2 (X) is irreducible and, we can apply the following lemma.

Lemma 2 ([1]). f : X → Y is open and surjective morphism and any fiber is irreducible

at any closed point. Then,

Y : irreducible ⇒ X : irreducible

Therefore, we have RN ′,m′+d1((1, 0,−a1 −
d21H

2

2 )) is irreducible, so RN ′,m′
(v1) is irre-

ducible. Therefore, RN ′,m′
(v1) × RN ′′,m′′

(v2) is irreducible, and Y 0 is a vector bundle on

this, so this is also irreducible. 2

At the end of this subsection, we mention to irreducibility of M ss(v) not in the case

⟨v, v⟩ > 0. This is necessary to the proof of Theorem 0.1.

Lemma 2.6. Let v : primitive and ⟨v, v⟩ = 0,−2. Then, M ss(v) is an irreducible algebraic

stack.

Proof . At first, v is primitive, so all semistable sheaves are stable. Let M(v) be the

moduli scheme of stable sheaves whose mukai vector is v. In the same way, ∃N,m ≥ 0 s.t.

RN,m(v)ss → M(v) is a principal PGL(N) bundle and an open map, and from [10] and [26]

M(v) is not empty and irreducible. So from 2, RN,m(v)ss is also irreducible. Surjectivity

of RN,m(v)ss → M ss(v) implies irreducibility of M ss(v). 2

2.2 Determination of the irreducible components of M tf(v)

Lemma 2.7. (i) We define RN,m(v)tf ⊆ RN,m(v) to be RN,m(v)×M (v)R
N,m(v)tf. Then,

[RN,m(v)tf/GL(N)] is an open immersion of M (v)tf.

10



(ii) In the same way, we define RN,m
(v1,v2)

(v) ⊆ RN,m(v) to be RN,m(v)×M (v) M
HN
(v1,v2)

(v) ≃
RN,m(v) ×M tf(v) MHN

(v1,v2)
(v). Then, [RN,m

(v1,v2)
(v)/GL(N)] is an open immersion of

MHN
(v1,v2)

(v)). Moreover, RN,m
(v1,v2)

(v) ⊂ RN,m(v)tf is the set torsion free sheaf whose

HN-type is (v1, v2) as a set.

(iii) There exist the following fiber products.

RN,m(v)tf //

��

[RN,m(v)tf/GL(N)]

��

// M tf(v)

��
RN,m(v) // [RN,m(v)/GL(N)]

2

// M (v)

2

RN,m
(v1,v2)

(v) //

��

[RN,m
(v1,v2)

(v)/GL(N)]

��

// MHN
(v1,v2)

(v)

��
RN,m(v)tf // [RN,m(v)tf/GL(N)]

2

// M (v)

2

Proof . For (i),

Lemma 3 ([11]). [RN,m(v)/GL(N)] → M (v) is an open immersion.

Therefore, it is sufficient to prove the existence of the first fiber product of (iii). Ac-

tually, for (iii), from the property of fiber products it is sufficient to show the existence

of

RN,m(v)tf //

��

[RN,m(v)/GL(N)]×M (v) M tf(v)

��

// M tf(v)

��
RN,m(v) // [RN,m(v)/GL(N)]

2

// M (v)

2

Then, all vertical arrows are open immersions. Especially, from the middle arrow and the

property of quotients stacks, we can show [RN,m(v)/GL(N)]×M (v) M (v)tf ≃ [S/GL(N)],

(∃S ⊂ RN,m(v): GL(N)-invariant open subscheme), In general, we have the following

bijective correspondence. ([2],[21])

(locally closed substacks of [RN,m(v)/GL(N)]) // (GL(N)-invariant locally closed subschemes of RN,m)

∈ ∈

Y � // Y ×[RN,m(v)/GL(N)] R
N,m

[S/GL(N)] S�oo

Lemma 4 ([14]). The following is a cartesian product of algebraic stacks.

Y ′ //

��

X ′

��
Y // X

2

then, the natural morphism |Y ′| → |Y | ×|X | |X ′| is surjective.

11



Definition 2.8 ([21]). Let X be an algebraic stack, T ⊆ |X | be a closed subset. Then,

there exists a unique closed substack Z ⊆ X s.t. |Z | = T and Z is a reduced stacks.

Then, we denote Z by Tred.

Lemma 2.9. (i) Let (|MHN
(v1,v2)

(v)|)red ⊆ M (v)tf be the reduced indeced closed substack

of |MHN
(v1,v2)

(v)| in |M tf(v)|. In the same way, we denote MHN
(v1,v2)

(v)red the reduced

induced closed substack of MHN
(v1,v2)

(v). Then,

MHN
(v1,v2)

(v)red → (|MHN
(v1,v2)

(v)|)red : open immersion

(ii) dim MHN
(v1,v2)

(v)red = dim(|MHN
(v1,v2)

(v)|)red

Proof . (i) We consider the following diagram.

MHN
(v1,v2)

(v)
locally closed // M (v)tf

MHN
(v1,v2)

(v)red
∃ //

closed

OO

(|MHN
(v1,v2)

(v)|)red

closed

OO

U

open

OO

where, |U | = |MHN
(v1,v2)

(v)|. Moreover, we get the second row morphism from [21,

Lem97.10.2]. Now, we pullback respectively MHN
(v1,v2)

(v)red and U , by
⨿

N,m≥0R
N,m(v)tf →

and, by M (v)tf, to RN,m(v). Then, MHN
(v1,v2)

(v)red×M tf(v)R
N,m(v) and U ×M tf(v)R

N,m(v)

are the same reduced locally closed subschemes in RN,m, so MHN
(v1,v2)

(v)red and U corre-

spond. Therefore, we get (i).

(ii) It is sufficient to prove the following claim.

Claim . Let X be a reduced irreducible algebraic stack, U ⊆ X be an open sub-

stack(then, |U | = X holds.). And, we assume dimp(U ) = constant(∀p ∈ U ) and we ca

choose a locally noetherian scheme as an atlas X . Then,

dim(U ) = dim(X )

Proof of Claim . We suppose q ∈ |X | − |U |. Then, from the assumption ∃f : X → X

s.t. f is smooth, q′ ∈ X ≃ |X| with |f |(q′) = q.We consider the following cartesian

product.

U := U ×X X

sm f ′

��

open im// X

f sm
��

U
open im

// X

2

Moreover, let p ∈ |U | with {p} = |X |. Then, ∃p′ ⇝ q′ s.t. p′ 7→ p, p′ is the generic

point of an irreducible component of X. Then, we have dimp′(f) = dimq′(f) (because

12



relative dimension of the morphism is locally constant.).

dimq(X ) = dimq′(X)− dimq′(f)

= dimq′(X)− dimp′(f)

Then, let r be the generic point of an irreducible component which contains q′ and

whose dimension is the larger than that of any other irreducible component containing q′,

then q = |f | = (q′) ∈ |f |({r′}) ⊆ (|f |(r′)). Moreover, we suppose |f |(r′) := r, then we

have p⇝ r. So we get r = p because of maximality of r′ for inclusion relationship. And,

dimp(U ) = dimp(U)− dimp(f
′)

= (dimp(X)− dimp(U ↪→ X))− dimp(f)

= dimp(X)− dimp(f)

= dimp(X )

so, dimp(U ) = opdimp(X ), we get

dimp(U ) = dimp(X ) = dimr′(X)− dimr′(f)

= dimq′(X)− dimq′(f)

= dimq(X )

Therefore, dim(U ) = dim(X ) 2

Wemention to the fact which is about dim(M ss(v)) and dim(MHN
(v1,v2)

(v)) and necessary

to the proof of the next lemma.

Lemma 5 ([12],[13]). (i) dim(M ss(v))= ⟨v, v⟩+ 1

(ii) dim(MHN
(v1,v2)

(v)) = ⟨v1, v1⟩+ ⟨v2, v2⟩+ ⟨v1, v2⟩+ 2

Remark 2.10. To be accurate, in the above lemma,H must be general for v, v1, v2([12],[13])

, but in this case, the Picard number is 1, so the condition holds regardless of v, v1, v2.

Moreover, in general, (i) of the above lemma holds in ⟨v, v⟩ > 0 or v : primitive. In the

condition of the Theorem 0.1, this necessarily holds. Note that because the ranks of v1, v2

are 1, v1, v2 are always primitive.

Lemma 2.11. v1, v2, v
′
1, v

′
2 ∈ Z

⊕
Pic(X)

⊕
Z such that v1 ̸= v′1 or v2 ̸= v′2. Then,

|MHN
(v1,v2)

(v)| ⊈ |MHN
(v1,v2)

(v)|

Proof . Suppose |MHN
(v1,v2)

(v)| ⊆ |MHN
(v1,v2)

(v)|. By (2.5), Let p, p′ be respectively the

generic points of |MHN
(v1,v2)

(v)| and |MHN
(v1,v2)

(v)|, ∃N,m ∈ Z≥0 s.t. |RN,m
(v1,v2)

(v)| → |MHN
(v1,v2)

(v)| :
dense, i.e., RN,m

(v1,v2)
(v) ∋ ∃q 7→ p ∈→ |MHN

(v1,v2)
(v)|. Then, we can think of q as the generic

point of RN,m
(v1,v2)

(v) (otherwise, we take a maximal point of general points of it.). Then,

let {q} =: V ⊆ RN,m
(v1,v2)

(v),

Claim . dim(V ) = dim(MHN
(v1,v2)

(v)) +N2

13



Proof of Claim . From (2.7), [RN,m
(v1,v2)

(v)/GL(N)] ↪→ MHN
(v1,v2)

(v) is an open immersion.

In addition, from 2.5, dimp′(M
HN
(v1,v2)

(v)) : independent of the choice of p′ ∈ (MHN
(v1,v2)

(v)).

Therefore,

dimp′ [R
N,m
(v1,v2)

(v)/GL(N)] = dimp′(M
HN
(v1,v2)

(v))

= dim(MHN
(v1,v2)

(v))

and,

dimp′ [R
N,m
(v1,v2)

(v)/GL(N)] = dimp′(R
N,m
(v1,v2)

(v))−N2

= dim(V )−N2

t Therefore we get the claim. 2

We return to the proof of the lemma. Here, because p′ ⇝ p[14], ∃q′ ∈ RN,m
(v′1,v

′
2)
(v) s.t.

RN,m
(v′1,v

′
2)
(v) ∋ q′ 7→ p′ ∈ |MHN

(v1,v2)
(v)|, q′ ⇝ q in RN,m(v)tf where, we can think of q′ as the

generic point of RN,m
(v′1,v

′
2)
(v), let {q′} =: V ′ ⊆ RN,m

(v′1,v
′
2)
(v), we have V ⊆ V ′ ⊆ RN,m(v)tf, so

dim(V ) = dim(V ), dim(V ′) = dim(V ′). Because |MHN
(v1,v2)

(v)| ⊆ |MHN
(v1,v2)

(v)|, MHN
(v1,v2)

(v)

̸= MHN
(v1,v2)

(v), we have dim(V ′) > dim(V ). ( if dim(V ′) = dim(V ), V ′ = V . This

is a contaradiction because this two closed sets have different generic points.) Let E ∈
MHN

(v1,v2)
(v), and let the corresponding extension of E be the following.

0 // IZ1(m) // E // IZ2(n−m) // 0

where, v(IZ1(m)) = v1, v(IZ2(n−m)) = v2. Then,

dim(MHN
(v1,v2)

(v)) = ⟨v1, v1⟩+ ⟨v2, v2⟩+ ⟨v1, v2⟩+ 2

= ⟨(1,mH,
m2H2

2
− l(Z1) + 1)2⟩+ ⟨(1, (n−m)H,

(n−m)2H2

2
− l(Z2) + 1)2⟩

+ ⟨(1,mH,
m2H2

2
− l(Z1) + 1), (1, (n−m)H,

(n−m)2H2

2
− l(Z2) + 1)⟩+ 2

= 3(l(Z1) + l(Z2))− 4 + {m(n−m)− m2H2

2
− (n−m)2H2

2
}

= (3c2 − 3m(n−m)H2)− 4− n2H2

2
+ 2mnH2 − 2m2H2

= (3c2 − 4− n2H2

2
)−m(n−m)H2

= H2(m− n

2
)2 + (3c2 − 4− 3n2H2

4
)

However, from [20], p 7→ HNP(p) is upper semicontinuous. Because, from p′ ⇝ p, HNP(p)

≥ HNP(p’), we must have dim(V ) ≥ dim(V ′). This is a contradiction. Therefore, we get

the claim. 2

1From this, we have RN,m
(v1,v2)

(v) is equidimensional.
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2.3 Proof of Theorem 0.1 and Corollary 0.3

Lemma 6 ([5]). Let X be a locally noetherian algebraic stack and x ∈ |X |. Then,

dimx(X ) = supT (dimx(T )), where T is an irreducible component of |X | passing through
x, and we have areduced induced closed substack structure as a stack

Remark 2.12. In particular , in the above condition, if X is irreducible, about ∀x ∈ |X |,
we have dimx(Xred) = dimx(X )

Lemma 7 ([12]). The dimension of any irreducible component of dim(M (v)) is the above

of ⟨v, v⟩+ 1.

Lemma 8 ([5],[21]). X is a pseudo-catenary, jacobson, locally noetherian algebraic stack.

We assume |X | is irreducible. Then, dimx(X ) is constant for x ∈ |X |.

Remark 2.13. (i) any algebraic stack locally of finite type over a field holds the as-

sumption of 8.

(ii) from 7, 8, dimx(M tf(v)) ≥ ⟨v, v⟩+ 1 (∀x ∈ |M tf(v)|)

(iii) we can also prove (ii) of 2.9 by using 8 and (i) of 2.9.

Proof of Theorem 0.1 and Corollary 0.3 . At first, note that |M tf(v)| are a disjoint

union of |M ss(v)| and |MHN
(v1,v2)

(v)|. In the case (a) and (c), under the notation of Theorem

0.1, if ⟨v1, v2⟩ ≤ 1,

dim(M ss(v)) = ⟨v, v⟩+ 1

= ⟨v1, v1⟩+ ⟨v2, v2⟩+ 2⟨v1, v2⟩+ 1

= dim(MHN
(v1,v2)

(v)) + ⟨v1, v2⟩ − 1

Therefore, as with (2.11), |M ss(v)| ⊉ |MHN
(v1,v2)

(v)| and |M ss(v)| ⊈ |MHN
(v1,v2)

(v)|. And,

under the notation of Theorem 0.1, ⟨v1, v2⟩ − 1 = c2 − n2H2

2 + 3. So, note that the

map that E ∈ M tf(v) corresponds to its HN-polygon for Gieseker stability is also upper

semicontinuous,([18]) in the same way, we get |M ss(v)| ⊉ |MHN
(v1,v2)

(v)| and |M ss(v)| ⊈
|MHN

(v1,v2)
(v). Conversely, when ⟨v1, v2⟩ > 1, we suppose |M ss(v)| ⊉ |MHN

(v1,v2)
(v)|, ∀x ∈

|MHN
(v1,v2)

(v)|, we have dimx(M tf(v)) < ⟨v, v⟩+1, this contradicts to (2.13), so |M ss(v)| ⊇
|MHN

(v1,v2)
(v)|. Therefore, from (2.3), (2.5), (2.6), (2.11), the irreducible components and

their general points of M tf(v) can be written as the statement of Theorem 0.1. For

their dimensions(i.e. for Corollary 0.3), from (5) and (2.9), they are also written as the

statement. In the case of (b), from [26, Thm0.1], we have |M ss(v)| = ∅. Therefore we can

prove the claim in the same way. 2
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