A CERTAIN TYPE OF AFFINE SURFACES WITH ISOMORPHIC
CYLINDERS

RIKU KUDOU

ABSTRACT. In this paper, we study the structure of isomorphisms of S-bundles over a cetain type
of prevarieties, where S is a variety with vanishing logarithmic genera (for example, A" and P").
As in the same way, for a certain type of affine surfaces W, we determine all varieties V' such that
VXkAl ZWXkAl.

INTRODUCTION

Let V and W be varieties over an algebraically closed field k with characteristic 0. The Zariski
cancellation problem asks when the existence of an isomorphism V x;, Al ~ W x; Al implies that
V ~ W. Following [6], we call a variety V a Zariski 1-factor if V x, A ~ W x; A implies V ~ W
for any variety W. There are many examples of Zariski 1-factors, but in 1989, W. Danielewski
found non-Zariski 1-factors by using the following property of principal G,-bundles.

Fact 0.1 ([2]). Let X be a k-scheme, and let V and W be affine k-schemes which are principal
Gga-bundles over X. Then V x; At ~ W x; Al

By using the same arguments, many examples of non-Zariski 1-factors are constructed. From
these examples, we can consider the following problem.

Problem 0.2. Let Y be a prevariety, and let W be an affine variety which is a principal G,-bundle
over Y. Then for any variety V, does V x;, Al ~ W x;, A! imply that V is affine and a principal
G,-bundle over Y7

In this paper, we will show the following main theorem (section 3).

Theorem 0.3. Let Y be a 1-dimensional nonsingular prevariety (a prevariety means an integral
scheme of finite type over k), let Y’ be a nonsingular curve with nonnegative logarithmic kodaira
dimension (that is, Y' is neither A' nor P, let [: Y — Y’ be a dominant morphism, and let W be
an affine variety which is a principal G,-bundle over Y. Then for any variety V, V x Al ~ W x Al
if and only if V' is affine and a principal G,-bundle overY .

From this theorem and counter examples for the cancellation problem by Drylo ([3]), we find
many non-Zariski 1-factors of the above type.

To show Theorem 0.3, we use the similar arguments as Fujita-litaka’s cancellation theorem
([8]) and Nishimura’s generalized version of it ([9]). In addition to Theorem 0.3, we will slightly
generalize these theorems in section 2 as follows.

Theorem 0.4. Let X andY be prevarieties, let Y’ be a variety with®(Y') > 0 and dimY’ = dim Y,
let1:Y — Y’ be a dominant morphism, and let S; and S be varieties with vanishing logarithmic
genera and dim S; = dim Sy. Letp: V — X be a Si-bundle, ¢: W — Y a Sy-bundle. If®:V — W

18 an isomorphism, then there exists a unique isomorphism ¢: X — Y such that the following
1



2 RIKU KUDOU
diagram is commutative.
®
V — W

p O

[}

X — Y
¢

Using this theorem, we show 2 corollaries (Corollary 2.5, 2.6) useful for the cancellation problem.

Before the proof of Theorem 0.3 and 0.4, we will give a criterion for principal G,-bundles over
some good schemes to be affine (Theorem 1.6). The proof of Theorem 1.6 is almost the same as
the affine criterion for principal G,-bundles by A. Dubouloz ([4]).

From these theorems and Dryto’s examples ([3]), we can find all varieties which are non-Zariski
1-factors of the type in Theorem 0.3.

1. AFFINE CRITERION FOR PRINCIPAL G,-BUNDLES OVER A CERTAIN TYPE OF
NONSEPARATED SCHEMES

The purpose of this section is to prove Theorem 1.6, which gives a computable way to determine
principal G,-bundles to be affine or not.

Definition 1.1 (principal G,-bundle). Let X be a k-scheme, let V' be a k-scheme with G,-action,
and let p: V' — X be a morphism of k-schemes. Then (V,p) is called a principal G,-bundle over
X if the following two conditions are satisfied:
(1) pis Gy-equivariant (G, acts trivially on X);
(2) there exists an (Zariski) open covering i = {U)}rea of X and a G,-equivariant isomorphism
gx i p U\ — Uy X, G, for each A € A such that the following diagram is commutative.

Remark 1.2. Our definition of principal G-bundles for a group variety G is slightly different from
the ordinaly one. But for an affine group variety, those definitions coincide.

Remark 1.3. There exists a one-to-one correspondence between isomorphic classes of principal
G,-bundles over X and H'(X, Ox).

Definition 1.4. Let X be a variety, let Z be a closed subvariety of X, let » be a natural number,
and let X, ..., X, be copies of X. Then

XyrZ =X Ux\z \X Ux\z - Uxz X = XoUx\z X1 Ux\z - Ux\z X

N~
T

Namely, X ,rZ is a nonseparated k-scheme which looks like X with r copies of Z. We fix an open
covering X of X, rZ to be X = {Xo,..., X, }.

Lemma 1.5 ([7]). Let X be a scheme, let Y be an affine scheme, and let U = {Uy}ren be an open
affine covering of X. Then for any morphism f: X — Y, f is separated if and only if

(1) U, N Uy is affine for any p, X € A;

(2) (U, N Uy, Ox) is generated by I'(U,, Ox) and I'(Uy, Ox).
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The following theorem is a generalization of the affine criterion for principal G,-bundles by A.
Dubouloz ([4]), but the proof is almost the same.

Theorem 1.6. Let X = SpecA be an affine variety, let Z, ..., Z,, be hypersurfaces of X defined by
prime elements fi,..., fm € A, and let Z :=\J Z;. Let V be a principal G,-bundle over X, rZ de-
fined by a Cech cocycle {gij}] € HY(X,Ox,rz) ~ HH(X4rZ, Ox,rz), where g;; € I'(Xi;, Ox,rz) =
Ay,...p,, and as an element of Ay, ...y, gij can be written as follows; g;; = ffkij’l e f&kij‘mhij, where
kiji € Z>o and h;j € A such that h;; can not be divided by f; if kij; > 0.
If(a)r="1o0r(b)r>2and 0 # Zi, N Zi, & Uiy, 1, 21 for any li,lo = 1,...,m, then the

following conditions are equivalent.

(1) kijy > 1 and (hij, fr--- fm) = A forany i, j=0,...,r andl=1,...,m.

(2) V is separated.

(3) V is affine.

Proof. (3) = (2) is obvious. We show that (1) < (2) and (1) = (3).

Let us denote (kij1, ..., kijm) € Z™ by [ki;], (1,...,1) € Z™ by 1, and frat . pham e glhil

First of all, we give a necessaly and sufficient condition for V' to be separated by using Lemma
1.5. By the definition of the open covering X of X rZ, X;NX; is affine for any 7,7 = 0,...7. Thus
V' is separated if and only if I'(X; N X;, Ox,,z) is generated by I'(X;, Ox,,z) and I'(X;, Ox_,z)
for any 4,7 = 0,...r. This condition equals to Ay,..z, [t] = Ay, [t] for any i,j5 = 0,...,7 with
i # j, where t is indeterminate. this implies that V' is separated if and only if Ay = A, for any
i,j=0,...,7 with i # j.

(1) = (2) Suppose the condition (1). Then there exists a,b € A such that 1 = ah;; + bf, and
this implies that £ = af*//"*g,; + b and ki;; — 1 > 0. Then it follows that A = A,,..

(2) = (1) Suppose the condition (2). Then f' € Ap = Ay,_. Therefore f ' can be written as
follows; -

£ = ag + argij + azgly + - + angl,

where ag,...as € A and n is an integer. (If n = 0, then fi,..., f,, should be units in A.) By
multiplying both sides of the equation by %! we obtain the following equation,

frkil=t = gofrlkul 4 hijs,

where s = a f* " DFal 4.4 an_lh%_Qf[k“] + anh?j_l. From this equation, we can deduce that
kij; > 1 for any | = 1,...,m because fi,..., f, are prime elements and distinct up to units.
Moreover, s can be divided by *Fis]=1 hecause we take h;j which is not in (f;) foralll =1,... ,m.
Then it follows that there exists s’ € A such that 1 = aof + h;;s. that is, A = (£, hy;).

(1) = (3) Suppose the condition (1). We first observe that there exists an index j' € {1,...,m}
such that kyj; = max;{ky;;} for all I =1,... m. Assume that there exists indices ji,j2 =0,...7
and ly,lp = 1,...,msuch that j; # jo, 1 # lo, k1j,.0, > Kijoiy, and kyj, 1, < k1j,,, for contradiction.
Put py := max{ki;, 1, k1. } and [p] == (w1, ... pm) € ZZ,. It follows from the cocycle condition
Yirj2 = 91j2 — 915, that

f[“]’[kjm]hjm _ f[u]*[kuﬂ hj, — f[u}*[kul} haj,.-
By the definition of p and h;;, the right hand side of this equation is in (fj,, fi,) but not in
(fi,) and (fi,). From this, it follows that p, = kj ., and p, = kjj,5,- On the other hand,
f[“]_[kjljﬂhjm € (fi,, f,) implies fl=kiiial e (f, | £, ) because hj, j, is a nonzero function on Z and
Zy, N Z,, # (). But this contradicts to the assumtion Z;, N7, ¢ Ul#m Z;, and thus we can choose
an index j' € {1,...,m} such that ky;; = max;{ky,;} forall [ =1,... ,m.

Next, we show that there exists an affine morphism : V — A! by induction on r. If r = 0,
then V' should be isomorphic to X xj A'. Then the first (or second) projection of X xj Al is an
affine morphism. Suppose the statement holds for a natural number » — 1. By the assumption,
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there exists s;; € A such that h;s;; = 1in A/(f1--- fu). Define morphisms ¢;: X; — Al to be
¢;(x,t) = s1;(fF15 )t 4 fF1=Filp, ) and define morphisms v, := ¢ ogj_lz Vi~ X x; A — A'. By
Vj. Then ¢(Hy) = ¢1g7 '1(Z xj AY) = {0} and ¢(Hy) = ¢jg;'95(Z xx A') = {1}. Thus
YA\ {0}) CV\ Hy and (AT \ {1}) C V' \ H;,. Moreover, V' \ H; is a principal G,-bundle
defined by the cocycle {g;;}:;21 and V\ H; is a principal G,-bundle defined by the cocycle {g;; }; j25
therefore it follows from the induction hypothesis that V' \ Hy and V' \ H;s are affine. Therefore
the restriction maps o[y g, : V' \ H; — A and Vg, V\Hy — A are affine morphisms. Then
it follows that ¢y (A\ {0}) and ¢ "*(A! \ {1}) are affine. Namely, 1 is affine. O

2. GENERALIZATION OF THEOREMS OF FUJITA-IITAKA AND NISHIMURA

The main purpose of this section is to prove Theorem 0.4. As corollaries, We obtain the unique-
ness of base schemes of principal G,-bundles in the special case (Corollary 2.5) and a criterion for
principal G,-bundles over a certain type of schemes to be isomorphic to each other (Corollary 2.6).

Definition 2.1.
e For a k-scheme X, we denote by X (k) the set of closed points (k-valued points) of X.
e A k-scheme X is called a prevariety if X is an integral scheme of finite type over k.
e A variety S is called a wvariety with vanishing logarithmic genera (or VLG wvariety for
short) if S is a nonsingular variety with P;(S) = 0 for all M € ZZ5°, where Py(S) =
dim, H°(S, Q4 (log 05)) is the logarithmic M-genus of S and (S,0S) is a smooth completion
of S with boundary 95.

We will slightly generalize Fujita-Titaka’s cancellation theorem [8] and the following Nishimura’s
theorem.

Theorem 2.2 (Nishimura [9]). Let X and Y be varieties with ®(Y) > 0, and let Sy and Sy be
VLG varieties with dim S; = dim Sy. Let p: V. — X be a Si-bundle, ¢: W — 'Y a Sy-bundle. If
OV — W is an isomorphism, then there exists a unique isomorphism ¢: X — Y such that the
following diagram is commutative.

vV P

p O

_Q

X — Y
3¢

Lemma 2.3. Let X and Y be prevarieties, and let f, g: X — Y be morphisms of prevarieties. If
f and g coincide on closed points of X, then f = g as a morphism of prevarieties.

The proof of Lemma 2.3 is the same as the one for varieties.
The next lemma is a part of the proof of Fujita-litaka’s Cancellation Theorem ([8]).

Lemma 2.4 ([8]). Let X be a variety of dimension n, let Y be a variety of dimension n+ 1 with
R(X) >0, and let S be a VLG variety. If f: X X S — Y is a morphism, then f is not dominant.

Proof of Theorem 0.4. We prove Theorem 0.4 with 4 steps as follows:
(1) For any prime divisor C' on X, E = ¢®p~'C is a prime divisor on Y.
(2) We can show the same statement as (1) locally (this process is necessary to deal with closed
points of the prevaries X and Y as an intersection of prime divisors on some open subset).
(3) We can construct a bijective map of sets ¢’: X (k) — Y (k) such that ¢ op = qo ®.
(4) We can construct a morphism of prevarieties ¢: X — Y such that ¢|x) = ¢ and pop =
qo ®.
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(1) and (4) are almost the same as [8] and [9], but (2) and (3) contain a new part to deal with
closed points of non-separated schemes.

(1) Let C' be a prime divisor on X. By the local triviality of p, there exists an open affine
covering U = {Uy}rep of X such that p~ Uy ~ U, x; S;. Take A\ € A such that Uy N C # () and
put C, := C' NU,. Then we obtain the compositon f: Cy x S; — Y as the following diagram.

Oy x 8y 2L 10 v W

O

O p
C, — X Y

Y/

By Lemma 2.4, f is not dominant, and thus g o ®|,-1c: p~'C' = Y is not dominant. Put F¢ :=
q@p—lOY, where the closure is taken in Y. Then E( is irreducible closed subset of Y and ¢ ! E¢ =
qil(q(I)p—lCY) D dp~1C. Then it follows that ¢ ' Ec = ®p~1C because ¢ ' E¢ is irreducible and
®p~1C is prime divisor of W. As a consequence, we obtain the equality Ec = qq ' Ec = q®p~1C.

(2) Put V) = p7tU,, Wy := DV, Yy := ¢W,, and g\ := ¢q|w,. Then Y} is an open subset
of Y because ¢ is locally trivial. Put Eg) = q@p—lcxyx, where the closure is taken in Y.
Then ¢ 'Ec N Wy 2 ¢y 'Ecy = q/(1q<13p*16’,\yA D ®p~tCy. Moreover, ¢~ Ec N Wy and ®p~1C)
are prime divisors on Wy. Thus ¢ 'Ecy = ®p~'Cy. As a consequence, we obtain the equality
Ecp = qqy Eop = q®p~'Cy,

(3) Let x € X (k). Then there exists A € A such that x € U,. In U,, x can be expressed as

an intersection of prime divisors Ci y, -+, C, x on Uy since Uy, is a variety. Put C; := C;, and
Ecix:= q@p*10i7,\. Then

Sy o~ pl(x) = dp () = ‘Pp_l(ﬂ Cia) = ﬂ Op~(Cin)

=1
= m 0 (Ecin) = q;l(ﬂ Ecin).
i=1 i=1

The fiber of ¢, is not necessarily equal to Sy, but is a nonempty open subset of S;. Therefore
dim ", Ecix = dimS; — dim Sy = 0. Moreover, ()", Ecix = ¢Pp*(z) is irreducible. Then
it follows that ()", Ec, is a closed point of Y, denoted by y,. In this way, we obtain a map
¢ X(k) = Y(k);x — y, of sets. Moreover, ¢’ satisfies

q®(v) € ¢®(p~'p(v)) = ¢P(® "¢ (Ypw))) = {Wpw)} = {¢'(p(v))},

that is, o ® = ¢ o p. The injectivity of ¢’ also follows because x = p®~lq lqPp~i(z) =
p®~1g71¢/(x) for any closed point z € X. Surjectivity of ¢' is obvious.

(4) For each A € A, we take a closed point ay € Sy and define ¢, 4, 1= goPogyojroay: Uy = Y,
where jy : Uy x {ay} < Uy x Sy and ay, : Uy ~ Uy x {ay}. Then, for any closed point = € Uy,
Oray () = ¢'(x). Therefore by the Lemma 2.3, we can glue the morphisms {¢, ., } to a morphism
¢ : X — Y such that g o ® = ¢ o p. The converse morphism of ¢ can be constructed in the same
way. Moreover, the uniqueness of ¢ follows from the equality ¢(x) = ¢(pp~'(x)) = q®(p~'(x)) for
any closed point x € X and Lemma 2.3. O
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Corollary 2.5. Let X and Y be prevarieties, let Y' be a variety with ®(Y') > 0 and dimY’ =
dimY, letl: Y — Y’ be a dominant morphism, and let V', W be principal G,-bundles over X, Y,
respectively. Then

(HVW=Xx~Y.
()VXkAl WXkA1:>X Y.

Corollary 2.6. Let X be an affine variety with ®(X) > 0, let Z, ..., Z,, be hypersurfaces of X
defined by fi,..., fm € A, respectively, let Z :=\JZ;, and for k = 1,2, let V}, be a principal G,-
bundle over X . rZ. Then Vi and Vs are isomorphic if and only if they are in the same orbit of the
action by Aut(X,rZ) x I'(X, O%).

Proof. The computation of this proof is almost the same as in [3]. Suppose that ®: V; — V5 is an
isomorphism. Then by Theorem 0.4, there exists a unique automorphism ¢: X, rZ — X, rZ which
satisfies ¢ o p; = py 0 @, where p; : Vi — X rZ is the canonical projection of principal G,-bundles
for k =1,2. Put X]:= ¢(X;) and X" := {X{,..., X} which becomes an open covering of X rZ.
Suppose that the principal G,-bundle V; is defined by a Cech cocycle {g;;} € Z!(X, Ox,,z) and V;
is defined by a Cech cocycle {9i;} € Z'(X',0x,,2). Then the following diagram is commutative
for each i, j =0,...,r (i # j);

l 1

(X; N X;) xp A2 pr (X N X)) —2>p5 ! (X] N X)) —(X]N X)) x; Al

l%’ iid lid laéj
/—1

(X; N X;) Xg Alel—l(X,. N Xj)i>p2_1(X£ N X;)%(X{ N X7) x;, Al

p1 p2
pry pry

X, N X;— X! X!

where ay;(7,t) = (z,t + gi5(x)), aj;(2',t) = (2',t + g;;(2')). Moreover, by the commutativity of
this diagram, there exists a; € F(Xi,O)X( wz) =A% and b; € I'(X;,O0x,,z) for each i = 0,...,r
such that g/ ' o ® o g;(w,t) = (¢(z),ait +b;), g7 o @ o g;(x,t) = ((z),a;t + b;). This is because
for an isomorphism f : A[t] — BJt] of domams such that f|% : A — B is an isomorphism, f(t)
should be equals to at + b where a € B* and b € B by the computation of degree of t. By the
commutativity of the above diagram once again, we obtain the following equation;

ai(x)t + bi(z) + gi;(d(x)) = a;(x)(t + gi;(z)) + bj(x).
Thus, gluing {a;}, we obtain a € I'(X,rZ, 0%, ;) ~ (X, O%). Moreover, we have
9i5(0(x)) = gij(x)a(z) = bj(x) — bi(=),

that is, cocyles {g;;(¢(r))} and {gi;(z)a(z)} define principal G,-bundles isomorphic to each otheé

3. THE PROOF OF MAIN THEOREM
The purpose of this section is to prove Theorem 0.3.

Lemma 3.1 ([5]). Let V be an affine G,-surface. Then the GIT quotient V/ /G, is a nonsingular
affine curve and there exists an open affine subset C C V/ /G, such that p~'C is G,-equivariantly
isomorphic to C X G,, where p: V. — V//G, is the quotient morphism.

Theorem 3.2 ([6]). Let X be a nonsingular affine curve, let W be an A'-fibered affine surface
over X. Then W is Zariski 1-factor if and only if W is a line bundle over X.
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Proof of Theorem 0.3. 1t is easy to see that V is affine and nonsingular. Take a closed point
a € A' and define a morphism p’ : V' — Y to be the composition V ~ V x; {a} — V x;, Al —
W x, Al — W — Y. We show that p’ satisfies the condition of the structure morphism of a
principal G,-bundle over Y.

Suppose that V' has no nontrivial G,-action for contradiction. Then V =~ W holds by the
cancellation theorem for varieties with no nontrivial G,-action ([1]), but this contradicts to that
V' has no nontrivial G,-action. Thus V has a nontrivial G,-action. We fix a nontrivial G,-action
on V, denoted by u: G, xV — V.

Let B :=V//u be the GIT quotient of y and p: V' — B be its quotient morphism. By Lemma
3.1, B is a nonsingular affine curve and there exists a nonempty open subset C' C B such that the
following diagram is commutative.

Cx Al 2. plg__ vy

¢ —— B

Using the same arguments as Theorem 0.4, we obtain an injective morphism ¢ : C' — Y such
that the following diagram commutes.

PO X, Al C—— Voxp AL 2R« Al

pr 6 pr pr
CxA —2 o plo— 7 o W
p O p q
c— B Y
\*/
e l
v

Next, we construct a morphism ¢ : Y — B. At first, we show that there exists a map v’ :
Y (k) — B(k) of sets such that 1)’ o q o pry, = p o pr, o ®1. For any closed point y € ¢(C) C Y,
there exists a unique closed point y € C' such that z = ¢(y). On the other hand, for any closed
point y € Y\ ¢(C), a morphism

r,i=popryo®loj, iprlg(y) = W x, Al 2V x, Al =V = B

is not dominant. (If 7, is dominant, then C' N 7,pr;;'¢~ (y) # 0, but this contradicts to the
construction of ¢.) Then it follows that the image of 7, is a closed point of B. we define a
morphism ¢': Y (k) — B(k) of sets to be ¢(y) = Im7, for each y € Y(k). Then we have the
equality ¢/ o g o pry, = popry o @1 . Let {Yy}rea be an open affine covering of Y. Put
W)\ = q—ly/\(g Y)\ X Al), (V Xk Al),\ = (I)_1<W)\ Xk Al), V,\ = pI'V<<V Xk Al))\) and X)\ = pV)\
Next we observe that (V xj, A'), = V) x; Al. Put K, :=pr,o® 1o Q—l(y)vk. Then (V' xy,
ANy = Uyey, ©'Q 1 (y) and Vi = U, ey, Ky Moreover, we have pr'K, y 2 ®'Q'(y), and
thus pr' K, , = ®'Q'(y). As a consequence, we obtain the equality (V x; A), = Vi x; Al
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For each A € A, we take a closed point (ay y,a2,) € A? and define

@Z))\,a)\: Y>\ al—’)\> Y Xk {al’,\} — Y)\ X Al — W)\ az_,x) W)\ Xk {GQ’)\}
— WAXkAl%V)\XkAl—)V/\%B.

Then for any closed point y € Yy, ¥ra,,(y) = ¥'(y). Therefore by Lemma 2.3, we can glue the
morphisms {54, ,} to a morphism 1 : Y — B. Moreover, ¢ is a surjective birational morphism
and satisfies g o pry, 0 @1 =t opopry,.

The variety W, is isomorphic to Yy x; A because W) is a principal G,-bundle over Y, and Y,
is affine. By Theorem 3.2, we obtain an isomorphism F): V\, ~ W,. In the same way as ¢, we
obtain a surjective birational morphism fy: Yy — B, such that fyoq = F, Lo p. Moreover Y, and
B, are nonsingular curves. Thus fy (and ¢y := w\ej) should be an isomorphism. In conclusion,
we obtain the following commutative diagram.

Fy faxid

V)\ W)\ % Y)\ XkAl E—— B)\ XkAl

lpx O \Lq P
) 1 .
Bry, o(fy ! xid,1)

By — Y
NS A

For a closed point x € C\ = B,NC, the fiber p}l(x) is just the orbit of u by the construction of p
and py. For a closed point 2 € B, \ C), we can not say that the fiber pgl(x) is just the orbit only by
the construction. But thanks to the fact that each G,-orbits are closed ([10]) and are isomorphic
to either A! or a closed point, we can deduce that p/{l(m) is just the p-orbit. Therefore, the action
pon V can be restricted on V), denoted by ply,, and its quotient morphism is just py : V\ — B,.
By the commutativity of the above diagram, such a G,-action should be G,-equivariantly trivial,
that is, py : V) = B, is a G,-equivariantly trivial morphism.

By the construction of p’ and 1, we have the equality p} = ;"' o py. Then it follows that p’
satisfies the condition of the structure morphism of a principal G,-bundle over Y. OJ
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