A CERTAIN TYPE OF AFFINE SURFACES WITH ISOMORPHIC CYLINDERS

RIKU KUDOU

ABSTRACT. In this paper, we study the structure of isomorphisms of S-bundles over a cetain type of prevarieties, where S is a variety with vanishing logarithmic genera (for example, \mathbb{A}^n and \mathbb{P}^n). As in the same way, for a certain type of affine surfaces W, we determine all varieties V such that $V \times_k \mathbb{A}^1 \simeq W \times_k \mathbb{A}^1$.

INTRODUCTION

Let V and W be varieties over an algebraically closed field k with characteristic 0. The Zariski cancellation problem asks when the existence of an isomorphism $V \times_k \mathbb{A}^1 \simeq W \times_k \mathbb{A}^1$ implies that $V \simeq W$. Following [6], we call a variety V a Zariski 1-factor if $V \times_k \mathbb{A}^1 \simeq W \times_k \mathbb{A}^1$ implies $V \simeq W$ for any variety W. There are many examples of Zariski 1-factors, but in 1989, W. Danielewski found non-Zariski 1-factors by using the following property of principal \mathbb{G}_a -bundles.

Fact 0.1 ([2]). Let X be a k-scheme, and let V and W be affine k-schemes which are principal \mathbb{G}_a -bundles over X. Then $V \times_k \mathbb{A}^1 \simeq W \times_k \mathbb{A}^1$.

By using the same arguments, many examples of non-Zariski 1-factors are constructed. From these examples, we can consider the following problem.

Problem 0.2. Let Y be a prevariety, and let W be an affine variety which is a principal \mathbb{G}_a -bundle over Y. Then for any variety V, does $V \times_k \mathbb{A}^1 \simeq W \times_k \mathbb{A}^1$ imply that V is affine and a principal \mathbb{G}_a -bundle over Y?

In this paper, we will show the following main theorem (section 3).

Theorem 0.3. Let Y be a 1-dimensional nonsingular prevariety (a prevariety means an integral scheme of finite type over k), let Y' be a nonsingular curve with nonnegative logarithmic kodaira dimension (that is, Y' is neither \mathbb{A}^1 nor \mathbb{P}^1), let $l: Y \to Y'$ be a dominant morphism, and let W be an affine variety which is a principal \mathbb{G}_a -bundle over Y. Then for any variety V, $V \times_k \mathbb{A}^1 \simeq W \times_k \mathbb{A}^1$ if and only if V is affine and a principal \mathbb{G}_a -bundle over Y.

From this theorem and counter examples for the cancellation problem by Dryło ([3]), we find many non-Zariski 1-factors of the above type.

To show Theorem 0.3, we use the similar arguments as Fujita-Iitaka's cancellation theorem ([8]) and Nishimura's generalized version of it ([9]). In addition to Theorem 0.3, we will slightly generalize these theorems in section 2 as follows.

Theorem 0.4. Let X and Y be prevarieties, let Y' be a variety with $\overline{\kappa}(Y') \geq 0$ and dim Y' = dim Y, let $l: Y \to Y'$ be a dominant morphism, and let S_1 and S_2 be varieties with vanishing logarithmic genera and dim S_1 = dim S_2 . Let $p: V \to X$ be a S_1 -bundle, $q: W \to Y$ a S_2 -bundle. If $\Phi: V \to W$ is an isomorphism, then there exists a unique isomorphism $\phi: X \to Y$ such that the following diagram is commutative.

$$V \xrightarrow{\Phi} W$$

$$\downarrow^{p} \qquad \bigcirc \qquad \downarrow^{q}$$

$$X \xrightarrow{\exists \phi} Y$$

Using this theorem, we show 2 corollaries (Corollary 2.5, 2.6) useful for the cancellation problem.

Before the proof of Theorem 0.3 and 0.4, we will give a criterion for principal \mathbb{G}_a -bundles over some good schemes to be affine (Theorem 1.6). The proof of Theorem 1.6 is almost the same as the affine criterion for principal \mathbb{G}_a -bundles by A. Dubouloz ([4]).

From these theorems and Drylo's examples ([3]), we can find all varieties which are non-Zariski 1-factors of the type in Theorem 0.3.

1. Affine criterion for principal \mathbb{G}_a -bundles over a certain type of nonseparated schemes

The purpose of this section is to prove Theorem 1.6, which gives a computable way to determine principal \mathbb{G}_a -bundles to be affine or not.

Definition 1.1 (principal \mathbb{G}_a -bundle). Let X be a k-scheme, let V be a k-scheme with \mathbb{G}_a -action, and let $p: V \to X$ be a morphism of k-schemes. Then (V, p) is called a *principal* \mathbb{G}_a -bundle over X if the following two conditions are satisfied:

- (1) p is \mathbb{G}_a -equivariant (\mathbb{G}_a acts trivially on X);
- (2) there exists an (Zariski) open covering $\mathcal{U} = \{U_{\lambda}\}_{\lambda \in \Lambda}$ of X and a \mathbb{G}_a -equivariant isomorphism $g_{\lambda} : p^{-1}U_{\lambda} \to U_{\lambda} \times_k \mathbb{G}_a$ for each $\lambda \in \Lambda$ such that the following diagram is commutative.

Remark 1.2. Our definition of principal G-bundles for a group variety G is slightly different from the ordinaly one. But for an affine group variety, those definitions coincide.

Remark 1.3. There exists a one-to-one correspondence between isomorphic classes of principal \mathbb{G}_a -bundles over X and $\mathrm{H}^1(X, \mathcal{O}_X)$.

Definition 1.4. Let X be a variety, let Z be a closed subvariety of X, let r be a natural number, and let X_0, \ldots, X_r be copies of X. Then

$$X_{+}rZ := X \sqcup_{X \setminus Z} \underbrace{X \sqcup_{X \setminus Z} \cdots \sqcup_{X \setminus Z} X}_{r} = X_0 \sqcup_{X \setminus Z} X_1 \sqcup_{X \setminus Z} \cdots \sqcup_{X \setminus Z} X_r.$$

Namely, X_+rZ is a nonseparated k-scheme which looks like X with r copies of Z. We fix an open covering \mathcal{X} of X_+rZ to be $\mathcal{X} = \{X_0, \ldots, X_r\}$.

Lemma 1.5 ([7]). Let X be a scheme, let Y be an affine scheme, and let $\mathcal{U} = \{U_{\lambda}\}_{\lambda \in \Lambda}$ be an open affine covering of X. Then for any morphism $f: X \to Y$, f is separated if and only if

- (1) $U_{\mu} \cap U_{\lambda}$ is affine for any $\mu, \lambda \in \Lambda$;
- (2) $\Gamma(U_{\mu} \cap U_{\lambda}, \mathcal{O}_X)$ is generated by $\Gamma(U_{\mu}, \mathcal{O}_X)$ and $\Gamma(U_{\lambda}, \mathcal{O}_X)$.

The following theorem is a generalization of the affine criterion for principal \mathbb{G}_a -bundles by A. Dubouloz ([4]), but the proof is almost the same.

Theorem 1.6. Let $X = \operatorname{Spec} A$ be an affine variety, let $Z_1, ..., Z_m$ be hypersurfaces of X defined by prime elements $f_1, ..., f_m \in A$, and let $Z := \bigcup Z_j$. Let V be a principal \mathbb{G}_a -bundle over X_+rZ defined by a Čech cocycle $[\{g_{ij}\}] \in \operatorname{H}^1(\mathcal{X}, \mathcal{O}_{X+rZ}) \simeq \operatorname{H}^1(X_+rZ, \mathcal{O}_{X+rZ})$, where $g_{ij} \in \Gamma(X_{ij}, \mathcal{O}_{X+rZ}) =$ $A_{f_1 \cdots f_m}$ and as an element of $A_{f_1 \cdots f_m}$, g_{ij} can be written as follows; $g_{ij} = f_1^{-k_{ij,1}} \cdots f_m^{-k_{ij,m}} h_{ij}$, where $k_{ij,l} \in \mathbb{Z}_{\geq 0}$ and $h_{ij} \in A$ such that h_{ij} can not be divided by f_l if $k_{ij,l} > 0$.

If (a) r = 1 or (b) $r \ge 2$ and $\emptyset \ne Z_{l_1} \cap Z_{l_2} \not\subset \bigcup_{l \ne l_1, l_2} Z_l$ for any $l_1, l_2 = 1, \ldots, m$, then the following conditions are equivalent.

- (1) $k_{ij,l} \ge 1$ and $(h_{ij}, f_1 \cdots f_m) = A$ for any $i, j = 0, \dots, r$ and $l = 1, \dots, m$.
- (2) V is separated.
- (3) V is affine.

Proof. $(3) \Rightarrow (2)$ is obvious. We show that $(1) \Leftrightarrow (2)$ and $(1) \Rightarrow (3)$.

Let us denote $(k_{ij,1},\ldots,k_{ij,m}) \in \mathbb{Z}^m$ by $[k_{ij}], (1,\ldots,1) \in \mathbb{Z}^m$ by $\mathbf{1}$, and $f_1^{k_{ij,1}}\cdots f_m^{k_{ij,m}}$ by $\underline{\mathbf{f}}^{[k_{ij}]}$.

First of all, we give a necessaly and sufficient condition for V to be separated by using Lemma 1.5. By the definition of the open covering \mathcal{X} of $X_{+}rZ$, $X_{i} \cap X_{j}$ is affine for any $i, j = 0, \ldots r$. Thus V is separated if and only if $\Gamma(X_{i} \cap X_{j}, \mathcal{O}_{X_{+}rZ})$ is generated by $\Gamma(X_{i}, \mathcal{O}_{X_{+}rZ})$ and $\Gamma(X_{j}, \mathcal{O}_{X_{+}rZ})$ for any $i, j = 0, \ldots r$. This condition equals to $A_{f_{1}\cdots f_{m}}[t] = A_{g_{ij}}[t]$ for any $i, j = 0, \ldots, r$ with $i \neq j$, where t is indeterminate. this implies that V is separated if and only if $A_{\underline{f}} = A_{g_{ij}}$ for any $i, j = 0, \ldots, r$ with $i \neq j$.

(1) \Rightarrow (2) Suppose the condition (1). Then there exists $a, b \in A$ such that $1 = ah_{ij} + b\underline{f}$, and this implies that $\underline{f}^{-1} = a\underline{f}^{[k_{ij}]-1}g_{ij} + b$ and $k_{ij,l} - 1 \ge 0$. Then it follows that $A\underline{f} = A_{g_{ij}}$.

(2) \Rightarrow (1) Suppose the condition (2). Then $\underline{f}^{-1} \in A_{\underline{f}} = A_{g_{ij}}$. Therefore $\underline{f}^{-\overline{1}}$ can be written as follows;

$$\underline{\mathbf{f}}^{-1} = a_0 + a_1 g_{ij} + a_2 g_{ij}^2 + \dots + a_n g_{ij}^n,$$

where $a_0, \ldots a_s \in A$ and n is an integer. (If n = 0, then f_1, \ldots, f_m should be units in A.) By multiplying both sides of the equation by $\underline{f}^{n[k_{ij}]}$, we obtain the following equation,

$$\underline{\mathbf{f}}^{n[k_{ij}]-\mathbf{1}} = a_0 \underline{\mathbf{f}}^{n[k_{ij}]} + h_{ij}s,$$

where $s = a_1 \underline{\mathbf{f}}^{(n-1)[k_{ij}]} + \cdots + a_{n-1} h_{ij}^{n-2} \underline{\mathbf{f}}^{[k_{ij}]} + a_n h_{ij}^{n-1}$. From this equation, we can deduce that $k_{ij,l} \geq 1$ for any $l = 1, \ldots, m$ because f_1, \ldots, f_m are prime elements and distinct up to units. Moreover, s can be divided by $\underline{\mathbf{f}}^{n[k_{ij}]-1}$ because we take h_{ij} which is not in (f_l) for all $l = 1, \ldots, m$. Then it follows that there exists $s' \in A$ such that $1 = a_0 \underline{\mathbf{f}} + h_{ij} s$. that is, $A = (\underline{\mathbf{f}}, h_{ij})$.

 $(1) \Rightarrow (3)$ Suppose the condition (1). We first observe that there exists an index $j' \in \{1, \ldots, m\}$ such that $k_{1j',l} = \max_j\{k_{1j,l}\}$ for all $l = 1, \ldots, m$. Assume that there exists indices $j_1, j_2 = 0, \ldots, r$ and $l_1, l_2 = 1, \ldots, m$ such that $j_1 \neq j_2, l_1 \neq l_2, k_{1j_1,l_1} > k_{1j_2,l_1}$, and $k_{1j_1,l_2} < k_{1j_2,l_2}$ for contradiction. Put $\mu_l := \max\{k_{1j_1,l}, k_{1j_2,l}\}$ and $[\mu] := (\mu_1, \ldots, \mu_m) \in \mathbb{Z}_{\geq 0}^m$. It follows from the cocycle condition $g_{j_1j_2} = g_{1j_2} - g_{1j_1}$ that

$$\underline{\mathbf{f}}^{[\mu]-[k_{j_1j_2}]}h_{j_1j_2} = \underline{\mathbf{f}}^{[\mu]-[k_{1j_2}]}h_{1j_2} - \underline{\mathbf{f}}^{[\mu]-[k_{1j_1}]}h_{1j_1}.$$

By the definition of μ and h_{ij} , the right hand side of this equation is in (f_{l_1}, f_{l_2}) but not in (f_{l_1}) and (f_{l_2}) . From this, it follows that $\mu_{l_1} = k_{j_1j_2,l_1}$ and $\mu_{l_2} = k_{j_1j_2,l_2}$. On the other hand, $\underline{f}^{[\mu]-[k_{j_1j_2}]}h_{j_1j_2} \in (f_{l_1}, f_{l_2})$ implies $\underline{f}^{[\mu]-[k_{j_1j_2}]} \in (f_{l_1}, f_{l_2})$ because $h_{j_1j_2}$ is a nonzero function on Z and $Z_{l_1} \cap Z_{l_2} \neq \emptyset$. But this contradicts to the assumtion $Z_{l_1} \cap Z_{l_2} \not\subset \bigcup_{l \neq l_1, l_2} Z_l$, and thus we can choose an index $j' \in \{1, \ldots, m\}$ such that $k_{1j',l} = \max_j\{k_{1j,l}\}$ for all $l = 1, \ldots, m$.

Next, we show that there exists an affine morphism $\psi: V \to \mathbb{A}^1$ by induction on r. If r = 0, then V should be isomorphic to $X \times_k \mathbb{A}^1$. Then the first (or second) projection of $X \times_k \mathbb{A}^1$ is an affine morphism. Suppose the statement holds for a natural number r - 1. By the assumption,

RIKU KUDOU

there exists $s_{ij} \in A$ such that $\overline{h_{ij}s_{ij}} = 1$ in $A/(f_1 \cdots f_m)$. Define morphisms $\phi_j \colon X_j \to \mathbb{A}^1$ to be $\phi_j(x,t) = s_{1j}(\underline{f}^{[k_{1j'}]}t + \underline{f}^{[k_{1j'}]-[k_{1j}]}h_{1j})$ and define morphisms $\psi_j \coloneqq \phi \circ g_j^{-1} \colon V_j \simeq X \times_k \mathbb{A}^1 \to \mathbb{A}^1$. By the cocycle condition, $\{\psi_j\}_{j=0,\dots,r}$ glue to a morphism $\psi \colon V \to \mathbb{A}^1$. Define $H_j \coloneqq g_j(Z \times_k \mathbb{A}^1) \subset V_j$. Then $\psi(H_1) = \phi_1 g_1^{-1} g_1(Z \times_k \mathbb{A}^1) = \{0\}$ and $\psi(H_{j'}) = \phi_{j'} g_{j'}^{-1} g_{j'}(Z \times_k \mathbb{A}^1) = \{1\}$. Thus $\psi^{-1}(\mathbb{A}^1 \setminus \{0\}) \subseteq V \setminus H_1$ and $\psi^{-1}(\mathbb{A}^1 \setminus \{1\}) \subseteq V \setminus H_{j'}$. Moreover, $V \setminus H_1$ is a principal \mathbb{G}_a -bundle defined by the cocycle $\{g_{ij}\}_{i,j\neq 1}$ and $V \setminus H_{j'}$ is a principal \mathbb{G}_a -bundle defined by the cocycle $\{g_{ij}\}_{i,j\neq j'}$ therefore it follows from the induction hypothesis that $V \setminus H_1$ and $V \setminus H_{j'}$ are affine. Therefore the restriction maps $\psi|_{V \setminus H_1} \colon V \setminus H_1 \to \mathbb{A}^1$ and $\psi|_{V \setminus H_{j'}} \colon V \setminus H_{j'} \to \mathbb{A}^1$ are affine morphisms. Then it follows that $\psi^{-1}(\mathbb{A}^1 \setminus \{0\})$ and $\psi^{-1}(\mathbb{A}^1 \setminus \{1\})$ are affine. Namely, ψ is affine.

2. Generalization of Theorems of Fujita-Iitaka and Nishimura

The main purpose of this section is to prove Theorem 0.4. As corollaries, We obtain the uniqueness of base schemes of principal \mathbb{G}_a -bundles in the special case (Corollary 2.5) and a criterion for principal \mathbb{G}_a -bundles over a certain type of schemes to be isomorphic to each other (Corollary 2.6).

Definition 2.1.

- For a k-scheme X, we denote by X(k) the set of closed points (k-valued points) of X.
- A k-scheme X is called a *prevariety* if X is an integral scheme of finite type over k.
- A variety S is called a variety with vanishing logarithmic genera (or VLG variety for short) if S is a nonsingular variety with $P_M(S) = 0$ for all $M \in \mathbb{Z}_{\geq 0}^{\oplus \infty}$, where $P_M(S) = \dim_k \operatorname{H}^0(\overline{S}, \Omega_{\overline{S}}^M(\log \partial S))$ is the logarithmic M-genus of S and $(\overline{S}, \partial S)$ is a smooth completion of S with boundary ∂S .

We will slightly generalize Fujita-Iitaka's cancellation theorem [8] and the following Nishimura's theorem.

Theorem 2.2 (Nishimura [9]). Let X and Y be varieties with $\overline{\kappa}(Y) \ge 0$, and let S_1 and S_2 be VLG varieties with dim $S_1 = \dim S_2$. Let $p: V \to X$ be a S_1 -bundle, $q: W \to Y$ a S_2 -bundle. If $\Phi: V \to W$ is an isomorphism, then there exists a unique isomorphism $\phi: X \to Y$ such that the following diagram is commutative.

$$V \xrightarrow{\Phi} W$$

$$p \downarrow \qquad \circlearrowright \qquad \downarrow q$$

$$X \xrightarrow{\exists \phi} Y$$

Lemma 2.3. Let X and Y be prevarieties, and let $f, g: X \to Y$ be morphisms of prevarieties. If f and g coincide on closed points of X, then f = g as a morphism of prevarieties.

The proof of Lemma 2.3 is the same as the one for varieties.

The next lemma is a part of the proof of Fujita-Iitaka's Cancellation Theorem ([8]).

Lemma 2.4 ([8]). Let X be a variety of dimension n, let Y be a variety of dimension n + 1 with $\overline{\kappa}(X) \ge 0$, and let S be a VLG variety. If $f: X \times_k S \to Y$ is a morphism, then f is not dominant.

Proof of Theorem 0.4. We prove Theorem 0.4 with 4 steps as follows:

- (1) For any prime divisor C on X, $E = q\Phi p^{-1}C$ is a prime divisor on Y.
- (2) We can show the same statement as (1) locally (this process is necessary to deal with closed points of the prevaries X and Y as an intersection of prime divisors on some open subset).
- (3) We can construct a bijective map of sets $\phi' \colon X(k) \to Y(k)$ such that $\phi \circ p = q \circ \Phi$.
- (4) We can construct a morphism of prevarieties $\phi: X \to Y$ such that $\phi|_{X(k)} = \phi'$ and $\phi \circ p = q \circ \Phi$.

5

(1) and (4) are almost the same as [8] and [9], but (2) and (3) contain a new part to deal with closed points of non-separated schemes.

(1) Let C be a prime divisor on X. By the local triviality of p, there exists an open affine covering $\mathcal{U} = \{U_{\lambda}\}_{\lambda \in \Lambda}$ of X such that $p^{-1}U_{\lambda} \simeq U_{\lambda} \times_k S_1$. Take $\lambda \in \Lambda$ such that $U_{\lambda} \cap C \neq \emptyset$ and put $C_{\lambda} := C \cap U_{\lambda}$. Then we obtain the compositon $f: C_{\lambda} \times S_1 \to Y'$ as the following diagram.

By Lemma 2.4, f is not dominant, and thus $q \circ \Phi|_{p^{-1}C} : p^{-1}C \to Y$ is not dominant. Put $E_C := \overline{q\Phi p^{-1}C}^Y$, where the closure is taken in Y. Then E_C is irreducible closed subset of Y and $q^{-1}E_C = q^{-1}(\overline{q\Phi p^{-1}C}^Y) \supseteq \Phi p^{-1}C$. Then it follows that $q^{-1}E_C = \Phi p^{-1}C$ because $q^{-1}E_C$ is irreducible and $\Phi p^{-1}C$ is prime divisor of W. As a consequence, we obtain the equality $E_C = qq^{-1}E_C = q\Phi p^{-1}C$. (2) Put $V_{\lambda} := p^{-1}U_{\lambda}, W_{\lambda} := \Phi V_{\lambda}, Y_{\lambda} := qW_{\lambda}$, and $q_{\lambda} := q|_{W_{\lambda}}$. Then Y_{λ} is an open subset of Y because q is locally trivial. Put $E_{C,\lambda} := \overline{q\Phi p^{-1}C_{\lambda}}^{Y_{\lambda}}$, where the closure is taken in Y_{λ} . Then $q^{-1}E_C \cap W_{\lambda} \supseteq q_{\lambda}^{-1}E_{C,\lambda} = q_{\lambda}^{-1}\overline{q\Phi p^{-1}C_{\lambda}}^{Y_{\lambda}} \supseteq \Phi p^{-1}C_{\lambda}$. Moreover, $q^{-1}E_C \cap W_{\lambda}$ and $\Phi p^{-1}C_{\lambda}$ are prime divisors on W_{λ} . Thus $q^{-1}E_{C,\lambda} = \Phi p^{-1}C_{\lambda}$. As a consequence, we obtain the equality $E_{C,\lambda} = q\Phi p^{-1}C_{\lambda}$.

(3) Let $x \in X(k)$. Then there exists $\lambda \in \Lambda$ such that $x \in U_{\lambda}$. In U_{λ} , x can be expressed as an intersection of prime divisors $C_{1,\lambda}, \dots, C_{m,\lambda}$ on U_{λ} since U_{λ} is a variety. Put $C_i := \overline{C_{i,\lambda}}^Y$ and $E_{C,i,\lambda} := q \Phi p^{-1} C_{i,\lambda}$. Then

$$S_{1} \simeq p^{-1}(x) \simeq \Phi p^{-1}(x) = \Phi p^{-1}(\bigcap_{i=1}^{m} C_{j,\lambda}) = \bigcap_{i=1}^{m} \Phi p^{-1}(C_{i,\lambda})$$
$$= \bigcap_{i=1}^{m} q_{\lambda}^{-1}(E_{C,i,\lambda}) = q_{\lambda}^{-1}(\bigcap_{i=1}^{m} E_{C,i,\lambda}).$$

The fiber of q_{λ} is not necessarily equal to S_2 , but is a nonempty open subset of S_2 . Therefore $\dim \bigcap_{i=1}^m E_{C,i,\lambda} = \dim S_1 - \dim S_2 = 0$. Moreover, $\bigcap_{i=1}^m E_{C,i,\lambda} = q\Phi p^{-1}(x)$ is irreducible. Then it follows that $\bigcap_{i=1}^m E_{C,i,\lambda}$ is a closed point of Y, denoted by y_x . In this way, we obtain a map $\phi' \colon X(k) \to Y(k); x \mapsto y_x$ of sets. Moreover, ϕ' satisfies

$$q\Phi(v) \in q\Phi(p^{-1}p(v)) = q\Phi(\Phi^{-1}q^{-1}(y_{p(v)})) = \{y_{p(v)}\} = \{\phi'(p(v))\},\$$

that is, $q \circ \Phi = \phi' \circ p$. The injectivity of ϕ' also follows because $x = p\Phi^{-1}q^{-1}q\Phi p^{-1}(x) = p\Phi^{-1}q^{-1}\phi'(x)$ for any closed point $x \in X$. Surjectivity of ϕ' is obvious.

(4) For each $\lambda \in \Lambda$, we take a closed point $a_{\lambda} \in S_1$ and define $\phi_{\lambda,a_{\lambda}} := q \circ \Phi \circ g_{\lambda} \circ j_{\lambda} \circ a_{\lambda} : U_{\lambda} \to Y$, where $j_{\lambda} : U_{\lambda} \times \{a_{\lambda}\} \hookrightarrow U_{\lambda} \times S_1$ and $a_{\lambda} : U_{\lambda} \simeq U_{\lambda} \times \{a_{\lambda}\}$. Then, for any closed point $x \in U_{\lambda}$, $\phi_{\lambda,a_{\lambda}}(x) = \phi'(x)$. Therefore by the Lemma 2.3, we can glue the morphisms $\{\phi_{\lambda,a_{\lambda}}\}$ to a morphism $\phi : X \to Y$ such that $q \circ \Phi = \phi \circ p$. The converse morphism of ϕ can be constructed in the same way. Moreover, the uniqueness of ϕ follows from the equality $\phi(x) = \phi(pp^{-1}(x)) = q\Phi(p^{-1}(x))$ for any closed point $x \in X$ and Lemma 2.3. **Corollary 2.5.** Let X and Y be prevarieties, let Y' be a variety with $\overline{\kappa}(Y') \geq 0$ and dim $Y' = \dim Y$, let $l: Y \to Y'$ be a dominant morphism, and let V, W be principal \mathbb{G}_a -bundles over X, Y, respectively. Then

- (1) $V \simeq W \Rightarrow X \simeq Y$.
- (2) $V \times_k \mathbb{A}^1 \simeq W \times_k \mathbb{A}^1 \Rightarrow X \simeq Y.$

Corollary 2.6. Let X be an affine variety with $\overline{\kappa}(X) \geq 0$, let $Z_1, ..., Z_m$ be hypersurfaces of X defined by $f_1, ..., f_m \in A$, respectively, let $Z := \bigcup Z_j$, and for k = 1, 2, let V_k be a principal \mathbb{G}_a -bundle over X_+rZ . Then V_1 and V_2 are isomorphic if and only if they are in the same orbit of the action by $\operatorname{Aut}(X_+rZ) \times \Gamma(X, \mathcal{O}_X^{\times})$.

Proof. The computation of this proof is almost the same as in [3]. Suppose that $\Phi: V_1 \to V_2$ is an isomorphism. Then by Theorem 0.4, there exists a unique automorphism $\phi: X_+rZ \to X_+rZ$ which satisfies $\phi \circ p_1 = p_2 \circ \Phi$, where $p_k: V_k \to X_+rZ$ is the canonical projection of principal \mathbb{G}_a -bundles for k = 1, 2. Put $X'_i := \phi(X_i)$ and $\mathcal{X}' := \{X'_0, \ldots, X'_r\}$ which becomes an open covering of X_+rZ . Suppose that the principal \mathbb{G}_a -bundle V_1 is defined by a Čech cocycle $\{g_{ij}\} \in \mathbb{Z}^1(\mathcal{X}, \mathcal{O}_{X_+rZ})$ and V_2 is defined by a Čech cocycle $\{g'_{ij}\} \in \mathbb{Z}^1(\mathcal{X}', \mathcal{O}_{X_+rZ})$. Then the following diagram is commutative for each $i, j = 0, \ldots, r$ $(i \neq j)$;

where $\alpha_{ij}(x,t) = (x,t+g_{ij}(x)), \ \alpha'_{ij}(x',t) = (x',t+g'_{ij}(x'))$. Moreover, by the commutativity of this diagram, there exists $a_i \in \Gamma(X_i, \mathcal{O}_{X_+rZ}^{\times}) = A^{\times}$ and $b_i \in \Gamma(X_i, \mathcal{O}_{X_+rZ})$ for each $i = 0, \ldots, r$ such that $g'_i \circ \Phi \circ g_i(x,t) = (\phi(x), a_i t + b_i), \ g'_j \circ \Phi \circ g_j(x,t) = (\phi(x), a_j t + b_j)$. This is because for an isomorphism $f : A[t] \to B[t]$ of domains such that $f|_A^B : A \to B$ is an isomorphism, f(t)should be equals to at + b where $a \in B^{\times}$ and $b \in B$ by the computation of degree of t. By the commutativity of the above diagram once again, we obtain the following equation;

$$a_i(x)t + b_i(x) + g'_{ij}(\phi(x)) = a_j(x)(t + g_{ij}(x)) + b_j(x)$$

Thus, gluing $\{a_i\}$, we obtain $a \in \Gamma(X_+ rZ, \mathcal{O}_{X_+ rZ}^{\times}) \simeq \Gamma(X, \mathcal{O}_X^{\times})$. Moreover, we have

$$g'_{ij}(\phi(x)) - g_{ij}(x)a(x) = b_j(x) - b_i(x),$$

that is, cocyles $\{g'_{ij}(\phi(x))\}\$ and $\{g_{ij}(x)a(x)\}\$ define principal \mathbb{G}_a -bundles isomorphic to each other.

3. The proof of main theorem

The purpose of this section is to prove Theorem 0.3.

Lemma 3.1 ([5]). Let V be an affine \mathbb{G}_a -surface. Then the GIT quotient $V//\mathbb{G}_a$ is a nonsingular affine curve and there exists an open affine subset $C \subseteq V//\mathbb{G}_a$ such that $p^{-1}C$ is \mathbb{G}_a -equivariantly isomorphic to $C \times_k \mathbb{G}_a$, where $p: V \to V//\mathbb{G}_a$ is the quotient morphism.

Theorem 3.2 ([6]). Let X be a nonsingular affine curve, let W be an \mathbb{A}^1 -fibered affine surface over X. Then W is Zariski 1-factor if and only if W is a line bundle over X.

Proof of Theorem 0.3. It is easy to see that V is affine and nonsingular. Take a closed point $a \in \mathbb{A}^1$ and define a morphism $p': V \to Y$ to be the composition $V \simeq V \times_k \{a\} \hookrightarrow V \times_k \mathbb{A}^1 \to W \times_k \mathbb{A}^1 \to W \to Y$. We show that p' satisfies the condition of the structure morphism of a principal \mathbb{G}_a -bundle over Y.

Suppose that V has no nontrivial \mathbb{G}_a -action for contradiction. Then $V \simeq W$ holds by the cancellation theorem for varieties with no nontrivial \mathbb{G}_a -action ([1]), but this contradicts to that V has no nontrivial \mathbb{G}_a -action. Thus V has a nontrivial \mathbb{G}_a -action. We fix a nontrivial \mathbb{G}_a -action on V, denoted by $\mu : \mathbb{G}_a \times V \to V$.

Let $B := V//\mu$ be the GIT quotient of μ and $p : V \to B$ be its quotient morphism. By Lemma 3.1, B is a nonsingular affine curve and there exists a nonempty open subset $C \subseteq B$ such that the following diagram is commutative.

Using the same arguments as Theorem 0.4, we obtain an injective morphism $\phi : C \to Y$ such that the following diagram commutes.

Next, we construct a morphism $\psi : Y \to B$. At first, we show that there exists a map $\psi' : Y(k) \to B(k)$ of sets such that $\psi' \circ q \circ \operatorname{pr}_W = p \circ \operatorname{pr}_V \circ \Phi^{-1}$. For any closed point $y \in \phi(C) \subseteq Y$, there exists a unique closed point $y \in C$ such that $x = \phi(y)$. On the other hand, for any closed point $y \in Y \setminus \phi(C)$, a morphism

$$\tau_y := p \circ \operatorname{pr}_V \circ \Phi^{-1} \circ j_y : \operatorname{pr}^{-1} q^{-1}(y) \hookrightarrow W \times_k \mathbb{A}^1 \simeq V \times_k \mathbb{A}^1 \to V \to B$$

is not dominant. (If τ_y is dominant, then $C \cap \tau_y \operatorname{pr}_V^{-1} q^{-1}(y) \neq \emptyset$, but this contradicts to the construction of ϕ .) Then it follows that the image of τ_y is a closed point of B. we define a morphism $\psi' \colon Y(k) \to B(k)$ of sets to be $\psi(y) = \operatorname{Im} \tau_y$ for each $y \in Y(k)$. Then we have the equality $\psi' \circ q \circ \operatorname{pr}_W = p \circ \operatorname{pr}_V \circ \Phi^{-1}$. Let $\{Y_\lambda\}_{\lambda \in \Lambda}$ be an open affine covering of Y. Put $W_\lambda := q^{-1}Y_\lambda(\simeq Y_\lambda \times_k \mathbb{A}^1), (V \times_k \mathbb{A}^1)_\lambda := \Phi^{-1}(W_\lambda \times_k \mathbb{A}^1), V_\lambda := \operatorname{pr}_V((V \times_k \mathbb{A}^1)_\lambda)$ and $X_\lambda := pV_\lambda$.

Next we observe that $(V \times_k \mathbb{A}^1)_{\lambda} = V_{\lambda} \times_k \mathbb{A}^1$. Put $K_{y,\lambda} := \overline{\mathrm{pr}_V \circ \Phi^{-1} \circ Q^{-1}(y)}^{V_{\lambda}}$. Then $(V \times_k \mathbb{A}^1)_{\lambda} = \bigcup_{y \in Y_{\lambda}} \Phi^{-1}Q^{-1}(y)$ and $V_{\lambda} = \bigcup_{y \in Y_{\lambda}} K_{y,\lambda}$. Moreover, we have $\mathrm{pr}^{-1}K_{y,\lambda} \supseteq \Phi^{-1}Q^{-1}(y)$, and thus $\mathrm{pr}^{-1}K_{y,\lambda} = \Phi^{-1}Q^{-1}(y)$. As a consequence, we obtain the equality $(V \times_k \mathbb{A}^1)_{\lambda} = V_{\lambda} \times_k \mathbb{A}^1$.

For each $\lambda \in \Lambda$, we take a closed point $(a_{1,\lambda}, a_{2,\lambda}) \in \mathbb{A}^2$ and define

$$\psi_{\lambda,a_{\lambda}} \colon Y_{\lambda} \xrightarrow{a_{1,\lambda}} Y \times_{k} \{a_{1,\lambda}\} \hookrightarrow Y_{\lambda} \times \mathbb{A}^{1} \to W_{\lambda} \xrightarrow{a_{2,\lambda}} W_{\lambda} \times_{k} \{a_{2,\lambda}\}$$
$$\hookrightarrow W_{\lambda} \times_{k} \mathbb{A}^{1} \to V_{\lambda} \times_{k} \mathbb{A}^{1} \to V_{\lambda} \to B.$$

Then for any closed point $y \in Y_{\lambda}$, $\psi_{\lambda,a_{1,\lambda}}(y) = \psi'(y)$. Therefore by Lemma 2.3, we can glue the morphisms $\{\psi_{\lambda,a_{1,\lambda}}\}$ to a morphism $\psi: Y \to B$. Moreover, ψ is a surjective birational morphism and satisfies $q \circ \operatorname{pr}_{V} \circ \Phi^{-1} = \psi \circ p \circ \operatorname{pr}_{W}$.

The variety W_{λ} is isomorphic to $Y_{\lambda} \times_k \mathbb{A}^1$ because W_{λ} is a principal \mathbb{G}_a -bundle over Y_{λ} and Y_{λ} is affine. By Theorem 3.2, we obtain an isomorphism $F_{\lambda} \colon V_{\lambda} \simeq W_{\lambda}$. In the same way as ψ , we obtain a surjective birational morphism $f_{\lambda} \colon Y_{\lambda} \to B_{\lambda}$ such that $f_{\lambda} \circ q = F_{\lambda}^{-1} \circ p$. Moreover Y_{λ} and B_{λ} are nonsingular curves. Thus f_{λ} (and $\psi_{\lambda} := \psi|_{Y_{\lambda}}^{B_{\lambda}}$) should be an isomorphism. In conclusion, we obtain the following commutative diagram.

$$V_{\lambda} \xrightarrow{F_{\lambda}} W_{\lambda} \xrightarrow{g_{\lambda}} Y_{\lambda} \times_{k} \mathbb{A}^{1} \xrightarrow{f_{\lambda} \times \mathrm{id}_{\mathbb{A}^{1}}} B_{\lambda} \times_{k} \mathbb{A}^{1}$$

$$\downarrow^{p_{\lambda}} \circ \qquad \downarrow^{q} \xrightarrow{\mathrm{pr}_{Y_{\lambda}}} \downarrow^{p_{Y_{\lambda}} \circ (f_{\lambda}^{-1} \times \mathrm{id}_{\mathbb{A}^{1}})}$$

$$B_{\lambda} \xleftarrow{f_{\lambda}} Y_{\lambda}$$

For a closed point $x \in C_{\lambda} = B_{\lambda} \cap C$, the fiber $p_{\lambda}^{-1}(x)$ is just the orbit of μ by the construction of pand p_{λ} . For a closed point $x \in B_{\lambda} \setminus C_{\lambda}$, we can not say that the fiber $p_{\lambda}^{-1}(x)$ is just the orbit only by the construction. But thanks to the fact that each \mathbb{G}_a -orbits are closed ([10]) and are isomorphic to either \mathbb{A}^1 or a closed point, we can deduce that $p_{\lambda}^{-1}(x)$ is just the μ -orbit. Therefore, the action μ on V can be restricted on V_{λ} , denoted by $\mu|_{V_{\lambda}}$, and its quotient morphism is just $p_{\lambda} : V_{\lambda} \to B_{\lambda}$. By the commutativity of the above diagram, such a \mathbb{G}_a -action should be \mathbb{G}_a -equivariantly trivial, that is, $p_{\lambda} : V_{\lambda} \to B_{\lambda}$ is a \mathbb{G}_a -equivariantly trivial morphism.

By the construction of p' and ψ , we have the equality $p'_{\lambda} = \psi_{\lambda}^{-1} \circ p_{\lambda}$. Then it follows that p' satisfies the condition of the structure morphism of a principal \mathbb{G}_a -bundle over Y.

References

- T. Bandman and L. Makar-Limanov, Nonstability of the AK invariant, Michigan Math. J. 53 (2005), no. 2, 263–281.
- W. Danielewski, On a cancellation problem and automorphism groups of affine algebraic varieties, preprint, Warsaw (1989).
- [3] R. Dryło, A note on noncancellable varieties, Comm. Algebra 37 (2009), no. 9, 3337–3341.
- [4] A Dubouloz, Additive group actions on Danielewski varieties and the cancellation problem, Math. Z. 255 (2007), no. 1, 77–93.
- [5] K. H. Fieseler, On complex affine surfaces with C⁺-action, Comment. Math. Helv. **69** (1994), no. 1, 5–27.
- [6] H. Flenner, S. Kaliman, and M. Zaidenberg, *Cancellation for surfaces revisited*. I, 2016. arXiv:math/1610.01805.
- [7] A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960).
- [8] S. Iitaka and T. Fujita, Cancellation theorem for algebraic varieties, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, 123–127.
- [9] T. Nishimura, On the existence of isomorphisms of schemes having isomorphic jet schemes. Master's thesis, Tokyo Inst. Tech. (2017).
- [10] M. Rosenlicht, On quotient varieties and the affine embedding of certain homogeneous spaces, Trans. Amer. Math. Soc. 101 (1961), 211–223.