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Abstract. In this paper, we study the structure of isomorphisms of S-bundles over a cetain type
of prevarieties, where S is a variety with vanishing logarithmic genera (for example, An and Pn).
As in the same way, for a certain type of affine surfaces W , we determine all varieties V such that
V ×k A1 ≃ W ×k A1.

Introduction

Let V and W be varieties over an algebraically closed field k with characteristic 0. The Zariski
cancellation problem asks when the existence of an isomorphism V ×k A1 ≃ W ×k A1 implies that
V ≃ W . Following [6], we call a variety V a Zariski 1-factor if V ×kA1 ≃ W ×kA1 implies V ≃ W
for any variety W. There are many examples of Zariski 1-factors, but in 1989, W. Danielewski
found non-Zariski 1-factors by using the following property of principal Ga-bundles.

Fact 0.1 ([2]). Let X be a k-scheme, and let V and W be affine k-schemes which are principal
Ga-bundles over X. Then V ×k A1 ≃ W ×k A1.

By using the same arguments, many examples of non-Zariski 1-factors are constructed. From
these examples, we can consider the following problem.

Problem 0.2. Let Y be a prevariety, and let W be an affine variety which is a principal Ga-bundle
over Y . Then for any variety V , does V ×k A1 ≃ W ×k A1 imply that V is affine and a principal
Ga-bundle over Y ?

In this paper, we will show the following main theorem (section 3).

Theorem 0.3. Let Y be a 1-dimensional nonsingular prevariety (a prevariety means an integral
scheme of finite type over k), let Y ′ be a nonsingular curve with nonnegative logarithmic kodaira
dimension (that is, Y ′ is neither A1 nor P1), let l : Y → Y ′ be a dominant morphism, and let W be
an affine variety which is a principal Ga-bundle over Y . Then for any variety V , V×kA1 ≃ W×kA1

if and only if V is affine and a principal Ga-bundle over Y .

From this theorem and counter examples for the cancellation problem by Dry lo ([3]), we find
many non-Zariski 1-factors of the above type.

To show Theorem 0.3, we use the similar arguments as Fujita-Iitaka’s cancellation theorem
([8]) and Nishimura’s generalized version of it ([9]). In addition to Theorem 0.3, we will slightly
generalize these theorems in section 2 as follows.

Theorem 0.4. Let X and Y be prevarieties, let Y ′ be a variety with κ(Y ′) ≥ 0 and dimY ′ = dimY ,
let l : Y → Y ′ be a dominant morphism, and let S1 and S2 be varieties with vanishing logarithmic
genera and dimS1 = dimS2. Let p : V → X be a S1-bundle, q : W → Y a S2-bundle. If Φ: V → W
is an isomorphism, then there exists a unique isomorphism ϕ : X → Y such that the following
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diagram is commutative.

V
Φ //

p
��

W

q
��

X
∃ϕ

// Y

⟳

Using this theorem, we show 2 corollaries (Corollary 2.5, 2.6) useful for the cancellation problem.
Before the proof of Theorem 0.3 and 0.4, we will give a criterion for principal Ga-bundles over

some good schemes to be affine (Theorem 1.6). The proof of Theorem 1.6 is almost the same as
the affine criterion for principal Ga-bundles by A. Dubouloz ([4]).

From these theorems and Dry lo’s examples ([3]), we can find all varieties which are non-Zariski
1-factors of the type in Theorem 0.3.

1. Affine criterion for principal Ga-bundles over a certain type of
nonseparated schemes

The purpose of this section is to prove Theorem 1.6, which gives a computable way to determine
principal Ga-bundles to be affine or not.

Definition 1.1 (principal Ga-bundle). Let X be a k-scheme, let V be a k-scheme with Ga-action,
and let p : V → X be a morphism of k-schemes. Then (V, p) is called a principal Ga-bundle over
X if the following two conditions are satisfied:

(1) p is Ga-equivariant (Ga acts trivially on X);
(2) there exists an (Zariski) open covering U = {Uλ}λ∈Λ of X and a Ga-equivariant isomorphism

gλ : p−1Uλ → Uλ ×k Ga for each λ ∈ Λ such that the following diagram is commutative.

p−1Uλ
gλ //

p

��

Uλ ×Ga

pr
zzvvv

vv
vv
vv
vv

Uλ

Remark 1.2. Our definition of principal G-bundles for a group variety G is slightly different from
the ordinaly one. But for an affine group variety, those definitions coincide.

Remark 1.3. There exists a one-to-one correspondence between isomorphic classes of principal
Ga-bundles over X and H1(X,OX).

Definition 1.4. Let X be a variety, let Z be a closed subvariety of X, let r be a natural number,
and let X0, . . . , Xr be copies of X. Then

X+rZ := X ⊔X\Z X ⊔X\Z · · · ⊔X\Z X︸ ︷︷ ︸
r

= X0 ⊔X\Z X1 ⊔X\Z · · · ⊔X\Z Xr.

Namely, X+rZ is a nonseparated k-scheme which looks like X with r copies of Z. We fix an open
covering X of X+rZ to be X = {X0, . . . , Xr}.

Lemma 1.5 ([7]). Let X be a scheme, let Y be an affine scheme, and let U = {Uλ}λ∈Λ be an open
affine covering of X. Then for any morphism f : X → Y , f is separated if and only if

(1) Uµ ∩ Uλ is affine for any µ, λ ∈ Λ;
(2) Γ(Uµ ∩ Uλ,OX) is generated by Γ(Uµ,OX) and Γ(Uλ,OX).
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The following theorem is a generalization of the affine criterion for principal Ga-bundles by A.
Dubouloz ([4]), but the proof is almost the same.

Theorem 1.6. Let X = SpecA be an affine variety, let Z1, ..., Zm be hypersurfaces of X defined by
prime elements f1, ..., fm ∈ A, and let Z :=

∪
Zj. Let V be a principal Ga-bundle over X+rZ de-

fined by a Čech cocycle [{gij}] ∈ H1(X ,OX+rZ) ≃ H1(X+rZ,OX+rZ), where gij ∈ Γ(Xij,OX+rZ) =

Af1···fm and as an element of Af1···fm, gij can be written as follows; gij = f
−kij,1
1 · · · f−kij,m

m hij, where
kij,l ∈ Z≥0 and hij ∈ A such that hij can not be divided by fl if kij,l > 0.
If (a) r = 1 or (b) r ≥ 2 and ∅ ̸= Zl1 ∩ Zl2 ̸⊂

∪
l≠l1,l2

Zl for any l1, l2 = 1, . . . ,m, then the
following conditions are equivalent.

(1) kij,l ≥ 1 and (hij, f1 · · · fm) = A for any i, j = 0, . . . , r and l = 1, . . . ,m.
(2) V is separated.
(3) V is affine.

Proof. (3) ⇒ (2) is obvious. We show that (1) ⇔ (2) and (1) ⇒ (3).

Let us denote (kij,1, . . . , kij,m) ∈ Zm by [kij], (1, . . . , 1) ∈ Zm by 1, and f
kij,1
1 · · · fkij,m

m by f[kij ].
First of all, we give a necessaly and sufficient condition for V to be separated by using Lemma

1.5. By the definition of the open covering X of X+rZ, Xi∩Xj is affine for any i, j = 0, . . . r. Thus
V is separated if and only if Γ(Xi ∩ Xj,OX+rZ) is generated by Γ(Xi,OX+rZ) and Γ(Xj,OX+rZ)
for any i, j = 0, . . . r. This condition equals to Af1···fm [t] = Agij [t] for any i, j = 0, . . . , r with
i ̸= j, where t is indeterminate. this implies that V is separated if and only if Af = Agij for any

i, j = 0, . . . , r with i ̸= j.
(1) ⇒ (2) Suppose the condition (1). Then there exists a, b ∈ A such that 1 = ahij + bf, and

this implies that f−1 = af[kij ]−1gij + b and kij,l − 1 ≥ 0. Then it follows that Af = Agij .

(2) ⇒ (1) Suppose the condition (2). Then f−1 ∈ Af = Agij . Therefore f−1 can be written as

follows;
f−1 = a0 + a1gij + a2g

2
ij + · · · + ang

n
ij,

where a0, . . . as ∈ A and n is an integer. (If n = 0, then f1, . . . , fm should be units in A.) By

multiplying both sides of the equation by fn[kij ], we obtain the following equation,

fn[kij ]−1 = a0f
n[kij ] + hijs,

where s = a1f
(n−1)[kij ] + · · · + an−1h

n−2
ij f[kij ] + anh

n−1
ij . From this equation, we can deduce that

kij,l ≥ 1 for any l = 1, . . . ,m because f1, . . . , fm are prime elements and distinct up to units.

Moreover, s can be divided by fn[kij ]−1 because we take hij which is not in (fl) for all l = 1, . . . ,m.
Then it follows that there exists s′ ∈ A such that 1 = a0f + hijs. that is, A = (f, hij).

(1) ⇒ (3) Suppose the condition (1). We first observe that there exists an index j′ ∈ {1, . . . ,m}
such that k1j′,l = maxj{k1j,l} for all l = 1, . . . ,m. Assume that there exists indices j1, j2 = 0, . . . r
and l1, l2 = 1, . . . ,m such that j1 ̸= j2, l1 ̸= l2, k1j1,l1 > k1j2,l1 , and k1j1,l2 < k1j2,l2 for contradiction.
Put µl := max{k1j1,l, k1j2,l} and [µ] := (µ1, . . . µm) ∈ Zm

≥0. It follows from the cocycle condition
gj1j2 = g1j2 − g1j1 that

f[µ]−[kj1j2 ]hj1j2 = f[µ]−[k1j2 ]h1j2 − f[µ]−[k1j1 ]h1j1 .

By the definition of µ and hij, the right hand side of this equation is in (fl1 , fl2) but not in
(fl1) and (fl2). From this, it follows that µl1 = kj1j2,l1 and µl2 = kj1j2,l2 . On the other hand,

f[µ]−[kj1j2 ]hj1j2 ∈ (fl1 , fl2) implies f[µ]−[kj1j2 ] ∈ (fl1 , fl2) because hj1j2 is a nonzero function on Z and
Zl1 ∩Zl2 ̸= ∅. But this contradicts to the assumtion Zl1 ∩Zl2 ̸⊂

∪
l ̸=l1,l2

Zl, and thus we can choose

an index j′ ∈ {1, . . . ,m} such that k1j′,l = maxj{k1j,l} for all l = 1, . . . ,m.
Next, we show that there exists an affine morphism ψ : V → A1 by induction on r. If r = 0,

then V should be isomorphic to X ×k A1. Then the first (or second) projection of X ×k A1 is an
affine morphism. Suppose the statement holds for a natural number r − 1. By the assumption,
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there exists sij ∈ A such that hijsij = 1 in A/(f1 · · · fm). Define morphisms ϕj : Xj → A1 to be

ϕj(x, t) = s1j(f
[k1j′ ]t+ f[k1j′ ]−[k1j ]h1j) and define morphisms ψj := ϕ ◦ g−1

j : Vj ≃ X ×k A1 → A1. By

the cocycle condition, {ψj}j=0,...,r glue to a morphism ψ : V → A1. Define Hj := gj(Z ×k A1) ⊂
Vj. Then ψ(H1) = ϕ1g

−1
1 g1(Z ×k A1) = {0} and ψ(Hj′) = ϕj′g

−1
j′ gj′(Z ×k A1) = {1}. Thus

ψ−1(A1 \ {0}) ⊆ V \H1 and ψ−1(A1 \ {1}) ⊆ V \Hj′ . Moreover, V \H1 is a principal Ga-bundle
defined by the cocycle {gij}i,j ̸=1 and V \Hj′ is a principal Ga-bundle defined by the cocycle {gij}i,j ̸=j′

therefore it follows from the induction hypothesis that V \ H1 and V \ Hj′ are affine. Therefore
the restriction maps ψ|V \H1 : V \H1 → A1 and ψ|V \Hj′

: V \Hj′ → A1 are affine morphisms. Then

it follows that ψ−1(A1 \ {0}) and ψ−1(A1 \ {1}) are affine. Namely, ψ is affine. □

2. Generalization of Theorems of Fujita-Iitaka and Nishimura

The main purpose of this section is to prove Theorem 0.4. As corollaries, We obtain the unique-
ness of base schemes of principal Ga-bundles in the special case (Corollary 2.5) and a criterion for
principal Ga-bundles over a certain type of schemes to be isomorphic to each other (Corollary 2.6).

Definition 2.1.

• For a k-scheme X, we denote by X(k) the set of closed points (k-valued points) of X.
• A k-scheme X is called a prevariety if X is an integral scheme of finite type over k.
• A variety S is called a variety with vanishing logarithmic genera (or VLG variety for

short) if S is a nonsingular variety with PM(S) = 0 for all M ∈ Z⊕∞
≥0 , where PM(S) =

dimk H0(S,ΩM
S

(log ∂S)) is the logarithmic M -genus of S and (S, ∂S) is a smooth completion
of S with boundary ∂S.

We will slightly generalize Fujita-Iitaka’s cancellation theorem [8] and the following Nishimura’s
theorem.

Theorem 2.2 (Nishimura [9]). Let X and Y be varieties with κ(Y ) ≥ 0, and let S1 and S2 be
VLG varieties with dimS1 = dimS2. Let p : V → X be a S1-bundle, q : W → Y a S2-bundle. If
Φ: V → W is an isomorphism, then there exists a unique isomorphism ϕ : X → Y such that the
following diagram is commutative.

V
Φ //

p
��

W

q
��

X
∃ϕ

// Y

⟳

Lemma 2.3. Let X and Y be prevarieties, and let f , g : X → Y be morphisms of prevarieties. If
f and g coincide on closed points of X, then f = g as a morphism of prevarieties.

The proof of Lemma 2.3 is the same as the one for varieties.
The next lemma is a part of the proof of Fujita-Iitaka’s Cancellation Theorem ([8]).

Lemma 2.4 ([8]). Let X be a variety of dimension n, let Y be a variety of dimension n + 1 with
κ(X) ≥ 0, and let S be a VLG variety. If f : X ×k S → Y is a morphism, then f is not dominant.

Proof of Theorem 0.4. We prove Theorem 0.4 with 4 steps as follows:

(1) For any prime divisor C on X, E = qΦp−1C is a prime divisor on Y .
(2) We can show the same statement as (1) locally (this process is necessary to deal with closed

points of the prevaries X and Y as an intersection of prime divisors on some open subset).
(3) We can construct a bijective map of sets ϕ′ : X(k) → Y (k) such that ϕ ◦ p = q ◦ Φ.
(4) We can construct a morphism of prevarieties ϕ : X → Y such that ϕ|X(k) = ϕ′ and ϕ ◦ p =

q ◦ Φ.
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(1) and (4) are almost the same as [8] and [9], but (2) and (3) contain a new part to deal with
closed points of non-separated schemes.

(1) Let C be a prime divisor on X. By the local triviality of p, there exists an open affine
covering U = {Uλ}λ∈Λ of X such that p−1Uλ ≃ Uλ ×k S1. Take λ ∈ Λ such that Uλ ∩ C ̸= ∅ and
put Cλ := C ∩ Uλ. Then we obtain the compositon f : Cλ × S1 → Y ′ as the following diagram.

Cλ × S1
gλ:iso //

$$JJ
JJJ

JJJ
JJJ

f

//

p−1Cλ
� � /

��

V
Φ //

p

��

W

q

��

Cλ
� � / X

⟳

Y

l
��

Y ′

⟳

By Lemma 2.4, f is not dominant, and thus q ◦ Φ|p−1C : p−1C → Y is not dominant. Put EC :=

qΦp−1C
Y

, where the closure is taken in Y . Then EC is irreducible closed subset of Y and q−1EC =

q−1(qΦp−1C
Y

) ⊇ Φp−1C. Then it follows that q−1EC = Φp−1C because q−1EC is irreducible and
Φp−1C is prime divisor of W . As a consequence, we obtain the equality EC = qq−1EC = qΦp−1C.

(2) Put Vλ := p−1Uλ, Wλ := ΦVλ, Yλ := qWλ, and qλ := q|Wλ
. Then Yλ is an open subset

of Y because q is locally trivial. Put EC,λ := qΦp−1Cλ
Yλ

, where the closure is taken in Yλ.

Then q−1EC ∩Wλ ⊇ q−1
λ EC,λ = q−1

λ qΦp−1Cλ
Yλ ⊇ Φp−1Cλ. Moreover, q−1EC ∩Wλ and Φp−1Cλ

are prime divisors on Wλ. Thus q−1EC,λ = Φp−1Cλ. As a consequence, we obtain the equality
EC,λ = qq−1

λ EC,λ = qΦp−1Cλ.
(3) Let x ∈ X(k). Then there exists λ ∈ Λ such that x ∈ Uλ. In Uλ, x can be expressed as

an intersection of prime divisors C1,λ, · · · , Cm,λ on Uλ since Uλ is a variety. Put Ci := Ci,λ
Y

and
EC,i,λ := qΦp−1Ci,λ. Then

S1 ≃ p−1(x) ≃ Φp−1(x) = Φp−1(
m∩
i=1

Cj,λ) =
m∩
i=1

Φp−1(Ci,λ)

=
m∩
i=1

q−1
λ (EC,i,λ) = q−1

λ (
m∩
i=1

EC,i,λ).

The fiber of qλ is not necessarily equal to S2, but is a nonempty open subset of S2. Therefore
dim

∩m
i=1EC,i,λ = dimS1 − dimS2 = 0. Moreover,

∩m
i=1EC,i,λ = qΦp−1(x) is irreducible. Then

it follows that
∩m

i=1EC,i,λ is a closed point of Y , denoted by yx. In this way, we obtain a map
ϕ′ : X(k) → Y (k);x 7→ yx of sets. Moreover, ϕ′ satisfies

qΦ(v) ∈ qΦ(p−1p(v)) = qΦ(Φ−1q−1(yp(v))) = {yp(v)} = {ϕ′(p(v))},

that is, q ◦ Φ = ϕ′ ◦ p. The injectivity of ϕ′ also follows because x = pΦ−1q−1qΦp−1(x) =
pΦ−1q−1ϕ′(x) for any closed point x ∈ X. Surjectivity of ϕ′ is obvious.

(4) For each λ ∈ Λ, we take a closed point aλ ∈ S1 and define ϕλ,aλ := q◦Φ◦gλ◦jλ◦aλ : Uλ → Y ,
where jλ : Uλ × {aλ} ↪→ Uλ × S1 and aλ : Uλ ≃ Uλ × {aλ}. Then, for any closed point x ∈ Uλ,
ϕλ,aλ(x) = ϕ′(x). Therefore by the Lemma 2.3, we can glue the morphisms {ϕλ,aλ} to a morphism
ϕ : X → Y such that q ◦ Φ = ϕ ◦ p. The converse morphism of ϕ can be constructed in the same
way. Moreover, the uniqueness of ϕ follows from the equality ϕ(x) = ϕ(pp−1(x)) = qΦ(p−1(x)) for
any closed point x ∈ X and Lemma 2.3. □
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Corollary 2.5. Let X and Y be prevarieties, let Y ′ be a variety with κ(Y ′) ≥ 0 and dimY ′ =
dimY , let l : Y → Y ′ be a dominant morphism, and let V , W be principal Ga-bundles over X, Y ,
respectively. Then

(1) V ≃ W ⇒ X ≃ Y .
(2) V ×k A1 ≃ W ×k A1 ⇒ X ≃ Y .

Corollary 2.6. Let X be an affine variety with κ(X) ≥ 0, let Z1, ..., Zm be hypersurfaces of X
defined by f1, ..., fm ∈ A, respectively, let Z :=

∪
Zj, and for k = 1, 2, let Vk be a principal Ga-

bundle over X+rZ. Then V1 and V2 are isomorphic if and only if they are in the same orbit of the
action by Aut(X+rZ) × Γ(X,O×

X).

Proof. The computation of this proof is almost the same as in [3]. Suppose that Φ: V1 → V2 is an
isomorphism. Then by Theorem 0.4, there exists a unique automorphism ϕ : X+rZ → X+rZ which
satisfies ϕ ◦ p1 = p2 ◦Φ, where pk : Vk → X+rZ is the canonical projection of principal Ga-bundles
for k = 1, 2. Put X ′

i := ϕ(Xi) and X ′ := {X ′
0, . . . , X

′
r} which becomes an open covering of X+rZ.

Suppose that the principal Ga-bundle V1 is defined by a Čech cocycle {gij} ∈ Z1(X ,OX+rZ) and V2
is defined by a Čech cocycle {g′ij} ∈ Z1(X ′,OX+rZ). Then the following diagram is commutative
for each i, j = 0, . . . , r (i ̸= j);

(Xi ∩Xj) ×k A1 gi //

αij

��

p−1
1 (Xi ∩Xj)

Φ //

id
��

p−1
2 (X ′

i ∩X ′
j)

g′−1
i //

id
��

(X ′
i ∩X ′

j) ×k A1

α′
ij

��
(Xi ∩Xj) ×k A1

gj //

pr1 ((RRR
RRR

RRR
RRR

RRR
p−1
1 (Xi ∩Xj)

Φ //

p1

��

p−1
2 (X ′

i ∩X ′
j)

g′−1
j //

p2

��

(X ′
i ∩X ′

j) ×k A1

pr1vvllll
lll

lll
lll

l

Xi ∩Xj
ϕ //X ′

i ∩X ′
j

where αij(x, t) = (x, t + gij(x)), α′
ij(x

′, t) = (x′, t + g′ij(x
′)). Moreover, by the commutativity of

this diagram, there exists ai ∈ Γ(Xi,O×
X+rZ) = A× and bi ∈ Γ(Xi,OX+rZ) for each i = 0, . . . , r

such that g′−1
i ◦ Φ ◦ gi(x, t) = (ϕ(x), ait + bi), g

′−1
j ◦ Φ ◦ gj(x, t) = (ϕ(x), ajt + bj). This is because

for an isomorphism f : A[t] → B[t] of domains such that f |BA : A → B is an isomorphism, f(t)
should be equals to at + b where a ∈ B× and b ∈ B by the computation of degree of t. By the
commutativity of the above diagram once again, we obtain the following equation;

ai(x)t+ bi(x) + g′ij(ϕ(x)) = aj(x)(t+ gij(x)) + bj(x).

Thus, gluing {ai}, we obtain a ∈ Γ(X+rZ,O×
X+rZ) ≃ Γ(X,O×

X). Moreover, we have

g′ij(ϕ(x)) − gij(x)a(x) = bj(x) − bi(x),

that is, cocyles {g′ij(ϕ(x))} and {gij(x)a(x)} define principal Ga-bundles isomorphic to each other.
□

3. The proof of main theorem

The purpose of this section is to prove Theorem 0.3.

Lemma 3.1 ([5]). Let V be an affine Ga-surface. Then the GIT quotient V//Ga is a nonsingular
affine curve and there exists an open affine subset C ⊆ V//Ga such that p−1C is Ga-equivariantly
isomorphic to C ×k Ga, where p : V → V//Ga is the quotient morphism.

Theorem 3.2 ([6]). Let X be a nonsingular affine curve, let W be an A1-fibered affine surface
over X. Then W is Zariski 1-factor if and only if W is a line bundle over X.
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Proof of Theorem 0.3. It is easy to see that V is affine and nonsingular. Take a closed point
a ∈ A1 and define a morphism p′ : V → Y to be the composition V ≃ V ×k {a} ↪→ V ×k A1 →
W ×k A1 → W → Y . We show that p′ satisfies the condition of the structure morphism of a
principal Ga-bundle over Y .

Suppose that V has no nontrivial Ga-action for contradiction. Then V ≃ W holds by the
cancellation theorem for varieties with no nontrivial Ga-action ([1]), but this contradicts to that
V has no nontrivial Ga-action. Thus V has a nontrivial Ga-action. We fix a nontrivial Ga-action
on V , denoted by µ : Ga × V → V .

Let B := V//µ be the GIT quotient of µ and p : V → B be its quotient morphism. By Lemma
3.1, B is a nonsingular affine curve and there exists a nonempty open subset C ⊆ B such that the
following diagram is commutative.

C × A1 iso //

$$JJ
JJ

JJ
JJ

JJ
J

P−1C

��

� � / V

p

��

C � � / B

⟳

.
Using the same arguments as Theorem 0.4, we obtain an injective morphism ϕ : C → Y such

that the following diagram commutes.

p−1C ×k A1

pr

��

� � / V ×k A1

pr

��

Φ: iso // W ×k A1

pr

��

C × A1 iso //

&&MM
MMM

MMM
MMM

MM
p−1C

p

��

� � / V

p

��

⟳

W

q

��

⟳

C � � /

∃ϕ

55B

⟳

Y

l
��

Y ′

Next, we construct a morphism ψ : Y → B. At first, we show that there exists a map ψ′ :
Y (k) → B(k) of sets such that ψ′ ◦ q ◦ prW = p ◦ prV ◦ Φ−1. For any closed point y ∈ ϕ(C) ⊆ Y ,
there exists a unique closed point y ∈ C such that x = ϕ(y). On the other hand, for any closed
point y ∈ Y \ ϕ(C), a morphism

τy := p ◦ prV ◦ Φ−1 ◦ jy : pr−1q−1(y) ↪→ W ×k A1 ≃ V ×k A1 → V → B

is not dominant. (If τy is dominant, then C ∩ τypr−1
V q−1(y) ̸= ∅, but this contradicts to the

construction of ϕ.) Then it follows that the image of τy is a closed point of B. we define a
morphism ψ′ : Y (k) → B(k) of sets to be ψ(y) = Imτy for each y ∈ Y (k). Then we have the
equality ψ′ ◦ q ◦ prW = p ◦ prV ◦ Φ−1 . Let {Yλ}λ∈Λ be an open affine covering of Y . Put
Wλ := q−1Yλ(≃ Yλ ×k A1), (V ×k A1)λ := Φ−1(Wλ ×k A1), Vλ := prV ((V ×k A1)λ) and Xλ := pVλ.

Next we observe that (V ×k A1)λ = Vλ ×k A1. Put Ky,λ := prV ◦ Φ−1 ◦Q−1(y)
Vλ

. Then (V ×k

A1)λ =
∪

y∈Yλ
Φ−1Q−1(y) and Vλ =

∪
y∈Yλ

Ky,λ. Moreover, we have pr−1Ky,λ ⊇ Φ−1Q−1(y), and

thus pr−1Ky,λ = Φ−1Q−1(y). As a consequence, we obtain the equality (V ×k A1)λ = Vλ ×k A1.
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For each λ ∈ Λ, we take a closed point (a1,λ, a2,λ) ∈ A2 and define

ψλ,aλ : Yλ
a1,λ−−→ Y ×k {a1,λ} ↪→ Yλ × A1 → Wλ

a2,λ−−→ Wλ ×k {a2,λ}
↪→ Wλ ×k A1 → Vλ ×k A1 → Vλ → B.

Then for any closed point y ∈ Yλ, ψλ,a1,λ(y) = ψ′(y). Therefore by Lemma 2.3, we can glue the
morphisms {ψλ,a1,λ} to a morphism ψ : Y → B. Moreover, ψ is a surjective birational morphism
and satisfies q ◦ prV ◦ Φ−1 = ψ ◦ p ◦ prW .

The variety Wλ is isomorphic to Yλ ×k A1 because Wλ is a principal Ga-bundle over Yλ and Yλ
is affine. By Theorem 3.2, we obtain an isomorphism Fλ : Vλ ≃ Wλ. In the same way as ψ, we
obtain a surjective birational morphism fλ : Yλ → Bλ such that fλ ◦ q = F−1

λ ◦ p. Moreover Yλ and

Bλ are nonsingular curves. Thus fλ (and ψλ := ψ|Bλ
Yλ

) should be an isomorphism. In conclusion,
we obtain the following commutative diagram.

Vλ

pλ
��

Fλ // Wλ

q

��

gλ // Yλ ×k A1

prYλ

zzvv
vv
vv
vv
vv

fλ×idA1// Bλ ×k A1

prYλ
◦(f−1

λ ×idA1 )
ttiiii

iiii
iiii

iiii
iiii

iiii

Bλ Yλ
fλ

oo

⟳

For a closed point x ∈ Cλ = Bλ∩C, the fiber p−1
λ (x) is just the orbit of µ by the construction of p

and pλ. For a closed point x ∈ Bλ\Cλ, we can not say that the fiber p−1
λ (x) is just the orbit only by

the construction. But thanks to the fact that each Ga-orbits are closed ([10]) and are isomorphic
to either A1 or a closed point, we can deduce that p−1

λ (x) is just the µ-orbit. Therefore, the action
µ on V can be restricted on Vλ, denoted by µ|Vλ

, and its quotient morphism is just pλ : Vλ → Bλ.
By the commutativity of the above diagram, such a Ga-action should be Ga-equivariantly trivial,
that is, pλ : Vλ → Bλ is a Ga-equivariantly trivial morphism.

By the construction of p′ and ψ, we have the equality p′λ = ψ−1
λ ◦ pλ. Then it follows that p′

satisfies the condition of the structure morphism of a principal Ga-bundle over Y . □
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