Parameterized Border Basis

数学応用数理専攻修士2年 揖研究室 石山健太

2016年2月5日

1 Introduction

Border basis と呼ばれる basis に対して、parameter を付与した時に parameter の値によって本当に border basis となりうるかどうかを判定したい。 そのための新たなツールとして parameterized border basis について述べる。

多項式環 $k[x_1,\ldots,x_n]$ について、単項式集合 $\mathbb{T}^n:=\{x_1^{a_1}\cdots x_n^{a_n}\mid a_i\in\mathbb{Z}_{\geq 0}\}$ を定める。

Definition 1.1. S, \mathcal{O} を空でない \mathbb{T}^n の部分集合とする。

- (a) S の closure \overline{S} とは次の \mathbb{T}^n の部分集合である。 $\overline{S} := \{t \in \mathbb{T}^n | t | t' \exists t' \in S \}$.
- (b) $\overline{\mathcal{O}} = \mathcal{O}$ である時 \mathcal{O} を order と言う。order ideal とも言う。

Definition 1.2. order \mathcal{O} について \mathcal{O} の border $\partial \mathcal{O}$ とは次のことを言う。

$$\partial \mathcal{O} := (x_1 \mathcal{O} \cup \ldots \cup x_n \mathcal{O}) \setminus \mathcal{O}.$$

order $\mathcal{O} = \{t_1, \dots, t_{\mu}\}$ と border $\partial \mathcal{O} = \{b_1, \dots, b_{\nu}\}$ を定めた上で

Definition 1.3. 次のような多項式の集合 $G = \{g_1, \ldots, g_{\nu}\}$ を \mathcal{O} -border prebasis と呼ぶ。

$$g_j = b_j - \sum_{i=1}^{\mu} \alpha_{ij} t_i \ (\alpha_{ij} \in k \ , \ 1 \le i \le \mu \ , \ 1 \le j \le \nu)$$

Definition 1.4. \mathcal{O} -border prebasis $G = \{g_1, \ldots, g_{\nu}\}$ に対し、G を含む $k[x_1, \ldots, x_n]$ のイデアル I に対して、次の同値な条件を満たす G を I の \mathcal{O} -border basis と呼ぶ。

- (a) O は P/I における k-ベクトル空間の basis である。
- (b) $I \cap \langle \mathcal{O} \rangle_k = \{0\}.$
- (c) $k[x_1, \ldots, x_n] = I \oplus \langle \mathcal{O} \rangle_k$.

2 parameterized border basis

parameter e_1, \ldots, e_m を含めた有理関数係数多項式環 $k(e_1, \ldots, e_m)[x_1, \ldots, x_n]$ (以後 k(e)[x] と省略して書く) について考える。

Definition 2.1. $I \subset k(e)[x]$ を zero-dimensional ideal とし、 $I \cap \langle \mathcal{O} \rangle_{k(e)} = \{0\}$ となるような適当な order $\mathcal{O} = \{t_1, \dots, t_{\mu}\}$ と、対応する border $\partial \mathcal{O} = \{b_1, \dots, b_{\nu}\}$ を取り、 \mathcal{O} -border basis $G = \{g_1, \dots, g_{\nu}\}$ を取る。

$$g_i = b_i - \sum_{j=1}^{\mu} \alpha_{ij}(e)t_j \quad (\alpha_{ij} \in k(e) \ e \ \mathcal{O}$$
有理関数)

このような border basis G に対し、次のような $G' = \{g'_1, \ldots, g'_n\}$ を取る

$$g_i' = \beta_i(e)b_i - \sum_{j=1}^{\mu} \alpha_{ij}'(e)t_j \quad (\alpha_{ij}', \beta_i \in k[e])$$

この g_i' は $g_i' = \beta_i(e)g_i$ であり、e について既約であるものとする。特に、任意の i に対し $V(\beta_i(e),\alpha_{i1}'(e),\ldots,\alpha_{i\mu}'(e)) = \phi$ である。具体的には既約な α_{ij} の分母にあたる e の多項式を u_{ij} とした時 $\beta_i(e) = LCM(u_{i1},\ldots,u_{i\mu})$ を取ればよい。この時この $G' = \{g_1',\ldots,g_\nu'\}$ をここでは parameterized \mathcal{O} -border basis と呼ぶものとする。

Theorem 2.2. zero-dimensional ideal $I \subset k(e)[x]$ と $a \in k^m$ に対して定める写像

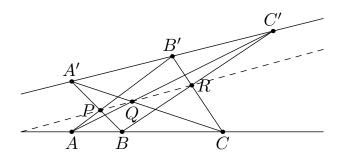
$$\phi_a: k[e][x] \to k[x] \ (f(e,x) \mapsto f(a,x))$$

について、 I_a を $\phi_a(I\cap k[e][x])$ により生成された k[x] のイデアルとする。I の \mathcal{O} -border basis G と、対応する parameterized \mathcal{O} -border basis G' について次のことが成り立つ。

 $\phi_a(G')$ は定数倍された I_a の \mathcal{O} -border basis である $\Leftrightarrow \beta_i(a) \neq 0 \ (\forall i=1,\ldots,\mu)$

3 Example

Figure 3.1. *(*パップスの定理)



 $A(0,0), B(1,0), C(e_1,0), A'(e_2,e_3), B'(e_4,e_5), C'(e_6,e_7)$

参考文献

- [AFT] J. Abbott, C. Fassino, M. L. Torrente, Stable border bases for ideals of points, Journal of Symbolic Computation 43, 2008, 883-894
- [T] 手島 悠人, Border Bases による代数曲線回帰について,(http://pc193097.pc.waseda.ac.jp/MasterThesis/index.html), 2011
- [KR2] M. Kreuzer, L. Robbiano, Computational Commutative Algebra 2, Springer-Verlag Berlin Heidelberg, 2000
- [CLO] D. A. Cox, J. Little, D O'Shea Ideals, Varieties, and Algorithms, Springer International Publishing Switzerland, 2015
- [S] W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann Singular, 2015