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A DUALITY PROPERTY FOR INVERTIBLE WITT SHEAVES

NIKLAS LEMCKE

Abstract. We adapt ideas from Ekedahl [Eke84] to prove a Serre-type duality

property for locally free sheaves of WOX–modules, and attempt to illuminate
its relation to Tanaka’s vanishing theorem [Tan18].
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Introduction

In [Eke84], Ekedahl introduces a certain duality functor D, and eventually con-
structs an isomorphism ([Eke84, Theorem III: 2.9])

D(RΓ(WΩ•X))(−N)[−N ] ∼= RΓ(WΩ•X),

where (−N) and [−N ] denote shifts in module and complex degree, respectively.
He then shows that

D(RΓ(WΩ•X)) ∼= RHomR(RΓ(WΩ•X), Ř),

with the isomorphisms lying in D(R), where R is the Raynaud Ring (which is a
non-commutative WOX -algebra), and Ř is some R–bi–module. The biggest prob-
lem with Ekedahl’s general result is how difficult it is to use, i.e. how to actually
compute D(WΩ•X) in cases of interest. Our result is achieved by introducing a
non-commutative ring ω based on similar ideas.

Theorem 0.1 (Cf. Theorem 3.6). Let k be a perfect field of characteristic p > 0,
XN a smooth projective variety over k, and F an invertible sheaf of OX–modules.
Then

(0.1) RΓ(WΩNX ⊗
WOX

F∨) ∼= RHomω(RΓ(F ), ω̌[−N ]),

where ω̌ is a certain ω–algebra.
1
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1. Notation

We will be using the following notations and conventions:

• A variety over k is a separated integral scheme of finite type over k.

• Throughout this paper we define X
φ−→ S = Spec k, where k is a perfect

field of characteristic p > 0.
• WOx (resp. WnOX) denotes the sheaf of (truncated) Witt-vectors (cf. 2.1),

and WX (resp. WnX) denotes the scheme (X,WOX) (resp. (X,WnOX)).
• FX denotes the absolute Frobenius morphism on X, induced by the Frobe-

nius automorphism on W . Usually the scheme X is understood from con-
text, in which case we may just write F .
• If C is a complex, C[i] denotes C shifted by i in complex degree.
• If Mn is an inverse system, then limnMn denotes the inverse limit.

2. Preliminaries

For the reader’s convenience we will recall some definitions and results. Ref-
erences are, for example, Local Fields by Jean-Pierre Serre [Ser95], Luc Illusie’s
exposition on the de Rham-Witt complex [Ill79], and Hiromu Tanaka’s 2017 paper
proving a vanishing theorem of Witt sheaves [Tan18].

2.1. Witt vectors.

2.1.1. Motivation from p-adic integers. The Witt vectors can be naturally moti-
vated using the example of the p-adic integers Zp. Since Zp is the inverse limit of
(Z/pnZ)N along the quotient maps (taking modulo pn), any element of Zp can be
identified with a sequence (ai)i, ai ∈ Z/piZ such that for i ≤ j, aj ≡ ai mod pi. Ad-
dition and multiplication in this ring are the normal operations performed element-
wise.

An element a ∈ Zp can then also be uniquely written as a series

a =
∑
0≤i

αip
i,

where αi ∈ Z/pZ, and the elements of the sequence (ai)i are the partial sums of
this series. We can therefore write a ∈ Zp as

a = (α0, α1, · · · ) = (αi)i,

remembering that the ring structure is given by multiplication and addition of the
partial sums an =

∑
0≤i≤n αip

i. This way, Zp = (Z/pZ)N as sets.

2.1.2. Generalizing to Witt vectors. This motivates the definition of Witt vectors
W (A) over a ring A: let A be a commutative ring of characteristic p > 0. A Witt
vector a ∈ W (A) over A is an infinite sequence (αi)i, where αi ∈ A. The set of
Witt vectors is endowed with ring operations via addition and multiplication of the
sums

an =
∑

0≤i≤n

αp
n−i

i pi.

A common notation for the above as a polynomial in the elements of a is a(n). Since
they provide the ring structure, these polynomials are called the ghost components
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of a. That is, if a, b ∈W (A), then a+ b = c and ab = d are such that

c(n) = a(n) + b(n),

d(n) = a(n)b(n).

It becomes apparent that in W (A), 1 = (1, 0, 0, · · · ) and p = (0, 1, 0, 0, · · · ).

2.1.3. The maps F, V, and R. The Frobenius endomorphism σ of A naturally in-
duces what we call the Frobenius endomorphism F of W (A) by element-wise ap-
plication:

W (A)
F−→W (A)

(ai)i 7→ (σ(ai))i.

F is an isomorphism if and only if A is perfect. If A is imperfect, F is only injective.
The so-called Verschiebungs-map V is the (injective) shift of the terms of a Witt

vector a ∈W (A):

W (A)
V−→W (A)

(a0, a1, · · · ) 7→ (0, a0, a1, · · · a).

Computation shows that FV = V F = p.
F and V on W (A) naturally induce corresponding maps on Wn(A). We therefore

have exact sequences for any m ≥ n.

0→W (A)
V n

−−→W (A)
R−→Wn(A)→ 0,

0→Wm(A)
V n

−−→Wm+n(A)
R−→Wn(A)→ 0,

with the quotient map R being the natural restriction. R makes (Wn(A))n into an
inverse system, the limit of which is again W (A).

The truncated Witt vectors Wn(A) are the Witt vectors truncated after the nth
element: Wn(A) := W (A)/V n(W (A)). In particular W1(A) = A. In other words,
if σ is the identity on A, they are the Witt vectors modulo pn, and if A is perfect,
they are isomorphic to the Witt vectors modulo pn via σ. For imperfect A, however,
W (A)/pnW (A) is (in some sense) much larger than Wn(a).

If k is our groundfield, we shall denote W (k) and Wn(k) by W and Wn, respec-
tively. Since multiplication and addition of Witt vectors are simply those of the
associated ghost components which are polynomials, if A is a k–algebra, W (A) is
a W–algebra in the natural way.

It is worth noting that while A and Wn(A) are of positive characteristic, W (A) is
of characteristic zero (or more precisely of mixed characteristic, since multiplication
by V is injective on W (A), but W (A)/V (W (A)) = A). It is thus not entirely
surprising that, after taking the limit, properties may differ from the truncated
case.

2.1.4. Teichmüller character. If a0 ∈ A is an element in our base ring, we can
identify it with an element in W (A) naturally in the Witt vector notation by

A
ω−→W (A)

a0 7→ a0 := a0 + 0p1 + 0p2 + · · · = (a0, 0, 0, · · · ).
This map is multiplicative, but not additive. ω is called the Teichmüller character,
a0 the Teichmüller representative of a0.
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2.2. The de Rham-Witt complex. We may sheafify the notion of Witt vectors.
In particular, for a k-scheme (X,OX) define

WOX(U) := W (OX(U))

for any open subset U ⊂ X.
The terms WnΩ•X of the de Rham-Witt complex are defined iteratively in n as

a quotient of Ω•WnOX
. We therefore begin by setting WnΩ•X = 0 for any n ≤ 0 and

W1Ω•X = Ω•X .

Suppose then we have (WiΩ
•
X , R)i≤n with additive shift mapsWiΩ

•
X

V−→Wi+1Ω•X
for i ≤ n satisfying the following conditions:

(in) RV (x) = V R(x) for any x ∈WiΩ
•
X , i ≤ n− 1

(iin) WiΩ
0
X = WiOX , on which R and V are the usual restriction and shift maps

(iiin) V (xdy) = V (x)dV (y) for any x ∈WiΩ
•
X , i ≤ n− 1

(ivn) V (y)dx = V (xp−1y)dV x where x ∈ OX , y ∈WiOX for any i ≤ n− 1

(vn) The quotient maps Ω•WiOX

πi−→WiΩ
•
X are surjective, π0

i = id for any i ≤ n,
and π1 is an isomorphism.

We then set

Wn+1Ω•X := Ω•Wn+1OX
/N,

where N is the graded differential ideal such that (in+1) through (vn+1) hold

and πnR(N) = 0. Due to these definitions, two maps Wn+1Ω•X
R−→ WnΩ•X and

WnΩ•X
V−→ Wn+1Ω•X are induced. The complex W•Ω

•
X then satisfies a universal

property. (For further details please consult Illusie [Ill79].)
The de Rham-Witt complex is then defined as

WΩ•X := lim
n
WnΩ•X ,

where the limit is taken along the inverse limit system given by R.

2.3. Tanaka’s vanishing. The original Kodaira Vanishing is closely related to
Hodge decomposition. Hodge decomposition in turn resembles the slope decom-
position of crystalling cohomology in terms of the de Rham-Witt complex. This
motivates the attempt at finding a useful vanishing theorem in the context of de
Rham-Witt.

Definition 2.1 (Teichmüller lifts of line bundles, cf. [Tan18]). An invertible sheaf
F on X is defined by local transition functions (fji). Tanaka defined the Te-
ichmüller lift F of an invertible OX–module to be the invertible WOX–module
defined by the Teichmüller representatives of the transition functions (fji).

We define the truncated Teichmüller lift

F≤n := WnOX ⊗
WOX

F .

Theorem 2.2 (Tanaka, cf. [Tan18, Theorem 1.1]). Let k be a perfect field of char-
acteristic p > 0, and X be an N–dimensional smooth projective variety over k. If
A is an ample line bundle on X, then

(i) • Hj(X,A −s) = 0 for any s� 0, j < N ,

• Hj(X,A −1)Q = 0 for any j < N ,

(ii) • Hi(X,WΩNX ⊗
WOX

A ) = Hi(X,WΩNX ⊗
WOX

A s) for any s > 0,
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• Hi(X,WΩNX ⊗
WOX

A ) = 0 for any i > 0.

Remark 2.3. This result appears to suggest some duality property in the context
of Witt sheaves. Note that the proof of (i) is relatively simple, unlike that of (ii).
So we would want a nice duality property to recover (ii) from (i).

3. Duality Theorem

In what follows, let XN be a smooth projective variety over a perfect field k of
positive characteristic p.

Proposition 3.1. Let F be an invertible OX–module. For any n > 0,

(3.1) WnΩiX ⊗
WnOX

F≤n
∼= RHomWnOX

(WnΩN−iX ⊗
WnOX

F∨≤n,WnΩNX)

such that, in particular,

(3.2) Hi(WnΩNX ⊗
WnOX

F≤n) ∼= HN−i(F∨≤n)
∨

for any i ≥ 0, n > 0.

Proof. Observe that, since F≤n is an invertible WnOX–module, · ⊗
WnOX

F≤n is an

exact functor. By [Eke84][Thm II: 2.2] we know that

WnΩiX
∼= RHomWnOX

(WnΩN−iX ,WnΩNX).

For any invertible OX–module F , we then take the derived tensor product of the
above equation with F≤n over WnOX :

WnΩiX
L
⊗

WnOX

F≤n
∼= RHomWnOX

(WnΩN−iX ,WnΩNX)
L
⊗

WnOX

F≤n

To prove Equation 3.1, consider the right hand side of the above. Choose for
WnΩN−iX a finite projective resolution P • consisting of locally free WnOX–modules.
This is possible because WnX is smooth, so it has finite global dimension by
Auslander-Buchsbaum-Serre. Then

RHomWnOX
(WnΩN−iX ,WnΩNX)

L
⊗

WnOX

F≤n

∼=Hom•WnOX
(P •,WnΩNX) ⊗

WnOX

F≤n

∼=Hom•WnOX
(P •,WnΩNX ⊗

WnOX

F≤n)

∼=Hom•WnOX
(P • ⊗

WnOX

F∨≤n,WnΩNX)

∼=RHomWnOX
(WnΩN−iX ⊗

WnOX

F∨≤n,WnΩNX).

The last isomorphism holds because · ⊗F∨≤n is exact.
To prove Equation 3.2 we take global sections of the derived push-forward.

ΓS(Rφ∗(WnΩNX ⊗
WnOX

F≤n)) ∼= ΓS(Rφ∗RHomWnOX
(F∨≤n,WnΩNX))

∼= ΓS(RHomWnOS
∼=Wn

(Rφ∗(F
∨
≤n),Wn[−N ]))

∼= HomWnOS
((Rφ∗(F

∨
≤n))[N ],Wn),
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where Wn is the constant sheaf, the second isomorphism is due to Coherent Du-
ality and [Eke84, Theorem 4.1], and the third isomorphism is due to Wn being an
injective Wn–module. In particular for all i we have isomorphisms

Hi(WnΩNX ⊗
WnOX

F≤n) ∼= HomWnOS
(RN−iφ∗(F

∨
≤n),Wn)

∼= HomWn
(HN−i(F∨≤n),Wn).

�

Remark 3.2. In fact, for our current use case it would be sufficient to show that

RiHom(F∨≤n,WnΩNX) = 0 for any i > 0,

(see for example [Tan18, Proposition 3.19]). Then by tensor–hom adjunction

WnΩNX ⊗F≤n
∼= Hom(F∨≤n,WnΩNX) ∼= RHom(F∨≤n,WnΩNX).

Let us now attempt to pass to the limit. Observe that for F an invertible sheaf
of OX–modules,

(3.3) lim
n

(WnΩNX ⊗
WnOX

F≤n) ∼= R lim
n

(WnΩNX ⊗
WnOX

F≤n).

To see this, take the exact sequence (cf. [Ill79])

0→ grnWΩNX →Wn+1ΩNX →WnΩNX → 0,

where grnWΩNX is a coherent (and in fact locally free) OX–module. Tensoring with
F over WOX we get an exact sequence

0→ grnWΩNX ⊗
OX

F →Wn+1ΩNX ⊗
Wn+1OX

F≤n+1 →WnΩNX ⊗
WnOX

F≤n → 0.

For any x ∈ X, we can take an affine open neighborhood Ux of x. Then

H1(Ux, gr
nWΩNX ⊗

OX

F ) = 0

by coherence, and therefore

(i) H0(Ux,Wn+1ΩNX ⊗
Wn+1OX

F≤n+1) → H0(Ux,WnΩNX ⊗
WnOX

F≤n) is surjec-

tive for all n > 0,
(ii) Hi(Ux,WnΩNX ⊗

WnOX

F≤n) = 0 for any i > 0.

In this fashion we can find a basis U for the topology of X such that the above
two properties hold for all U ∈ U , and so by [CR11, (1.5.1)] Equation 3.3 holds.

Now consider the limit as follows:

Rφ∗(WΩNX ⊗
WOX

F ) ∼= Rφ∗(lim
n

(WnΩNX ⊗
WnOX

F≤n))

∼= R lim
n
Rφ∗(WnΩNX ⊗

WnOX

F≤n) (by Eq. 3.3)

∼= R lim
n
Rφ∗RHomWnOX

(F∨≤n,WnΩNX) (by Prop. 3.1)

∼= R lim
n
RHomWnOS

(Rφ∗F
∨
≤n,Wn[−N ]),(3.4)

and meditate on the last formula. A crucial ingredient to Ekedahl’s result was the
isomorphism in D(W [d]):

Rn
L
⊗
R
RΓS(WΩ•X) ∼= RΓS(WΩ•X).
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Ideally, we would wish to employ a similar property to our case.
Illusie and Raynaud (cf. [IR83, I.1, I.3, II.1]) introduced the non-commutative

Raynaud ring R which has a bi–W–module structure. To suit our needs, we shall
similarly define ω to be the W -algebra generated by V , subject to the relations

aV = V F (a),

a ∈W.

While as a set ω is equal to
⊕

iWV i, it is a non-commutative ring with an evident
left–W–module structure. It follows from the definition (and the fact that kp = k)
that every element of ω can be uniquely described by a sum∑

i

a−iV
i, ai ∈W.

Let

ωn := ω/V nω,

which is a (W,ω)–bimodule, since V nω is a sub–left–W–module of ω and a right-
ω–ideal generated by V n. We obtain two sets of right–ω–module homomorphisms:

an obvious restriction map ωn
π−→ ωn−1, as well as a injective map ωn−1

%−→ ωn,
both induced by the respective maps R and % = {multiplication by p on W•}. (The
induced % is in fact term-wise multiplication by p as well.)

Proposition 3.3. Let A be a k-algebra. Then W (A) has a natural structure of
left–ω–modules and there is an isomorphism of left–W–modules

ωn
L
⊗
ω
W (A) ∼= Wn(A).

In particular, for a sheaf of left–ω–modules F on X,

ωn
L
⊗
ω
RΓ(F ) ∼= RΓ(F≤n)

Proof. The left–ω–module structure on W (A) is given by

ω ×W (A) W (A)

(ΣiaiV
i, b) ΣiaiV

i(b).

·

To compute the derived tensor product

D(ω − lmod)
ωn

L
⊗
ω
·

−−−−→ D(ab),

take a projective resolution P • of ωn:

0→ ω
V n·−−→ ω → ωn → 0.

This clearly is a homomorphism of right–ω–modules. It yields a complex P • ⊗ω
W (A):

0→W (A)
V n

−−→W (A)→ 0.
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To see that this represents Wn(A) simply observe that the map induced by ω
V n·−−→ ω

via the tensor product is precisely the n-fold Verschiebungs-map on W (A):

W (A) ω⊗
ω
W (A) ω⊗

ω
W (A) W (A)

a 1⊗ a V ⊗ a V · a = V (a).

∼ V ∼

Moreover, since ωn is a left–W–module, so is ωn ⊗Lω W (A), and the W–module
homomorphisms on W (A) induced by π and % on ω are R and multiplication by p,
respectively. Lastly, to see that the D(ab)–isomorphism is in fact in D(W − lmod),
simply observe that the left–W–module structures on both sides coincide via the
isomorphism.

For the second statement, let M ∈ (X,ω), that is a sheaf of left–ω–modules on
X. Let P • be the projetive resolution of ωn

0→ ω
V n·−−→ ω → ωn → 0.

Then, since P i is projective for all i,

ωn ⊗Lω RΓ(M) ∼= P •⊗
ω
RΓ(M) ∼= RΓ(P •⊗

ω
M) ∼= RΓ(ωn ⊗Lω M) ∼= RΓ(Mn).

Observe that just like W (A), WOX — and therefore F — have a natural structure
of (sheaves of) left–ω–modules, and so the statement follows. �

Continuing from Equation 3.4, we now have

(3.5)

Rφ∗(WΩNX ⊗
WOX

F∨) ∼= R lim
n
RHomWnOS

(Rφ∗F≤n,Wn[−N ])

∼= R lim
n
RHomWn

(ωn
L
⊗
ω
RΓ(F ),Wn[−N ])

∼= R lim
n
RHomω(RΓ(F ), RHomWn(ωn,Wn[−N ]))

∼= RHomω(RΓ(F ), R lim
n

HomWn
(ωn,Wn[−N ])).

Note that the injective left–W–linear maps ωn−1
%−→ ωn form a direct system. The

HomWn(ωn,Wn[−N ]) then form an inverse system (cf. [Eke84, III.2.3.*]) with
boundary maps π defined by the commutativity of the diagram

(3.6)

HomWn
(ωn,Wn[−N ]) HomWn

(jn,∗ωn−1,Wn[−N ])

jn,∗HomWn−1
(ωn−1,Wn−1[−N ]).

%∗

π
%∗

Here Wn−1S
jn−→ WnS is the natural immersion. There exist unique such maps π

because by coherent duality and the fact that Wn−1 ∼= j!nWn, %∗ is an isomorphism.
Since the % are injective, the π are surjective.

Proposition 3.4. In fact, ω ∼=
⊕

iWV i ∼=
⊕
∞W as left–W–modules (similarly,

ωn ∼=
⊕

i<nWn−iV
i ∼=

⊕
∞Wn−i as left–Wn–modules). Hence,

HomWn
(ωn,Wn) ∼= ωn.
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Proof. Since k = kp, elements a ∈ ω can be uniquely written as

a =
∑
i

aiV
i, ai ∈W.

Let a =
∑
i aiV

i ∈ ω. The natural identification is clearly additive and bijective:

W

ω
⊕
∞W

∑
i aiV

i
∑
i ai.

∼

Since the left–W–module structure of ω is simply multiplication on the left, it is
W–linear (on the left). We therefore have

HomWn
(ωn,Wn) ∼=

⊕
i<n

HomWn
(Wn−iV

i,Wn) ∼=
⊕
i<n

Wn−iV
i.

�

Remark 3.5. An argument analogue to the above shows that ω ∼= W as left–ω–
modules.

It then promptly follows

Theorem 3.6. Let X be a smooth projective variety over a perfect field k of char-
acteristic p > 0. Write ω̌ :=

∏
iWV i. Then for any invertible OX–module F on

X,

Rφ∗(WΩNX ⊗
WOX

F∨) ∼= RHomω(Rφ∗F , ω̌[−N ]).

Proof. Let 0 6= w ∈ Hom(Wn−i,Wn) ∼= Wi. Since π is induced by the commutative
Diagram 3.6, π(w) is the unique map such that the following diagram commutes:

Wn−i Wn

Wn−i−1 Wn−1

w

%

π(w)

% .

This unique map is R(w) (since for τ ∈ Wn−i−1, %(R(w)(τ)) = w%(τ) ∈ Wn). The

induced maps Wn
π−→ Wn−1 are therefore precisely the term-wise restriction maps

R. Hence, taking the limit we have

R lim
n
HomWn

(ωn,Wn) ∼= R lim
n

⊕
i<n

Wn−i ∼=
∏
∞
W.

The theorem then follows from Equation 3.5. �

4. Open questions

• Let A be an ample invertible sheaf on X. Twisting A via Frobenius, by
Theorem 3.6

RΓ(X,WΩNX ⊗
WOX

A ) ∼= RHomω(HN (X,A −s), ω̌) for any s > 0.
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It is not yet clear how part (ii) and (i) follow from eachother using this
duality. I.e. we would like to show that the RiHom on the right hand side
above vanish for s, i > 0.
• It is not yet known whether Tanaka’s theorem holds for A nef and big

instead of ample.
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