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SHGH CONJECTURE AND THE IRRATIONALITY OF SESHADRI CONSTANTS

MIRU HIROKAWA

Abstract. In this paper, we study the relation between SHGH conjecture and the irrationality of
Seshadri constants on blow-ups of P2, and generalize the result of [5]. Moreover, by investigating
SHGH conjecture on P1 ×P1 which was formulated in [6], we give a new form of an ample divisor on
P2 which has an irrational Seshadri constant.

1. Introduction

We investigate the relation between Segre-Harbourne-Gimigliano-Hirschowitz conjecture and the
irrationality of Seshadri constants of ample divisors on blow-ups of P2.

SHGH conjecture was first formulated by A. Hirschowitz in [8]:

Conjecture 1.1 (SHGH conjecture). Let Xr be the blow-up of P2 at r general points with exceptional
divisors e1, · · · , er. We denote by l the pullback to Xr of OP2(1) on P2. Let d,m1, · · · ,mr be integers
with m1 ≥ · · · ≥ mr ≥ −1 and d ≥ m1 +m2 +m3. Then the divisor

D = dl −
r∑

i=1

miei

is nonspecial.

It is known that SHGH conjecture implies Nagata conjecture [2], and is settled for r ≤ 9 in [3]. We
reffer to [3] for more information about SHGH conjecture.

Seshadri constants were introduced originally by J.P. Demailly in [4] to study the local positivity
of ample line bundles. This is a real number which is determined by each ample divisor on smooth
projective varieties (see Definition 2.3). However, an ample divisor with irrational Seshadri constant
has never been found in the literature.

The following is our main result of this paper.

Theorem 1.2. Let r ≥ 9 be an integer such that SHGH conjcture for r + 1 on P2 holds. Then there
exists an ample divisor A on the blow-up of P2 at general r points such that the Seshadri constant
εgen (A) is irrational.

In [5], M. Dumnicki, A. Kronya, C. Maclean and T. Szemberg investigated the relation between
SHGH conjecture and the irrationality of Seshadri constants. Our result gives a generalization of
their results. Moreover, our result has a corollary which insures the existence of ample divisors with
irrational Seshadri constant on “MANY” surfaces in the assumption of SHGH conjecture.

Corollary 1.3. Let r ≥ 9 be an integer such that SHGH conjecture for r+1 on P2 holds. Then there
exists an ample divisor A on the blow-up of P2 at general a points such that A has a homogeneous

form, A = dl −m

a∑
i=1

ei (d,m ∈ Z), and εgen (A) is irrational for all a ∈ {sn2 | s, n ∈ N, 9 ≤ s ≤ r}.

Moreover, we have a result on P1 × P1.
1
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Theorem 1.4. Let r ≥ 8 be an integer such that SHGH conjcture for r + 1 on P1 × P1 holds. Then
there exists an ample divisor A on the blow-up of P1 × P1 at general r points such that εgen (A) is
irrational.

The statement of Theorem 1.4 is similar to the one of Theorem 1.2. But Theorem 1.4 implies the
existence of a new form of ample divisors which do not appear in the conclusion of Theorem 1.2 (see
Remark on p.8):

Corollary 1.5. Let r ≥ 8 be an integer such that SHGH conjcture for r+1 on P1×P1 holds. Then there

exists an ample divisor A on the blow-up of P2 at general r points such that D = al−
r−2∑
i=1

bei−cer−1−cer,

where a, b, c are nonnegative integers with a = b+ 2c and
√

2
r+1 < b

a−b <
√

2
r .
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2. Definitions and Basic properties

Notation. Let π : Xr → P2 be the blow-up of P2 at r general points p1, · · · , pr with exceptional
divisors e1, · · · , er and l := π∗OP2(1).

Under this notation, we can express the Picard group of Xr as follows:

PicXr = Z · l ⊕ Z · e1 ⊕ · · · ⊕ Z · er
and the intersection theory on Xr is determined by the following rules:

l2 = 1, l.ei = 0, ei.ej = −δij (i, j = 1, · · · , r).

Let D be a divisor on Xr. If D.l ≥ −2 holds, then h2(Xr,OXr (D)) = 0 by Serre duality.

Definition 2.1. Let D = dl−
r∑

i=1

miei (d,m1, · · · ,mr ∈ Z) be a divisor on Xr. We define the virtual

dimension and the expected dimension of D as follows.

v -dim(D) :=
(d+ 1)(d+ 2)

2
−

r∑
i=1

mi(mi + 1)

2
,

e-dim(D) := max{v -dim(D), 0}.

In general, h0(Xr,OXr (D)) ≥ e-dim(D) holds. When h0(Xr,OXr (D)) > e-dim(D), D is called
special. Otherwise, D is called nonspecial.

Remark. Riemann Roch theorem implies that what D is special is equaivalent to

h0(Xr,OXr (D)) · h1(Xr,OXr (D)) ̸= 0.

It is well known that SHGH conjecture implies Nagata conjecture. The latter concerns plane curves
and is related to counterexamples of the Hilbert’s 14-th problem.

Conjecture 2.2 (Nagata conjecture). Let p1, · · · , pr be r general points on P2. Let C be an integral
plane curve of degree d. If multp1

C = m1, · · · ,multpr
C = mr (m1, · · · ,mr ∈ Z), then

d ≥ 1√
r

r∑
i=1

mi.
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Finally, we recall the definition of Seshadri constants.

Definition 2.3. Given a smooth projective variety X and a nef divisor L on X, the Seshadri constant
of L at a point p ∈ X is the real number defined by

ε(L; p) := sup{t ∈ R | µ∗L− tE : nef on Blp(X)},
where µ : Blp(X) → X is blow-up at p with the exceptional divisor E.

It follows immediately from the difinition that ε(L; p) ≤
√
Ln. In fact, if X is a surface and ε(L; p)

is a irrational number, then it must be equal to
√
L2. However, any example of a divisor on a variety

whose Seshadri constant at a point is irrational has not been known. It is also known that ε(L; p) has
a constant value at very general points p [11]. We denote this constant by εgen(L).

3. SHGH conjecture for P2 and the irrationality of Seshadri constants

First of all, we recall the property of the blow-up and the global section of line bundles.

Lemma 3.1. Let X be a surface, and P a point of X. Let π : X̃ → X be the blow-up with center P .
Let L be a line bundle on X. Then h0(X̃, π∗L) = h0(X,L).

proof . By the projection formula, we have π∗(OX̃ ⊗X̃ π∗L) = π∗OX̃ ⊗OX
L. Since π is a blow-up at

one point, we have π∗OX̃ = OX [7, V Proposition 3.5]. Substituting this equation for the projection

formula, we get π∗π
∗L = OX ⊗OX

L = L. Therefore, h0(X̃, π∗L) = h0(X,π∗π
∗L) = h0(X,L). □

In [5], they found the relation between SHGH conjecture and the irrationality of Seshadri constants:

Theorem 3.2 ([5]). Let r ≥ 9 be an integer such that the SHGH conjecture holds true for r+1 points.
Then

a) there exists an ample line bundle on Xr whose Seshadri constant at a very general point
is irrational, or

b) the SHGH conjecture fails for r points.

This is the first result which refers to the relation between two problems. Moreover, they got an
interesting corollary:

Corollary 3.3 ([5]). If SHGH conjecture for 10 points holds true, there exists an ample line bundle
on X9 whose Seshadri constant at a very general point is irrational.

This corollary can be obtained by the combination of their result [5, Theorem 1.1] and the fact that
the SHGH conjecture for 9 points holds.

It is enough to prove the next key proposition in order to complete the proof of our main theorem
by combinations of Theorem 3.2.

Proposition 3.4. Let r be a positive integer. If SHGH conjecture for r + 1 on P2 is true, then it is
true also for r.

proof . Let D be a divisor dl−
r∑

i=1

miei on Xr with m1 ≥ m2 ≥ · · · ≥ mr ≥ −1 and d ≥ m1+m2+m3.

We show that D is nonspecial on Xr.

When d < 0, D is not effective. This implies that D is nonspecial. So, we assume d ≥ 0. We define
M(D) as following.

M(D) = max{mi +mj +mk | i, j, k are distinct}
Let π : Xr+1 → Xr be the blow-up of Xr at a general point.

Case 0: m1 ≥ m2 ≥ m3 ≥ 0.
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Since π∗D = dl−
r∑

i=1

miei − 0er+1, M(D) = m1 +m2 +m3 and SHGH conjecture for r+ 1 implies

that π∗D is nonspecial on Xr+1. Therefore,

h0(Xr,OXr (D)) = h0(Xr+1,OXr+1(π
∗D))

= e-dim(π∗D)

= max{0, (d+ 1)(d+ 2)

2
−

r∑
i=1

mi(mi + 1)

2
− 0× 1

2
}

= max{0, (d+ 1)(d+ 2)

2
−

r∑
i=1

mi(mi + 1)

2
} = e-dim(D).

We conclude that D is nonspecial.

Case 1: 0 > m1 ≥ m2 ≥ m3.

In this case, m1 = m2 = m3 = −1 and M(π∗D) = 0 + m1 + m2. Since d ≥ 0, we have d ≥
0 +m1 +m2 = M(π∗D). SHGH conjecture for r + 1 implies that π∗D is nonspecial. Therefore,

h0(Xr,OXr (D)) = h0(Xr+1,OXr+1(π
∗D))

= e-dim(π∗D) = e-dim(D).

Case 2: m1 ≥ 0 > m2 ≥ m3.

In this case, m2 = m3 = −1. If d = 0 and m1 = 0, then d = 0 ≥ 0+0+(−1) = m1+0+m2. SHGH
conjecture for r + 1 implies that π∗D is nonspecial. Similarly, we can conclude that D is nonspecial.

If d > 0 and D is not effective, then D is nonspecial. We assume that D is effective. We put
L = l− e1. Since L is nef, D.L = d−m1 ≥ 0. Therefore, d ≥ m1 ≥ m1 − 1 = m1 +0+m2 = M(π∗D)
and SHGH conjecture for r + 1 implies that π∗D is nonspecial. Similarly, D is nonspecial.

Case 3: m1 ≥ m2 ≥ 0 > m3.

In this case, m3 = · · · = mr = −1 and D = dl −m1e1 −m2e2 + e3 + · · · + er. Consider the ideal
exact sequence:

0 → OXr (D − er) → OXr (D) → Oer (D|er ) → 0

Taking the long exact sequence, we get the following.

0 → H0(Xr,OXr (D − er)) → H0(Xr,OXr (D)) → H0(er,Oer (D|er ))

Since er is (−1)-curve, H0(er,Oer (D|er )) ≃ H0(P1,OP1(D.er)) = H0(P1,OP1(−1)) = 0. Therefore,

H0(Xr,OXr (D)) ≃ H0(Xr,OXr (D − er)). By the induction on r, we have

H0(Xr,OXr (D)) ≃ H0(Xr,OXr (dl −m1e1 −m2e2 − 0e3 − · · · − 0er))

= H0(Xr, µ
∗(OX2(dl −m1e1 −m2e2)))

= H0(X2,OX2(dl −m1e1 −m2e2)),

where µ : Xr → X2 is the blow-up at p3, · · · , pr which lie on Xr \ (e1 ∪ e2). Since SHGH conjecture
for r = 2 holds, D is nonspecial. □

Remark. From the proof of [5, Theorem 1.1], we see that the divisor with irrational Seshadri constant
is of the form:

D = dl −m
r∑

i=1

ei,
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where 1√
r+1

≤ m
d ≤ 1√

s
.

Next, we prove that SHGH conjecture implies the existence of ample divisors with irrational Se-
shadri constant on “MANY” surfaces. We recall an interesting proposition proved by a method of
degenerations.

Lemma 3.5 ([1]). Consider the plane P2 = P2
C over the field of complex number C. Let D = dl −

r∑
i=1

miei −mE be an ample (resp. nef) divisor on Xr+1 and F = ml −
s∑

i=1

αiEi a nef divisor on Xs.

Then, the divisor dl −
r∑

i=1

miei −
s∑

i=1

αiEi is ample (resp. nef) on Xr+s.

Corollary 3.6. Let r ≥ 9 be an integer such that SHGH conjecture for r+1 on P2 holds. Then there
exists an ample divisor A ∈ Pic(Xa) which has a homogeneous form and εgen (A) is irrational for all
a ∈ {sn2 | s, n ∈ N, 9 ≤ s ≤ r}.

proof . Let s be an integer with 9 ≤ s ≤ r. By our main theorem, there exists an ample divisor

A = dl −
s∑

i=1

mei on Xs with irrational Seshadri constant, that is, εgen (A) =
√
A2. We simply denote

εgen (A) by ε. The definition of Seshadri constant implies that µ∗A− εE is a nef divisor on X̃s, where

µ : X̃s → Xs is blow-up of Xs at a very general point with the exceptional divisor E.

Since Nagata conjecture holds for perfect square, Nn2 = l − 1
n

n2∑
j=1

Ej is nef on Xn2 . By applying

the Lemma 3.5 to A and Nn2 , we obtain A = dl − m
n

∑
1≤i≤s,1≤j≤n2

eij is ample on Xsn2 , where eij are

exceptional divisors on Xsn2 .

Similarly, µ′∗A − εE′ is nef on X̃sn2 which is the blow-up of Xsn2 at a point with the natural
projection µ′ and the exceptional divisor E′. This implies ε ≤ εgen(A). On the other hand, since

we can calculate A
2
= d2 − m2

n2 sn
2 = A2, we have εgen(A) ≤

√
A

2
=

√
A2. Consequently, we get

εgen(A) = ε. Hence the ample divisor nA has an irrational Seshadri constant and lies in PicXsn2 . □

4. SHGH conjecure for P1 × P1 and a remark on the irrationationality of Seshadri
constants on P2

SHGH conjecture on the Hirzebruch surfaces was formulated in [6]. We focus on P1×P1 in particular.
Let Yr = (P1×P1)r be the blow-up of P1×P1 at r general points with exceptional divisors e1, · · · , er.

We denote by l1, l2 the pullback to Yr of the P1 × {pt}, {pt} × P1 on P1 × P1. For the definitions of
the special, (−1)-special divisor, we reffer to [6]. SHGH conjecture for P1 × P1 is following.

Conjecture 4.1 ([6]). Special divisors on Yr are (−1)-special.

Brian-Nagata conjecture is known as a generalized Nagata conjecture [9]. We state Brian-Nagata
conjecture on P1 × P1.

Conjecture 4.2 (Brian-Nagata conjecture on P1 × P1). Let r be an integer with r ≥ 8, then

ε(L; r) =

√
2

r
,

where ε(L; r) = sup{t ∈ R | L− t

r∑
i=1

ei : nef}, L = l1 + l2.

We can prove that SHGH conjecture for P1 × P1 implies Brian-Nagata conjecture.
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Lemma 4.3. We assume that SHGH conjecture for r on P1 × P1 holds. Any integral curve C on Yr

satisfies C2 ≥ g(C)− 1, where g(C) is the genus of C.

proof . Since C is an integral curve, SHGH conjecture implies that C is nonspecial. Therefore
v -dim(C) = h0(C) ≥ 1. Since v -dim(C) = 1

2C.(C − KYr ) + 1 = C2 − 1
2C.(C + KYr ) + 1, this

implies C2 ≥ Pa(C)− 1 ≥ g(C)− 1 by the adjunction formula. □
Proposition 4.4. SHGH conjecture for P1 × P1 implies Brian-Nagata conjecture for any r ≥ 8.

proof . Let C be an integral curve on Yr which belongs to the linear system al1 + bl2 −
r∑

i=1

miei.

Case1: C2 ≥ 0

Since C2 = 2ab−
r∑

i=1

m2
i ≥ 0, 2ab ≥

r∑
i=1

m2
i ≥ 1

r

(
r∑

i=1

mi

)2

. The last inequality is Cauchy-Schwarz

inequality. Therefore,
√
2rab ≥

r∑
i=1

mi. The arithmetic mean and the geometric mean inequality

implies
r∑

i=1

mi ≤
√
2r

a+ b

2
=

√
r

2
(a+ b).

Case2: C2 < 0

In this case, the previous Lemma 4.3 implies g(C) = 0 and C2 = −1. Set Nr =
√

r
2 (l1+ l2)−

r∑
i=1

ei.

Then we have the following inequality:

C.Nr = C.(Nr +KYr )− C.KYr

= (a+ b)

(√
r

2
− 2

)
− (−C2 + 2g(C)− 2)

= (a+ b)

(√
r

2
− 2

)
+ 1 ≥ 1.

The case 1 and case 2 imply that Brian-Nagata conjecture holds. □
Lemma 4.5. If there exists a curve C ⊂ Yr which attains the Seshadri constant of Q-divisor L =

l1 + l2 − α
r∑

i=1

ei (α ∈ Q) at p, then there exists a divisor Γ with multp1 Γ = · · · = multpr Γ = M

attaining the Seshadri constant of L at p, that is,

L.Γ

multp Γ
=

L.C

multp C
= ε(L; p).

proof . Apply the same discussion as [5, Lemma 2.1]. □
Lemma 4.6. Let r ≥ 8 be an integer. The function

f(δ) = (2
√
r + 1−

√
2r)
√
2− rδ2 − (r

√
r + 1−

√
2r)δ +

√
2r − 2

√
2

takes non-negative values for any δ satisfying
√

2
r+1 ≤ δ ≤

√
2
r .

Lemma 4.7. Let r ≥ 8 be an integer. The function

f(r) = (r + 1)
3
2 − 2

√
2r + 4

√
r

takes positive values.



SHGH CONJECTURE AND THE IRRATIONALITY OF SESHADRI CONSTANTS 7

Proposition 4.8. SHGH conjecture for r + 1 on P1 × P1 implies the conjecture for r on P1 × P1.

proof . Recall that the blow-up of P1 × P1 at one point is isomorphic to the blow-up of P2 at two
points. Via this isomorphsm, we identify Yr with Xr+1. The notions defined in [6] such as “special”
or “(−1)-special” for a divisor on the blow-up of P1 × P1 coincide with the one on the blow-up of P2.
Therefore, Lemma 3.4 implies this Proposition 4.8. □

Now, we prove that SHGH conjecture implies the existence of ample line bundles whose Seshadri
constant is irrational.

Theorem 4.9. Let r ≥ 8 be an integer such that SHGH conjecture for r + 1 on P1 × P1 holds. Then
there exists an ample divisor A ∈ Pic(Yr) such that εgen (A) is irrational.

proof . We first prove the following claim.
Claim: SHGH conjecture for r + 1 on P1 × P1 implies either there exists an ample line bundle on Yr

whose Seshadri constant at a very general point is irrational, or SHGH conjecture fails for r on P1×P1.

The combination of this and Proposition 4.8 implies our desired result.

Our proof is based on the proof of [5, Theorem 1.1]. Let δ be a rational number satisfying
√

2
r+1 ≤

δ ≤
√

2
r . Since SHGH conjecture on P1 × P1 implies Brian Nagata conjecture:

ε(L; r) =

√
2

r
,

and hence the Q-divisor L = l1 + l2 − δ

r∑
i=1

ei is ample. If ε(L; p) is irrational, where p is a very general

point on Yr, then the proof is finished.

So we can assume that ε(L; p) is rational, and not equal to
√
L2. In this situation, basic properties

of Seshadri constants and Lemma 4.5 imply that there is a divisor Γ ⊂ P1 × P1 of type (a, b) with

M = multp1 Γ = · · · = multpr Γ and m = multp Γ whose proper transform Γ̃ on Xr attains the Seshadri
constant of L at p:

ε(L; p) =
L.Γ̃

m
=

a+ b− rδM

m
<
√
2− rδ2.

Set γ = a+ b. Then,

(1) γ < m
√
2− rδ2 + rδM.

Now, we suppose that SHGH conjecture on P1 × P1 holds for r + 1. So, Brian-Nagata conjecture on
P1 × P1 also holds for r + 1. Therefore,

(2)
γ

rM +m
≥
√

2

r + 1

r∑
i=1

ei.

This is because (l1 + l2 −
√

2
r+1 ).Γ̃ ≥ 0.

We claim that δ ≥ 2M +m. Suppose not:

γ < 2M +m.

Put

α =
2
√
r + 1−

√
2r

2− rδ
, β =

√
2r − δr

√
r + 1

2− rδ

which are positive real numbers. The formulas (1) and (2) imply
√
2 < β + α

√
2− rδ2.
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Substituting α and β for (1), (2), we obtain that:
√
2(2− rδ) >

√
2r − rδ

√
r + 1 + (2

√
r + 1−

√
2r)
√

2− rδ2.

This contradicts Lemma 4.6. So, we obtain that δ ≥ 2M +m.
By SHGH conjecture for r + 1 on P1 × P1, the effective linear system

al1 + bl2 −M

r∑
i=1

ei −mer+1

is nonspecial on Xr+1. Indeed γ ≥ 2M +m by the previous discussion and γ ≥ 3M is satisfied because

of γ
rM >

√
2
r and r ≥ 8.

We have
0 ≤ 2(ab+ a+ b)− rM(M + 1)−m(m+ 1).

The formula (1) is equivalent to

a+ b < m
√

2− rδ2 + rδM,

and
2ab ≤ (a+ b)2.

Those inequalities impily

(3) 0 < r(rδ2 − 1)M2 + 2rδ
√
2− rδ2mM + (1− rδ2)m2 + r(2δ − 1)M + (2

√
2− rδ2 − 1)m.

Now, the quadratic terms in M and m in (3) are negative definite. Indeed, if we set

A =

(
r(rδ2 − 1) rδ

√
2− rδ2

rδ
√
2− rδ2 1− rδ2

)
,

then,

detA ≤ r

(
−1 +

2
√
2r(

√
r −

√
2)

(r + 1)
√
r + 1

)
.

Lemma 4.7 implies that detA < 0. Moreover, we have r(rδ2 − 1) > 0.
Furthermore, the linear terms in (3) are also negative:

2δ − 1 < 0, 2
√
2− rδ2 < 0,

because r ≥ 8.
This is the desired contradiction. □

Corollary 4.10. Let r ≥ 8 be an integer such that SHGH conjecture for r+ 1 on P1 × P1 holds, then

there exists an ample divisor A on the blow-up of P2 at general r points such that A = al −
r−2∑
i=1

bei −

cer−1 − cer, where a, b, c ∈ Z≥0 and a = b+ 2c,
√

2
r+1 < b

a−b <
√

2
r .

proof . Since the blow-up of P1 × P1 at one point is isomorphic to the blow-up of P2 at two points,
their Picard groups are isomorphic. We identify that the blow-up of P1 ×P1 at p with the exceptional
divisor Ep with P2 at q1, q2 with exceptional divisors Eq1 , Eq2 , where the strict transform of the two
lines l1, l2 through p on P1×P1 coincides with Eq1 , Eq2 and strict transform of the line passing through
q1, q2 on P2 is Ep.

Namely,
li − Ep = Eqi (i = 1, 2), l − Eq1 − Eq2 = Ep.

Via this isomorphism, we have

al1 + bl2 − nEp = (a+ b− n)l − (b− n)Eq1 − (a− n)Eq2 .

in Pic(Y1) = Pic(X2), where a, b, n ∈ Z.
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Especially,
ml1 +ml2 − nEp = (2m− n)l − (m− n)Eq1 − (m− n)Eq2 .

This implies Corollary 4.10. □
Remark. In an assumption of SHGH conjecture, the existence of a homogeneous ample divisor with
irrational Seshadri constant has already been known by Theorem 1.2 and [5]. However, corollary
4.10 insures the existence of an ample divisor with an irrational Seshadri constant which is “NOT” a
homogeneous form.

Finally, we provide proofs of Lemmas 4.6 and 4.7.
Proof of Lemma 4.6

Since f(
√

2
r+1 ) = 0, it is enough to show that f(δ) is increasing on the interval

√
2

r+1 ≤ δ ≤
√

2
r .

The derivation of f(δ) is following.

f ′(δ) = r

(√
2 +

8√
2− rδ2

(
√
2r − 2

√
r + 1)−

√
r + 1

)
.

Now, if
√

2
r+1 ≤ δ ≤

√
2
r , then

δ√
2− rδ2

≥ 1.

Therefore,

f ′(δ) ≥ r(
√
2r + 2

√
r + 1)−

√
r + 1

= r(
√
2 +

√
2r − 3

√
r + 1) ≥ 0,

because r ≥ 8. This implies that f(δ) ≥ 0.
Proof of Lemma 4.7

The proof of this lemma is obtained by an elementary calculus.
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