Stable flag complex と f-列

早稲田大学基幹理工学研究科数学応用数理専攻 楫元研究室修士2年佐藤孝弘

平成27年2月6日

概要

この論文では simplicial complex Δ が flag であり、その Stanley-Reisner ideal が strongly stable または stable であるとき、その極小生成元集合がどのような性質をもつのか、極小生成元集合と f-列がどのような関係にあるのかを 調べた.

主定理 1 [n] 上の simplicial complex Δ に対して, I_{Δ} が strongly stable, $G(I_{\Delta}) = G(I_{\Delta})_2$ であることと

$$G(I_{\Delta}) = \{x_1x_2, \dots, x_1x_{d_1}\}$$
 $\cup \{x_2x_3, \dots, x_2x_{d_2}\}$
 $\cup \dots$
 $\cup \{x_kx_{k+1}, \dots, x_kx_{d_k}\},$
 $d_1 \ge d_2 \ge \dots \ge d_k$
と表すことができることは同値である.

主定理**2** [n] 上の simplicial complex Δ に対して, I_{Δ} が stable, $G(I_{\Delta})=G(I_{\Delta})_2$ であることと

$$G(I_{\Delta}) = \{x_1x_2, \dots, x_1x_{d_1}\}$$
 $\cup \{x_2x_3, \dots, x_2x_{d_2}\}$ $\cup \dots$ $\cup \{x_kx_{k+1}, \dots, x_kx_{d_k}\},$ $1 \leq \forall i \leq k-1, k \leq d_i \leq n$ と表すことができることは同値である.

主定理 3 Δ が strongly stable flag complex であるとき, $G(I_{\Delta})$ から $f(\Delta)$ を , 逆に $f(\Delta)$ から $G(I_{\Delta})$ をただ一通りに決めることができる.

また、stable flag complex の場合は主定理3の類似は成り立たない.

例 4

 Δ_1, Δ_2 を [4] 上の simplicial complex とする

 $G(I_{\Delta_1})=\{x_1x_2,x_1x_3,x_1x_4\}\cup\{x_2x_3\}$ とおく. このとき, $d_1=4,d_2=3.d_1\geq d_2$ が成り立つので主定理 1 より I_{Δ_1} は strongly stable であることがわかる. また, Δ_1 は strongly stable flag complex であることもわかる.

 $G(I_{\Delta_2}) = \{x_1x_2, x_1x_3\} \cup \{x_2x_3, x_2x_4\}$ とおく. このとき、 $d_1' = 3, d_2' = 4.d_1' < d_2'$ が成り立つので主定理 1 より I_{Δ_2} は strongly stable ではない. しかし、 $2 \le d_1', d_2' \le 4$ が成り立つので主定理 2 より I_{Δ_2} は stable であることがわかる. また, Δ_2 が stable flag complex であることもわかる.

定義 $\mathbf{5}$ a-列 $\mathbf{a}=(a_1,a_2,\ldots,a_{n-1})\in\mathbf{Z}^{n-1}_{\geq 0}$ は以下の条件を満たす数列である.

$$1 \leq \exists k \leq n - 1, 1 \leq \forall i \leq n - 1, 0 \leq a_i \leq n - (i + 1),$$

$$a_1 \leq a_2 \leq \dots \leq a_k \leq a_{k+1} > a_{k+2} > \dots > a_{n-1},$$

$$k + 2 \leq \forall i \leq n - 1, a_i = a_{k+1} - (i - k - 1)$$

定義 $\mathbf{6}$ a-列 $\mathbf{a}=(a_1,a_2,\ldots,a_{n-1})\in\mathbf{Z}^{n-1}_{\geq 0}$ は以下の条件を満たす数列である.

$$1 \le \exists k \le n - 1, 1 \le \forall i \le k - 1, 0 \le a_i \le n - k$$
$$a_k \le a_{k+1} > a_{k+2} > \dots > a_{n-1}$$
$$k + 2 \le \forall i \le n - 1, a_i = a_{k+1} - (i - k - 1).$$

例7

例4の Δ_1, Δ_2 についてa-列とf-列について計算すると以下のようになる.

$$\Delta_1 : \mathbf{a} = (0, 1, 1), f(\Delta_1) = (4, 2)$$

 $\Delta_2 : \mathbf{a} = (1, 0, 1), f(\Delta_2) = (4, 2)$

参考文献

- [1] J.Herzog, T.Hibi, Monomial Ideals. Springer-verlag London, 2011
- [2] R.stanley, Combinatorics and Commutative Algebra, Second Edition. Bi irkhäuser, 1995