四次以下の非特異平面曲線の Versal Deformation について

早稲田大学基幹理工学研究科 数学応用数理専攻

根本卓弥

学籍番号 5112A047-2 指導教員名 楫元

2015年1月27日

1 Introduction

代数閉体 k 上のスキーム X_0 の versal deformation について, それが存在するかどう かということ以上に一般的にわかっていることはほとんどない ([4]). Schlessinger の criterion によって versal deformation の存在がわかっている場合として,

- (1) X_0 is affine with isolated singularities.
- (2) X_0 is projective.

の二つがある.(1)のときはたとえば [6] で具体的な versal deformation の計算が行われて いる.本論文では,あまり行われていない(2)の場合について,とくに,非特異な射影スキー ムの versal deformation を計算することを考えた.その結果,四次以下の非特異平面曲線 については, versal deformation の中でも変数の数が一番少ない miniversal deformation が次の方法で計算できることが分かった.すなわち,

Main theorem

 $X_0 = V(f) \hookrightarrow \mathbb{P}^2_k = \operatorname{Proj} k[x_0, x_1, x_2]$ を d 次 (d ≤ 4) の非特異平面曲線とす る. $x_i f_{x_j}$ (0 ≤ i, j ≤ 2) の生成する $k[x_0, x_1, x_2]$ のイデアルを J とする. $\mu := \dim_k (k[x_0, x_1, x_2]/J)_{d \setminus \mathfrak{RB} \mathcal{T}}$ とおく. g_1, \ldots, g_μ を d 次斉次多項式で, $k[x_0, x_1, x_2]/J$ への像が $(k[x_0, x_1, x_2]/J)_{d \setminus \mathfrak{RB} \mathcal{T}}$ の k 上のベクトル空間としての基底となっているものと する.

 X_0 の deformation (V, R) を次で定める.

$$R := k[[t_1, \dots, t_{\mu}]], \ F := f + \sum_{i=1}^{\mu} t_i g_i$$
$$V := V(F) \hookrightarrow \mathbb{P}^2_R, \ V_n := V \times_{\operatorname{Spec} R} \operatorname{Spec}(R/\mathfrak{m}^{n+1}_A)$$

このとき, deformation (V, R) は X_0 の miniversal deformation である.

versal deformation が具体的にわかることによって, X_0 の全ての deformation の具体 的な形がわかる.

一般的な非特異平面四次曲線は 28 本の bitangent を持つことが知られている. 最後に, Fermat quartic のある 1 変数の deformation によって, Fermat quartic の bitangent の 数がどのように変化するかを調べる.

2 Versal deformation

2.1 Deformation

kを代数閉体, X_0 をk上のスキーム, Aを完備 Noether 局所k代数で剰余体がkであるもの, $A_n := A/\mathfrak{m}_A^{n+1}$ とする.

Definition Deformation of a scheme ([7] Definition 6.1)

deformation (X, A) とはスキームの族 $X = \{X_n\}$ と完備 Noether 局所 k 代数で剰余 体が k である環 A で, 各 $n \ge 0$ に対し A_n 上 flat and of finite type なスキーム X_n と closed embedding $X_{n-1} \hookrightarrow X_n$ で同型 $X_{n-1} \simeq X_n \times_{\operatorname{Spec} A_n} \operatorname{Spec} A_{n-1}$ を導くものから 成る. X は X_0 の A 上の abstract deformation, または deformation であるという.

X, X'がともに $A \perp O X_0 = X'_0$ の deformation のとき, $\phi: X \simeq X'$ が同型とは, 各 $n \ge 0$ に対し $\phi_n: X_n \simeq X'_n$ であって $\phi_n|_{X_{n-1}} = \phi_{n-1}$, さらに $\phi_0: X_0 \to X_0$ は恒等写 像であるものとする.

2.2 Functor of Artin rings

Cを局所 Artin 環の圏, \hat{C} を完備 Noether 局所 k 代数で剰余体が k であるものの圏, F を C から (Sets) への covariant functor とする.

 $R \in \widehat{\mathcal{C}}$ とするとき, $\varprojlim F(R/\mathfrak{m}^n)$ の元と covariant functor の射 $\operatorname{Hom}_k(R, -) \to F$ の間に一対一の対応がある.

Definition Smooth morphism ([2] p.108 Definition)

 $G \to F$ を functor の射とする. 任意の $A \in C$ に対し, $G(A) \to F(A)$ は全射で, さらに 任意の $A, B \in C$ と全射 $B \to A$ に対し $G(B) \to G(A) \times_{F(A)} F(B)$ が全射であるとき, functor の射 $G \to F$ は smooth であるという.

 $A \in \mathcal{C}$ に対し集合 $\text{Def}(X_0)(A) = \{\text{isom. classes of deformations of } X_0/A\}$ を対応さ せる functor を F とすると, $X_0 \ \mathcal{O} \ R \in \widehat{\mathcal{C}} \perp \mathcal{O}$ deformation X は射 $\text{Hom}_k(R, -) \rightarrow$ $\text{Def}(X_0)$ を与える. この射が smooth のとき, X を versal deformation という.

とくに, $D := k[t]/t^2$ とするとき, $\operatorname{Hom}_k(R, D) \to \operatorname{Def}(X_0)(D)$ が全単射ならば, X を miniversal deformation という.

3 Embedded and abstract deformation

 $X_0 = V(f) \hookrightarrow \mathbb{P}^2_k = \operatorname{Proj} k[x_0, x_1, x_2]$ を *n* 次の非特異平面曲線とする. 下の図を可換 にする X を X₀ の *R* 上の embedded deformation という.

$$\begin{array}{c} X \hookrightarrow \mathbb{P}^2_R \\ \uparrow \qquad \uparrow \\ X_0 \hookrightarrow \mathbb{P}^2_k \end{array}$$

 X_0 の embedded deformation の同値類の集合から abstract deformation の同値類の 集合への写像がある. この写像の全射性について調べる. これは $D = k[t]/t^2$ 上で調べれば 十分である.

exact sequence

$$0 \longrightarrow \mathscr{T}_{X_0} \longrightarrow \mathscr{T}_{\mathbb{P}^2_k}|_{X_0} \longrightarrow \mathscr{N}_{X_0} \longrightarrow 0$$

より, cohomology をとって

$$0 \longrightarrow \mathrm{H}^{0}(\mathscr{T}_{X_{0}}) \longrightarrow \mathrm{H}^{0}(\mathscr{T}_{\mathbb{P}^{2}_{k}}|_{X_{0}}) \longrightarrow \mathrm{H}^{0}(\mathscr{N}_{X_{0}})$$
$$\longrightarrow \mathrm{H}^{1}(\mathscr{T}_{X_{0}}) \longrightarrow \mathrm{H}^{1}(\mathscr{T}_{\mathbb{P}^{2}_{k}}|_{X_{0}}) \longrightarrow \mathrm{H}^{1}(\mathscr{N}_{X_{0}}) \longrightarrow 0 \quad (\mathrm{exact})$$

D上では embedded deformation の同値類は $\mathrm{H}^{0}(\mathscr{N}_{X_{0}})$ の元と, abstract deformation の同値類は $\mathrm{H}^{1}(\mathscr{T}_{X_{0}})$ の元と一対一に対応している. そこで, $\mathrm{H}^{1}(\mathscr{T}_{\mathbb{P}^{2}_{k}}|_{X_{0}}) = \mathrm{H}^{0}(\Omega_{\mathbb{P}^{2}_{k}}(n-3)|_{X_{0}})^{\vee}$ について調べる.

exact sequence

$$0 \longrightarrow \Omega_{\mathbb{P}^2_k}(n-3)|_{X_0} \longrightarrow \mathscr{O}_{X_0}(n-4)^3 \longrightarrow \mathscr{O}_{X_0}(n-3) \longrightarrow 0$$

より,

$$0 \longrightarrow \mathrm{H}^{0}(\Omega_{\mathbb{P}^{2}_{k}}(n-3)|_{X_{0}}) \longrightarrow \mathrm{H}^{0}(\mathscr{O}_{X_{0}}(n-4)^{3}) \longrightarrow \mathrm{H}^{0}(\mathscr{O}_{X_{0}}(n-3)) \longrightarrow \dots$$

 $n \leq 3 \text{ のとき}, \mathrm{H}^{0}(\mathscr{O}_{X_{0}}(n-4)^{3}) = 0, \mathfrak{s} \mathfrak{c} n = 4 \mathcal{O} \mathfrak{c} \mathfrak{s}, \mathrm{H}^{0}(\mathscr{O}_{X_{0}})^{3} \to \mathrm{H}^{0}(\mathscr{O}_{X_{0}}(1))$ は単射. よってこれらの場合 $\mathrm{H}^{0}(\Omega_{\mathbb{P}^{2}_{k}}(n-3)|_{X_{0}}) = 0. n \geq 5 \mathcal{O} \mathfrak{c} \mathfrak{s} \mathfrak{c}, \mathrm{H}^{0}(\Omega_{\mathbb{P}^{2}_{k}}(n-3)|_{X_{0}}) \neq 0$ がわかる.

よって, $n \leq 4$ のとき, $\mathrm{H}^{0}(\mathcal{N}_{X_{0}}) \to \mathrm{H}^{1}(\mathscr{T}_{X_{0}})$ は全射で, X_{0} の deformation は全て embedded であることがわかる.

4 Deformation of local complete intersections

local complete intersection の deformation についての結果を準備する. 以下は [7] に よる.

4.1 Obstruction space

(X, A) を X_0 の Artin 環 A 上の deformation とする. A の small extension とは, Artin 環の全射 $A' \rightarrow A$ で kernel a が長さ 1 であるものとする.

Definition Abstract lifting ([7] Definition 4.2)

 $X O A' \land O$ abstract lifting とは, $A' \perp$ flat なスキーム X' と, embedding $X \hookrightarrow X'$ で同型 $X \simeq X' \times_{\text{Spec}A'}$ SpecA を導くものとする.

Proposition 4.1 ([7] Theorem 4.4)

上の deformation (X, A) と small extension $A' \to A$ に対してある元

$$\omega_{\mathrm{abs}}(X) \in \mathfrak{a} \otimes_k \mathrm{Ext}^2_{\mathscr{O}_{X_0}}(\Omega_{X_0}, \mathscr{O}_{X_0}) \simeq \mathrm{Ext}^2_{\mathscr{O}_{X_0}}(\Omega_{X_0}, \mathscr{O}_{X_0})$$

が存在して, $\omega_{abs} = 0 \Leftrightarrow X \circ A' \circ O$ abstract lifting が存在する.

Definition Obstruction space ([7] Definition 6.5)

 X_0 の obstruction space Obs X_0 とは全ての deformation (X, A)と全ての small extension $A \to A'$ に対する $\omega_{abs} \in \operatorname{Ext}^2_{\mathscr{O}_{X_0}}(\Omega_{X_0}, \mathscr{O}_{X_0})$ が生成する $\operatorname{Ext}^2_{\mathscr{O}_{X_0}}(\Omega_{X_0}, \mathscr{O}_{X_0})$ の 部分空間のこととする.

$$Obs X_0 = <\omega_{abs} |all (X, A), all A' \to A > \subset Ext^2_{\mathscr{O}_{X_0}}(\Omega_{X_0}, \mathscr{O}_{X_0})$$

Obs $X_0 = 0$ のとき, X_0 は unobstructed であるという.

4.2 Kodaira-Spencer map

 X_0 は $k \perp \mathcal{O}$ local complete intersection とする. X_0 の Artin 環 $A \perp \mathcal{O}$ embedded deformation を X'_1, X'_2 ,対応する $\mathscr{O}_{\mathbb{P}^2_A}$ のイデアル $\mathcal{I}'_1, \mathcal{I}'_2$ とする. X_0 のイデアル \mathcal{I}_0 の元 f を, f の二つのイデアルへのリフト f_1, f_2 の差 $f_1 - f_2$ の $\mathfrak{m}_A \otimes_k \mathscr{O}_{X_0}$ への像に写す写

像が定義できる.これを

$$\nu(X_1',X_2'):\mathcal{I}\to\mathfrak{m}_A\otimes_k\mathscr{O}_{X_0}$$

とかく. これは $\operatorname{Hom}_{\mathscr{O}_{\mathbb{P}^2_{L}}}(\mathcal{I},\mathfrak{m}_A\otimes_k \mathscr{O}_{X_0}) = \mathfrak{m}_A\otimes_k \operatorname{H}^0(\mathscr{N}_{X_0})$ の元である.

Proposition 4.2 ([7] Proposition 4.11)

 X_0 の Artin 環 A 上の abstract deformation X'_1, X'_2 に対し, well-defined な元

$$e(X'_1, X'_2) \in \mathfrak{m}_A \otimes_k \operatorname{Ext}^1_{\mathscr{O}_{X_0}}(\Omega_{X_0/k}, \mathscr{O}_{X_0})$$

が存在して次を満たす.

(a) $e(X'_1, X'_2) = 0 \Leftrightarrow X'_1, X'_2$ は同型.

(b) X'_1, X'_2, X'_3 を X_0 の abstract deformation とするとき, $e(X'_1, X'_2) + e(X'_2, X'_3) = e(X'_1, X'_3)$.

(c) X'_1, X'_2 が embedded のとき, $e(X'_1, X'_2) = \partial \nu(X'_1, X'_2)$ ここに

$$\partial: \operatorname{Hom}(\mathcal{I}_0/\mathcal{I}_0^2, \mathfrak{m}_A \otimes_k \mathscr{O}_{X_0}) \to \operatorname{Ext}^1_{\mathscr{O}_{X_0}}(\Omega_{X_0}, \mathfrak{m}_A \otimes_k \mathscr{O}_{X_0})$$

は exact sequence

$$0 \longrightarrow \mathcal{I}_0/\mathcal{I}_0^2 \longrightarrow \Omega_{\mathbb{P}^2_k}|_{X_0} \longrightarrow \Omega_{X_0} \longrightarrow 0$$

からくる写像.

次に, A を完備 Noether 局所 k 代数で剰余体が k であるものとし, (X, A) を X_0 の A上の deformation とする. このとき, $X_1 \ge X_0 \times_{\text{Spec}k} \text{Spec}A_1$ は $X_0 \text{ or } A_1 = A/\mathfrak{m}_A^2$ 上の deformation である.

Definition Kodaira-Spencer map ([7] Definition 6.9)

$$\begin{aligned} \mathbf{k}_X &= e(X_1, X_0 \times_{\mathrm{Spec}k} \mathrm{Spec}A_1) \in (\mathfrak{m}_A/\mathfrak{m}_A^2) \otimes_k \mathrm{Ext}^1_{\mathscr{O}_{X_0}}(\Omega_{X_0}, \mathscr{O}_{X_0}) \\ &\simeq \mathrm{Hom}((\mathfrak{m}_A/\mathfrak{m}_A^2)^{\vee}, \mathrm{Ext}^1_{\mathscr{O}_{X_0}}(\Omega_{X_0}, \mathscr{O}_{X_0})) \end{aligned}$$

を $X \mathcal{O}$ Kodaira-Spencer class という.

対応する linear map $K_X : (\mathfrak{m}_A/\mathfrak{m}_A^2)^{\vee} \to \operatorname{Ext}^1_{\mathscr{O}_{X_0}}(\Omega_{X_0}, \mathscr{O}_{X_0})$ を Kodaira-Spencer map という.

次の命題を使って versal deformation を計算する.

Proposition 4.3 ([7] Corrolary 7.16)

 X_0 は unobstructed とする. このとき, X_0 の deformation (X, A)は miniversal deformation $\Leftrightarrow A$ は formal power series ring で, Kodaira-Spencer map $K_X : (\mathfrak{m}_A/\mathfrak{m}_A^2)^{\vee} \to$ Ext $^1_{\mathscr{O}_{X_0}}(\Omega_{X_0}, \mathscr{O}_{X_0})$ は同型写像.

5 Proof of the theorem

 X_0 は1次元なので, Obs $X_0 \subset \operatorname{Ext}^2_{\mathscr{O}_{X_0}}(\Omega_{X_0}, \mathscr{O}_{X_0}) = 0$ であって X_0 は unobstructed. したがって Proposition 4.3 より, (V, R)の Kodaira-Spencer map が同型であることを 見ればよい. cohomology の完全列は,

$$\mathrm{H}^{0}(\mathscr{T}_{\mathbb{P}^{2}_{k}}|_{X_{0}}) \longrightarrow \mathrm{H}^{0}(\mathscr{N}_{X_{0}}) \longrightarrow \mathrm{H}^{1}(\mathscr{T}_{X_{0}}) \longrightarrow 0$$

だった. (V, R)の Kodaira-Spencer class

$$\mathbf{k}_V = e(V_1, X_0 \times_{\operatorname{Spec} k} \operatorname{Spec} R_1) \in (\mathfrak{m}_R/\mathfrak{m}_R^2) \otimes_k \operatorname{H}^1(\mathscr{T}_{X_0})$$

は Proposition 4.2 (c) より

$$\nu(V_1, X_0 \times_{\operatorname{Spec} k} \operatorname{Spec} R_1) \in (\mathfrak{m}_R/\mathfrak{m}_R^2) \otimes_k \operatorname{H}^0(\mathscr{N}_{X_0})$$

の $(\mathfrak{m}_R/\mathfrak{m}_R^2) \otimes_k \mathrm{H}^0(\mathscr{N}_{X_0}) \to (\mathfrak{m}_R/\mathfrak{m}_R^2) \otimes_k \mathrm{H}^1(\mathscr{T}_{X_0})$ による像である. 今, X_0 は平面曲 線なので, $\mathrm{H}^0(\mathscr{N}_{X_0}) = \mathrm{H}^0(\mathscr{O}_{X_0}(d))$ であって, $\mathrm{H}^0(\mathscr{N}_{X_0})$ の元は f の像で決まる. f の V_1 のイデアルへのリフトとしては F, $X_0 \times_{\mathrm{Spec}k} \mathrm{Spec}R_1$ のイデアルへのリフトとしては fがとれる. よって $\mathbf{k}_V = e(V_1, X_0 \times_{\mathrm{Spec}k} \mathrm{Spec}R_1)$ は

$$F - f = \sum_{i=1}^{\mu} t_i g_i \in (\mathfrak{m}_R/\mathfrak{m}_R^2) \otimes_k \mathrm{H}^0(\mathscr{N}_{X_0})$$

の $(\mathfrak{m}_R/\mathfrak{m}_R^2) \otimes_k \mathrm{H}^1(\mathscr{T}_{X_0})$ への像である. 今, $\mathrm{H}^0(\mathscr{T}_{\mathbb{P}^2_k}|_{X_0}) \to \mathrm{H}^0(\mathscr{O}_{X_0}(d))$ の像は $x_i f_{x_j} \ (0 \leq i, j \leq 2)$ の生成するイデアルなので, g_i のとりかたにより, この元が定める Kodaira-Spencer map は同型写像. よって (V, R) は miniversal deformation である. \Box

Remark 5.1

上の証明では X_0 のイデアルの生成元が一つ, $\mathrm{H}^0(\mathscr{N}_{X_0}) \to \mathrm{H}^1(\mathscr{T}_{X_0})$ は全射, X_0 は unobstructed であれば良かった. したがってより一般に次が成り立つ.

Generalization of main theorem

 $X_0 = V(f) \hookrightarrow \mathbb{P}^n_k = \operatorname{Proj} k[x_0, \dots, x_n]$ を d 次の非特異超曲面で、 $\mathrm{H}^0(\mathscr{N}_{X_0}) \to$ $\mathrm{H}^1(\mathscr{T}_{X_0})$ は全射、さらに X_0 は unobstructed とする. $x_i f_{x_j}$ ($0 \leq i, j \leq n$)の生成す る $k[x_0, \dots, x_n]$ のイデアルを J とする. $\mu := \dim_k(k[x_0, \dots, x_n]/J)_{d \setminus \mathfrak{R}^{\oplus} \mathcal{T}}$ とおく. g_1, \dots, g_μ を d 次斉次多項式で、 $k[x_0, \dots, x_n]/J \land \mathfrak{O}$ 像が $(k[x_0, \dots, x_n]/J)_{d \setminus \mathfrak{R}^{\oplus} \mathcal{T}}$ の k 上のベクトル空間としての基底となっているものとする.

 X_0 の deformation (V, R) を次で定める.

$$R := k[[t_1, \dots, t_{\mu}]], \quad F := f + \sum_{i=1}^{\mu} t_i g_i$$
$$V := V(F) \hookrightarrow \mathbb{P}^n_R, \quad V_m := V \times_{\operatorname{Spec} R} \operatorname{Spec}(R/\mathfrak{m}^{m+1}_A) \quad (m \ge 0)$$

このとき, deformation (V, R) は X_0 の miniversal deformation である.

Remark 5.2

 X_0 は \mathbb{P}^n_k の d 次の超曲面とする. $n \ge 3, d \ge 2$ のときは, (n, d) = (3, 4) のときを 除いて X_0 は unobstructed で, $\mathrm{H}^0(\mathscr{N}_{X_0}) \to \mathrm{H}^1(\mathscr{T}_{X_0})$ は全射であることがわかってい る ([5] Examples 3.2.11.(i)). よってこのときも定理の方法で miniversal deformation が 計算できる. (n, d) = (3, 4) のときは $\mathrm{H}^0(\mathscr{N}_{X_0}) \to \mathrm{H}^1(\mathscr{T}_{X_0})$ は全射ではなく, このとき, embedded deformation でない deformation が存在するので, 定理の方法で miniversal deformation の計算はできない.

 $n = 2, d \ge 5$ のときも H⁰(\mathscr{N}_{X_0}) \rightarrow H¹(\mathscr{T}_{X_0}) は全射ではないので同様に定理の方法で miniversal deformation の計算はできない.

6 Example

6.1 Miniversal deformation of Fermat quartic

 X_0 が $f=x^4+y^4+z^4$ の定める ${\rm V}(f)\hookrightarrow \mathbb{P}^2_k={\rm Proj}\,k[x,y,z]$ のとき, 定理のイデア ルJは

$$J = \{xf_x, yf_x, zf_x, xf_y, yf_y, zf_y, xf_z, yf_z, zf_z\}$$

= $\{4x^4, 4x^3y, 4x^3z, 4xy^3, 4y^4, 4y^3z, 4xz^3, 4yz^3, 4yz^3, 4z^4\}$

となり,したがって

$$\mathrm{H}^{1}(\mathscr{T}_{X_{0}}) \simeq \left(\frac{k[x, y, z]}{(x^{4}, x^{3}y, x^{3}z, xy^{3}, y^{4}, y^{3}z, xz^{3}, yz^{3}, z^{4})}\right)_{4 \text{ (xiii)}}$$

である. この *k* ベクトル空間の基底としては *J* の生成元に現れない単項式をとればよい. よって,

$$\begin{split} g_1 &= x^2 y^2, \quad g_2 = x^2 z^2, \quad g_3 = y^2 z^2 \\ g_4 &= x^2 y z, \quad g_5 = x y^2 z, \quad g_6 = x y z^2 \qquad \succeq \, \cup \, \zeta \\ R &:= k[[t_1, \dots, t_6]] \ , \ F &:= f + \sum_{i=1}^{\mu} t_i \, g_i \\ V &:= \mathcal{V}(F) \hookrightarrow \mathbb{P}^2_R \ , \ V_n &:= V \times_{\mathrm{Spec}R} \, \mathrm{Spec}(R/\mathfrak{m}^{n+1}_A) \end{split}$$

とおくと (V, R) が X_0 の miniversal deformation である.

6.2 Deformation of Fermat quartic and its 16 bitangents

一般的な非特異平面四次曲線の inflection point の数は 24 個であり, また, 一般的な非 特異平面四次曲線は 28 本の bitangent を持つことが知られている ([1] Exercise 2.3).

tangent の intersection multiplicity が 3 である inflection point の数を i_3 , bitangent の数を $l \geq j \leq l = 16 + \frac{1}{2}i_3$ が成り立つ ([3] Section 1.5 Exercise 3). Fermat quartic の inflection point の数は 12 個である ([3] Section 1.5 Exercise 3). tangent の intersection multiplicity が 4 である inflection point の数を $i_4 \geq j \leq 2$, inflection point の数につい ては intersection multiplicity を考慮して $2i_4 + i_3 = 24$ が成り立ち, また Fermat quartic の場合, 実際の点の数を数えて $i_4 + i_3 = 12$ も成り立っている. すなわち $i_4 = 12, i_3 = 0$ であって, 上の式で $i_3 = 0$ より Fermat quartic は l = 16 本の bitangent を持っている. 式 $l = 16 + \frac{1}{2}i_3$ の形を見ると, Fermat quartic の bitangent の数は非特異平面四次曲線 の持つ bitangent の数としては最小であることがわかる.

よって, Fermat quartic の deformation によって bitangent は 16 本から増加してい き, 一般的な曲線が得られたとき 28 本になるということが考えられる. 以下では, Fermat quartic の miniversal deformation で得られる一変数の deformation について, bitangent の増え方を, inflection point の増え方を見ることによって調べる.

(A) $F = x^4 + y^4 + z^4 + tx^2y^2$ のとき

 $F := x^4 + y^4 + z^4 + tx^2y^2$, $f := x^4 + y^4 + z^4$ とおく. F の inflection point は Mathematica で計算してみると 20 個あることがわかる (Appendix 9.1). tangent の intersection multiplicity が 4 である inflection point の数を i_4 , tangent の intersection multiplicity が 3 である inflection point の数を i_3 とすると, inflection point を intersection multiplicity を考慮して数えて $2i_4 + i_3 = 24$, 実際の inflection point の数を数 えて $i_4 + i_3 = 20$ が成り立つので $i_4 = 4, i_3 = 16$ である. このとき bitangent の数 l は l = 16 + 8 = 24本に増えている.

	i_4	i_3	l
$f = x^4 + y^4 + z^4$	12	0	16
$F = x^4 + y^4 + z^4 + tx^2y^2$	4	16	24

Fの24の bitangent については, (i) Fの bitangent でt = 0のときfの bitangent に なっているもの, そして (ii) Fの bitangent でt = 0のときfの intersection multiplicity が4の tangent になっているものに分類できる. inflection point についても (iii) i_4 , (iv) i_3 の二種類が考えられる. これらに対応する dual curve の特異点を調べて以下で実際に分 類を決定する.

Singular で dual curve の方程式を求めてヤコビアンイデアルの準素分解を取ったのが Appendix 9.2 である. これらの dual curve の特異点は次のように分類できる.

(i) deformation の bitangent で, t = 0 のときも Fermat quartic の bitangent になって いるものの接点に対応する特異点 (Appendix 9.3)

[2],[3],[6] イデアルからでてくる特異点を計算し, それらのうち一つをとって dual map の逆像が t = 0 のとき何点あるか調べたのが Appendix 9.3 である. これをみるとこの点 は t = 0 のとき dual map の逆像が 2 点あることから f の dual curve の node になって いる. したがって $t \neq 0$ のときの F の dual curve の特異点も node である. 他の点も同様 で, これは 16 個ある.

(ii) deformation の bitangent で, t = 0 のとき Fermat quartic の intersection multiplicity が 4 である tangent になるものの接点に対応する特異点 (Appendix 9.4)

[1],[7] から特異点が 4 点ずつ出てくるが, Appendix の計算によるとこれらの特異点は t = 0のとき [1],[7] とも同じ点で, Fermat quartic の inflection point であり, $t \neq 0$ のと きは dual map の逆像が 2 点あることから node になっている. よってこれら 8 個の点が 増加した分の bitangent を与えている.

(iii) deformation \mathcal{O} inflection point で tangent \mathcal{O} intersection multiplicity が 4 の点に

対応する特異点 (Appendix 9.5)

5番目のイデアルからは4点が得られるが、このうち一つの点での tangent を計算する と、Fとの交点は1点であることがわかる (Appendix 9.5). したがってこの点の tangent の intersection multiplicity は4である. 他の点も同様.

(iv) deformation の inflection point で tangent の intersection multiplicity が 3 の点に 対応する特異点 (Appendix 9.6)

4番目のイデアルに出てくる16個の点が残るこの場合に当たる.

(B) $F = x^4 + y^4 + z^4 + tx^2yz$ のとき

 $x^4 + y^4 + z^4 + tx^2yz$ の inflection point は Mathematica で計算してみるとすでに 24 個あることがわかる (Appendix 9.7). Singular では dual curve の計算はできなかった が, 24 個の inflection point はすべて tangent の intersection multiplicity が 3 である inflection point で, bitangent の数 l は l = 16 + 12 = 28 本と, 非特異平面四次曲線の持 つ bitangent の数としては最大になっていることがわかる.

	i_4	i_3	l
$x^4 + y^4 + z^4$	12	0	16
$x^4 + y^4 + z^4 + tx^2y^2$	4	16	24
$x^4 + y^4 + z^4 + tx^2yz$	0	24	28

inflection point と bitangent の数についてまとめると次のようになる.

7 Acknowledgements

本論文の執筆にあたり,毎週のセミナーに加えて何度も私の質問に答えて頂いた指導教 員の楫元先生に感謝致します.また,私の訪問を受け入れてくださり, bitangent を調べる ことについて助言して頂いた東海大学の那須弘和先生にもお礼申し上げます.

8 References

 R. Hartshorne, "Algebraic geometry", Graduate Texts in Mathematics, 52. Springer-Verlag, 1977

- [2] R. Hartshorne, "Deformation theory", Graduate Texts in Mathematics, 257. Springer, 2010
- [3] N. Namba, "Geometry of algebraic projective curves", Marcel Dekkers INC, New York and Basel, 1984
- [4] M. Schlessinger, "Functors of Artin rings", Trans. Amer. Math. Soc. 130, 208–222, 1968
- [5] E. Sernesi, "Deformations of algebraic schemes", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 334, Springer-Verlag, Berlin, 2006
- [6] J. Stevens, "Computing versal deformations", Experiment. Math. 4, no. 2, 129– 144, 1995
- [7] A. Vistoli, "The deformation theory of local complete intersections", arXiv:math.AG/9703008.

9 Appendix

9.1 $F = x^4 + y^4 + z^4 + tx^2y^2$ \mathcal{O} inflection point

Mathematica で $F = x^4 + y^4 + z^4 + tx^2y^2$ の inflection point を計算する. まずは Fのヘッシアンを計算すると,

Det[D[$x^4 + y^4 + z^4 + t * x^2 * y^2$, {{x, y, z}, 2}]] 12 (24 t x^4 + 144 $x^2 y^2$ - 12 t² $x^2 y^2$ + 24 t y^4) z^2

となる. この式ともとの F とを連立すると inflection point が得られる.

$$\begin{aligned} & \text{Reduce} \left[\{ \mathbf{\hat{x}} \equiv 0, \mathbf{x}^{\mathbf{\hat{4}}} + \mathbf{y}^{\mathbf{\hat{4}}} + \mathbf{z}^{\mathbf{\hat{4}}} + \mathbf{t} \mathbf{x}^{\mathbf{\hat{2}}} \mathbf{z} + \mathbf{y}^{\mathbf{\hat{2}}} \equiv 0 \}, \{ \mathbf{x}, \mathbf{y}, \mathbf{z} \} \right] \\ & \left[\left| \left| \mathbf{y} \right|^{2} - \frac{\sqrt{-t \, \mathbf{x}^{2}} - \sqrt{-4 + t^{2} \, \mathbf{x}^{2}}}{\sqrt{2}} \right| | \mathbf{y} \right|^{2} = \frac{\sqrt{-t \, \mathbf{x}^{2}} - \sqrt{-4 + t^{2} \, \mathbf{x}^{2}}}{\sqrt{2}} | | \mathbf{y} = \frac{\sqrt{-t \, \mathbf{x}^{2}} + \sqrt{-4 + t^{2} \, \mathbf{x}^{2}}}{\sqrt{2}} \right] \mathbf{\hat{a}} \mathbf{\hat{a}} \mathbf{\hat{a}} \mathbf{z} = 0 \\ & \left[\mathbf{y} = -\frac{\sqrt{-t \, \mathbf{x}^{2}} + \sqrt{-4 + t^{2} \, \mathbf{x}^{2}}}{\sqrt{2}} \right] \mathbf{\hat{a}} \mathbf{\hat{a}} \mathbf{z} = 0 \\ & \left[(t = 0 \, \mathbf{\hat{a}} \mathbf{\hat{a}} \mathbf{x} = 0 \, \mathbf{\hat{a}} \mathbf{\hat{a}} \left(\mathbf{z} = -(-1)^{1/4} \, \mathbf{y} \, | \, \mathbf{z} = (-1)^{1/4} \, \mathbf{y} \, | \, \mathbf{z} = -(-1)^{3/4} \, \mathbf{y} \, | \, \mathbf{z} = (-1)^{3/4} \, \mathbf{y} \right] \right] \\ & \left[t \neq 0 \, \mathbf{\hat{a}} \mathbf{\hat{a}} \left[\mathbf{y} = -\frac{1}{2} \sqrt{-\frac{12 \, \mathbf{x}^{2}}{t} + t \, \mathbf{x}^{2}} - \frac{\sqrt{144 - 40 \, t^{2} + t^{4} \, \mathbf{x}^{2}}}{t} \right] \\ & \mathbf{y} = \frac{1}{2} \sqrt{-\frac{12 \, \mathbf{x}^{2}}{t} + t \, \mathbf{x}^{2}} - \frac{\sqrt{144 - 40 \, t^{2} + t^{4} \, \mathbf{x}^{2}}}{t} \\ & \left[| \mathbf{y} = -\frac{1}{2} \sqrt{-\frac{12 \, \mathbf{x}^{2}}{t} + t \, \mathbf{x}^{2}} + \frac{\sqrt{144 - 40 \, t^{2} + t^{4} \, \mathbf{x}^{2}}}{t} \right] \\ & \mathbf{y} = \frac{1}{2} \sqrt{-\frac{12 \, \mathbf{x}^{2}}{t} + t \, \mathbf{x}^{2}} + \frac{\sqrt{144 - 40 \, t^{2} + t^{4} \, \mathbf{x}^{2}}}{t} \\ & \left[| \mathbf{y} = \frac{1}{2} \sqrt{-\frac{12 \, \mathbf{x}^{2}}{t} + t \, \mathbf{x}^{2}} + \frac{\sqrt{144 - 40 \, t^{2} + t^{4} \, \mathbf{x}^{2}}}{t} \right] \\ & \mathbf{\hat{a}} \mathbf{\hat{a}} \end{bmatrix} \end{aligned}$$

$$\left(z = -\left(-x^4 - t x^2 y^2 - y^4 \right)^{1/4} \mid \mid z = -i \left(-x^4 - t x^2 y^2 - y^4 \right)^{1/4} \mid \mid z = i \left(-x^4 - t x^2 y^2 - y^4 \right)^{1/4} \right) \right) \mid \mid z = \left(-x^4 - t x^2 y^2 - y^4 \right)^{1/4} \right) \right) \mid \mid z = 0 \&\& x \neq 0 \&\& y = 0 \&\& z = -i \left(-x^4 \right)^{1/4} \mid z = -i \left(-x^4 \right)^{1/4} \mid z = -i \left(-x^4 \right)^{1/4} \mid z = -i \left(-x^4 \right)^{1/4} \right)$$

よって, $t \neq 0$ のとき $F = x^4 + y^4 + z^4 + tx^2y^2$ は 20 個の inflection point を持っている.

9.2 $F = x^4 + y^4 + z^4 + tx^2y^2$ の dual curve の特異点

 $x^4 + y^4 + z^4 + tx^2y^2$ の dual curve を Singular で求める.

> ring R=(0,t),(x,y,z,p,q,r),wp(1,1,1,3,3,3);

- > poly F=x4+y4+z4+tx2y2;
- $> poly \ f1 = diff(F,x)-p;$
- > poly f2=diff(F,y)-q;
- > poly f3=diff(F,z)-r;
- > poly f4=px+qy+rz;
- > ideal i=f1,f2,f3,f4;
- > ideal i1=eliminate(i,x);
- > ideal i2=eliminate(i1,y);
- > ideal i3=eliminate(i2,z);
- > poly d=i3[1];

 $f1, \ldots, f4$ から x, y, zを消去した dが Fの dual curve を与える方程式である. このヤコ ビアンイデアルを準素分解すると,

- > ideal j=jacob(d);
- > LIB" primdec.lib";
- // ** loaded /usr/share/Singular/LIB/primdec.lib (14732,2012-03-30)
- // ** loaded /usr/share/Singular/LIB/ring.lib (15322,2012-10-12)
- // ** loaded /usr/share/Singular/LIB/absfact.lib (14191,2011-05-04)
- // ** loaded /usr/share/Singular/LIB/triang.lib (13499,2010-10-15)
- // ** loaded /usr/share/Singular/LIB/matrix.lib (13658,2010-11-16)
- // ** loaded /usr/share/Singular/LIB/nctools.lib (14246,2011-05-26)
- // ** loaded /usr/share/Singular/LIB/inout.lib (13499,2010-10-15)
- // ** loaded /usr/share/Singular/LIB/random.lib (14661,2012-03-05)

```
// ** loaded /usr/share/Singular/LIB/poly.lib (14852,2012-04-30)
// ** loaded /usr/share/Singular/LIB/elim.lib (14661,2012-03-05)
// ** loaded /usr/share/Singular/LIB/general.lib (14191,2011-05-04)
> primdecGTZ(j);
[1]:
  [1]:
    [1] = 4 q 4 + (-t2 + 4) r 4
    _[2]=p
[2]:
  [1]:
     [1] = (t+2)^{*}q4 + (t-2)^{*}r4
    _[2]=p-q
  [2]:
    [1] = (t+2)*q4+(t-2)*r4
    _[2]=p-q
[3]:
  [1]:
    -[1] = (t-2)*q4 + (t+2)*r4
    _{-}[2] = p2 + q2
  [2]:
    -[1] = (t-2)*q4 + (t+2)*r4
    [2] = p2 + q2
[4]:
```

[1]:

 $\label{eq:1} -[1] = (8503056t8 - 136048896t6 + 816293376t4 - 2176782336t2 + 2176782336) * q16 + (15746410 + 9447840t8 - 196515072t6 + 1350411264t4 - 3990767616t2 + 4353564672) * q12r4 + (729t12 + 192456t10 + 1574640t8 - 67371264t6 + 549234432t4 - 1813985280t2 + 2176782336) * q8r8 + (864t12 + 58752t10 - 622080t8 + 1492992t6) * q4r12 + (256t12) * r16$

 $\label{eq:2} -[2] = (-944784t12 + 50388480t10 - 1103507712t8 + 10642046976t6 - 50388480000t4 + 116095057920t2 - 104485552128) *q14 + (-17496t14 - 209952t12 + 48988800t10 - 1445589504t8 + 16182540288t6 - 85297618944t4 + 214775857152t2 - 208971104256) *q10r4 + (-81t16 - 14904t14 + 723168t12 - 1233792t10 - 391412736t8 + 5916727296t6 - 35634733056t4 + 98680799232t2 - 104485552128) *q6r8 + (256t15 - 19456t13 + 405504t11 - 1327104t9) *p2r12 + (-80t16 - 10408t14 - 10408t14$

 $320t14 + 259584t12 - 746\ 4960t10 + 52752384t8 - 107495424t6) * q2r12$

 $\label{eq:sphere:sphe$

 $\label{eq:constraint} \begin{array}{c} \label{eq:constraint} [5] = (1458t6 - 29160t4 + 163296t2 - 279936) * p2q6 + (-2916t5 + 23328t3 - 46656t) * q8 + (432t6 - 1728t4) * p2q2r4 + (81t7 - 3564t5 + 24624t3 - 46656t) * q4r4 + (16t7) * r8 \end{array}$

-[6] = (36t)*p4 + (-18t2+216)*p2q2 + (36t)*q4 + (-t3+36t)*r4

[2]:

```
\label{eq:constraint} \begin{array}{l} \_[1] = (2916t4 - 23328t2 + 46656)^*q8 + (27t6 + 1836t4 - 19440t2 + 46656)^*q4r4 + (16t6)^*r8 \\ \_[2] = (-108t2 + 432)^*q6 + (8t3)^*p2r4 + (-t4 - 72t2 + 432)^*q2r4 \\ \_[3] = (27t2 - 108)^*p2q2 + (2t3)^*r4 \end{array}
```

```
[4] = (108t2-432)*p4 + (108t2-432)*q4 + (t4+72t2-432)*r4
```

[5]:

[1]:

_[1]=q

$$_{-[2]=4*p4+(-t2+4)*r4}$$

[2]:
 $_{-[1]=q}$
 $_{-[2]=4*p4+(-t2+4)*r4}$
[8]:
[1]:
 $(中略)$
[2]:
 $_{-[1]=r}$
 $_{-[2]=q}$
 $_{-[3]=p}$

射影スキームの特異点を考えるには [1] から [7] までのイデアルにでてくる素イデアル を調べればよい.

9.3 [2],[3],[6]

[2] の計算.

Reduce [{ (t+2) $*q^4$ + (t-2) $*r^4 = 0, p-q = 0$ }, {p, q, r}]

$$\left(q = p \&\& -2 + t \neq 0 \&\& \left(r = -\frac{(-2 p^4 - p^4 t)^{1/4}}{(-2 + t)^{1/4}} \mid |r = -\frac{i (-2 p^4 - p^4 t)^{1/4}}{(-2 + t)^{1/4}} \mid |r = \frac{i (-2 p^4 - p^4 t)^{1/4}}{(-2 + t)^{1/4}} \right)$$

$$r = \frac{i (-2 p^4 - p^4 t)^{1/4}}{(-2 + t)^{1/4}} \mid |r = \frac{(-2 p^4 - p^4 t)^{1/4}}{(-2 + t)^{1/4}} \right)$$

$$|| (t = 2 \&\& p = 0 \&\& q = 0)$$

$$\text{Reduce} \left[\left\{ 4 * x^3 + 2 * t * x * y^2 = 1, 4 * y^3 + 2 * t * x^2 * y = 1, 4 * y^3 + 2 * t * x^2 * y = 1, 4 * y^3 + 2 * t * x^2 * y = 1, 4 * y^3 + 2 * t * x^2 * y = 1, 4 * y^3 + 2 * t * x^2 * y = 1, 4 * y^3 + 2 * t * x^2 * y = 1, 4 * y^3 + 2 * t * x^2 * y = 1, 4 * z^3 = \frac{(-2 - t)^{1/4}}{(-2 + t)^{1/4}}, x + y + \frac{(-2 - t)^{1/4}}{(-2 + t)^{1/4}} * z = 0 \right\}, \{x, y, z\} \right]$$

[3] の計算.

$$\begin{cases} t = 0.666 \times = \left(-\frac{1}{2}\right)^{2/3} 6.6 \text{ y} = \frac{1}{4} i \left(-(-1)^{1/6} 2^{1/3} + (-1)^{2/3} 2^{2/3} \sqrt{3}\right) 6.6 \\ z = -\frac{1}{4} i \left((-1)^{1/6} 2^{1/3} + (-1)^{2/3} 2^{1/3} \sqrt{3}\right) \right) || \\ \left(t = 0.666 \times = \left(-\frac{1}{2}\right)^{2/3} 6.6 \text{ y} = -\frac{1}{4} i \left((-1)^{1/6} 2^{1/3} + (-1)^{2/3} 2^{1/3} \sqrt{3}\right) 6.6 \\ z = \frac{1}{4} i \left(-(-1)^{1/6} 2^{1/3} + (-1)^{2/3} 2^{1/3} \sqrt{3}\right) \right) || \\ \left(t = 0.666 \times = \frac{1}{2^{2/3}} 6.6 \text{ y} = -\frac{1}{4} i \left(i 2^{1/3} + 2^{1/3} \sqrt{3}\right) 6.6 \text{ z} = \frac{1}{4} i \left(i 2^{1/3} + 2^{1/3} \sqrt{3}\right) \right) || \\ \left(t = 0.666 \times = \frac{1}{2^{2/3}} 6.6 \text{ y} = -\frac{1}{4} i \left(i 2^{1/3} + 2^{1/3} \sqrt{3}\right) 6.6 \text{ z} = -\frac{1}{4} i \left(-i 2^{1/3} + 2^{1/3} \sqrt{3}\right) \right) || \\ \left(t = 0.666 \times = \frac{1}{2^{2/3}} 6.6 \text{ y} = -\frac{1}{4} i \left(i 2^{1/3} + 2^{1/3} \sqrt{3}\right) 6.6 \text{ z} = -\frac{1}{4} i \left(-i 2^{1/3} + 2^{1/3} \sqrt{3}\right) \right) || \\ \left(t = 0.666 \times = -\frac{(-1)^{1/3}}{2^{2/3}} 6.6 \text{ y} = -\frac{1}{4} i \left((-1)^{5/6} 2^{1/3} - (-2)^{1/3} \sqrt{3}\right) 6.6 \right) \\ z = \frac{1}{4} i \left((-2)^{1/3} - i \left(-2\right)^{1/3} \sqrt{3}\right) \right| || \\ \left(t = 0.666 \times = -\frac{(-1)^{1/3}}{2^{2/3}} 6.6 \text{ y} = -\frac{1}{2} \left(-\frac{1}{2}\right)^{1/3} \sqrt{3}\right) 6.6 \text{ z} = -\frac{(-1)^{1/3}}{2^{2/3}} 6.6 \right) \\ y = -\frac{1}{4} i \left((-1)^{5/6} 2^{1/3} + (-2)^{1/3} \sqrt{3}\right) \text{ sis } z = \frac{1}{4} \left((-2)^{1/3} + i \left(-2\right)^{1/3} \sqrt{3}\right) \right| || \\ \left(t = 6.666 \times = -\frac{1}{2} \left(-\frac{1}{2}\right)^{1/3} 5.6 \text{ y} = -\frac{1}{2} \left(-\frac{1}{2}\right)^{1/3} 6.6 \text{ z} = -\frac{(-1)^{1/12}}{2^{1/3}} \right) ||| \\ \dots (\text{IV T B'B') \\ \text{MatrixRank} [\left\{\left[\left(-\frac{1}{2}\right\right]^{2/3}, -\frac{1}{4} i \left((-1)^{1/6} 2^{1/3} + (-1)^{2/3} 2^{1/3} \sqrt{3}\right), -\frac{1}{4} i \left((-1)^{1/6} 2^{1/3} + (-1)^{2/3} 2^{1/3} \sqrt{3}\right), \\ \left\{\frac{1}{2^{2/3}}, -\frac{1}{4} i \left(-i 2^{1/3} + 2^{1/3} \sqrt{3}\right), -\frac{1}{4} i \left(i 2^{1/3} + 2^{1/3} \sqrt{3}\right)\right\}, \\ \left\{\frac{1}{2^{2/3}}, -\frac{1}{4} i \left(i (-1)^{5/6} 2^{1/3} - (-2)^{1/3} \sqrt{3}\right), \frac{1}{4} i \left((-2)^{1/3} - i (-2)^{1/3} \sqrt{3}\right)\right\}, \\ \left\{\frac{1}{2^{2/3}}, -\frac{1}{4} i \left((-1)^{5/6} 2^{1/3} - (-2)^{1/3} \sqrt{3}\right), \frac{1}{4} i \left((-2)^{1/3} - i (-2)^{1/3} \sqrt{3}\right)\right\}, \\ \left\{\frac{-(-1)^{1/3}}{2^{2/3}}, -\frac{1}{4} i \left((-1)^{5/6} 2^{1/3} - (-2)^{1/3} \sqrt{3}\right), \frac{1}{4} i \left((-2)^{1/3} - i (-2)^{1/3} \sqrt{3}\right)\right\}, \\ \left\{\frac{-(-1)^{1/3}}{2^{2/3}}, -\frac{1}$$

Reduce[{(t-2) *q⁴+(t+2) *r⁴ == 0, p²+q² == 0}, {p, q, r}] (t == -2 && p == 0 && q == 0) ||

$$\left((q = -ip || q = ip) \&\&2 + t \neq 0 \&\& \left(r = -\frac{(2p^4 - p^4 t)^{1/4}}{(2 + t)^{1/4}} || r = -\frac{i(2p^4 - p^4 t)^{1/4}}{(2 + t)^{1/4}} || r = -\frac{i(2p^4 - p^4 t)^{1/4}}{(2 + t)^{1/4}} || r = \frac{i(2p^4 - p^4 t)^{1/4}}{(2 + t)^{1/4}} || r = \frac{(2p^4 - p^4 t)^{1/4}}{(2 + t)^{1/4}} \right) \right)$$

Reduce $\left[\left\{ 4 * x^3 + 2 * t * x * y^2 = 1, 4 * y^3 + 2 * t * x^2 * y = i, \right. \right]$

$$\begin{aligned} \mathbf{4} \star \mathbf{z}^{\mathbf{A}} \mathbf{3} &= \frac{(\mathbf{2} - \mathbf{t})^{1/4}}{(\mathbf{2} + \mathbf{t})^{1/4}}, \mathbf{x} + \mathbf{i} \star \mathbf{y} + \frac{(\mathbf{2} - \mathbf{t})^{1/4}}{(\mathbf{2} + \mathbf{t})^{1/4}} \star \mathbf{z} = \mathbf{0} \right\}, \{\mathbf{x}, \mathbf{y}, \mathbf{z} \} \right] \\ \left[\mathbf{t} &= -6 \, \& \& \, \mathbf{x} = -\frac{1}{2} \left(-\frac{1}{2} \right)^{1/3} \& \& \, \mathbf{y} = -\frac{\mathbf{i}}{2 \times 2^{1/3}} \& \& \, \mathbf{z} = \left(-\frac{1}{2} \right)^{7/12} \right) | \, | \\ \left[\mathbf{t} &= -6 \, \& \& \, \mathbf{x} = \frac{1}{2 \times 2^{1/3}} \& \& \, \mathbf{y} = -\frac{\mathbf{i}}{2 \times 2^{1/3}} \& \& \, \mathbf{z} = -\frac{(-1)^{1/4}}{2^{7/12}} \right] | \, | \\ \left[\mathbf{t} &= -6 \, \& \& \, \mathbf{x} = \frac{(-1)^{2/3}}{2 \times 2^{1/3}} \& \& \, \mathbf{y} = \frac{(-1)^{1/6}}{2 \times 2^{1/3}} \& \& \, \mathbf{z} = -\frac{(-1)^{11/2}}{2^{7/12}} \right] | \, | \\ \left[\mathbf{t} &= -6 \, \& \& \, \mathbf{x} = \frac{(-1)^{2/3}}{2 \times 2^{1/3}} \& \& \, \mathbf{y} = \frac{(-1)^{1/6}}{2 \times 2^{1/3}} \& \& \, \mathbf{z} = -\frac{(-1)^{1/12}}{2^{7/12}} \right] | \, | \\ \left[\mathbf{t} &= 0 \, \& \& \, \mathbf{x} = \left(-\frac{1}{2} \right)^{2/3} \& \& \, \mathbf{y} = \frac{1}{4} \left(-(-1)^{1/6} \, 2^{1/3} - (-1)^{2/3} \, 2^{1/3} \, \sqrt{3} \right) \& \& \\ \mathbf{z} = \frac{1}{4} \, \mathbf{i} \left(-(-1)^{1/6} \, 2^{1/3} + (-1)^{2/3} \, 2^{1/3} \, \sqrt{3} \right) \right) | \, | \left[\mathbf{t} = 0 \, \& \& \, \mathbf{x} = \left(-\frac{1}{2} \right)^{2/3} \& \& \\ \mathbf{y} = \frac{1}{4} \left(-(-1)^{1/6} \, 2^{1/3} + (-1)^{2/3} \, 2^{1/3} \, \sqrt{3} \right) \& \& \, \mathbf{z} = -\frac{1}{4} \, \mathbf{i} \left((-1)^{1/6} \, 2^{1/3} + (-1)^{2/3} \, 2^{1/3} \, \sqrt{3} \right) \right) | \, | \\ \left[\mathbf{t} = 0 \, \& \& \, \mathbf{x} = \frac{1}{2^{2/3}} \& \& \, \mathbf{y} = \frac{1}{4} \left(\mathbf{i} \, 2^{1/3} - 2^{1/3} \, \sqrt{3} \right) \& \& \, \mathbf{z} = -\frac{1}{4} \, \mathbf{i} \left(\mathbf{i} \, 2^{1/3} + 2^{1/3} \, \sqrt{3} \right) \right) | \, | \\ \left[\mathbf{t} = 0 \, \& \& \, \mathbf{x} = \frac{1}{2^{2/3}} \& \& \, \mathbf{y} = \frac{1}{4} \left(\mathbf{i} \, 2^{1/3} - 2^{1/3} \, \sqrt{3} \right) \& \& \, \mathbf{z} = -\frac{1}{4} \, \mathbf{i} \left(\mathbf{i} \, 2^{1/3} + 2^{1/3} \, \sqrt{3} \right) \right) | \, | \\ \left[\mathbf{t} = 0 \, \& \& \, \mathbf{x} = \frac{1}{2^{2/3}} \& \& \, \mathbf{y} = \frac{1}{4} \left(\mathbf{i} \, 2^{1/3} + 2^{1/3} \, \sqrt{3} \right) \& \& \, \mathbf{z} = -\frac{1}{4} \, \mathbf{i} \left(\mathbf{i} \, 2^{1/3} + 2^{1/3} \, \sqrt{3} \right) \right) | \, | \\ \left[\mathbf{t} = 0 \, \& \& \, \mathbf{x} = -\frac{(-1)^{1/3}}{2^{2/3}} \& \& \\ \mathbf{z} = \frac{1}{4} \left((-2)^{1/3} + \mathbf{i} \, (-2)^{1/3} \, \sqrt{3} \right) \right] | \, | \\ \left[\mathbf{t} = 0 \, \& \& \, \mathbf{z} = -\frac{1}{4} \left(\mathbf{i} \, (-1)^{1/3} + 2^{1/3} \, \sqrt{3} \right) \right] | \, | \\ \mathbf{z} = \frac{1}{4} \left((-(-1)^{5/6} \, 2^{1/3} + (-2)^{1/3} \, \sqrt{3} \right) \right] | \, | \\ \mathbf{z} = 0 \, \& = \frac{1}{4} \left((-$$

$$\left(q = -p \&\& -2 + t \neq 0 \&\& \left(r = -\frac{(-2 p^4 - p^4 t)^{1/4}}{(-2 + t)^{1/4}} \mid \mid r = -\frac{i (-2 p^4 - p^4 t)^{1/4}}{(-2 + t)^{1/4}} \mid \mid r = \frac{i (-2 p^4 - p^4 t)^{1/4}}{(-2 + t)^{1/4}} \mid \mid r = \frac{(-2 p^4 - p^4 t)^{1/4}}{(-2 + t)^{1/4}} \right) \right) \mid \mid (t = 2 \&\& p = 0 \&\& q = 0)$$

Reduce [{ (t+2) $*q^4$ + (t-2) $*r^4 = 0, p+q = 0$ }, {p, q, r}]

[6] の計算.

$$\left((-2+t) (2+t) (6+t) \neq 0 \&\&t \neq 0 \&\&x = \frac{1}{2} \left(\frac{-8+2t+t^2-t\sqrt{-12+4t+t^2}}{-4+t^2} \right)^{1/3} \&\&$$

$$y = \frac{1}{8} i \left(2+t+\sqrt{-12+4t+t^2} \right) \left(\frac{-8+2t+t^2-t\sqrt{-12+4t+t^2}}{-4+t^2} \right)^{1/3} \&\&$$

$$z = -\frac{1}{8(-2+t)} (2-t)^{3/4} (2+t)^{1/4} \\ \left(-2 \left(\frac{-8+2t+t^2-t\sqrt{-12+4t+t^2}}{-4+t^2} \right)^{1/3} + t \left(\frac{-8+2t+t^2-t\sqrt{-12+4t+t^2}}{-4+t^2} \right)^{1/3} + t \left(\frac{-8+2t+t^2-t\sqrt{-12+4t+t^2}}{-4+t^2} \right)^{1/3} + \sqrt{-12+4t+t^2} \left(\frac{-8+2t+t^2-t\sqrt{-12+4t+t^2}}{-4+t^2} \right)^{1/3} \right) \right)$$

$$\begin{aligned} \int_{-\frac{1}{2}}^{1/3} \left((-\frac{1}{2})^{-1/2} + (-\frac{1}{2})^{1/3} & \delta \delta y = \frac{1}{2} \left(-\frac{1}{2} \right)^{1/3} & \delta \delta z = \frac{(-1)^{1/12}}{2^{7/12}} \end{aligned} | | \\ & \dots (\bigcup \ensuremath{\mathbb{T}} \ens$$

$$\begin{aligned} &\operatorname{Reduce}\left[\left\{4*x^3+2*t*x*y^2=1, 4*y^3+2*t*x^2*y=-1, \\ &4*z^3=\frac{(-2-t)^{1/4}}{(-2+t)^{1/4}}, x-y+\frac{(-2-t)^{1/4}}{(-2+t)^{1/4}}*z=0\right\}, \{x, y, z\}\right] \\ &\left(t=0\&\&x=\left(-\frac{1}{2}\right)^{2/3}\&\&y=\frac{1}{4}\left((-1)^{2/3}2^{1/3}-(-1)^{1/6}2^{1/3}\sqrt{3}\right)\&\&\\ &z=\frac{1}{4}\left(-(-1)^{2/3}2^{1/3}-(-1)^{1/6}2^{1/3}\sqrt{3}\right)\right)||\\ &\left(t=0\&\&x=\left(-\frac{1}{2}\right)^{2/3}\&\&y=\frac{1}{4}\left((-1)^{2/3}2^{1/3}+(-1)^{1/6}2^{1/3}\sqrt{3}\right)\&\&\\ &z=\frac{1}{4}\left(-(-1)^{2/3}2^{1/3}+(-1)^{1/6}2^{1/3}\sqrt{3}\right)\right)||\\ &\left(t=0\&\&x=\frac{1}{2^{2/3}}\&\&y=\frac{1}{4}\left(2^{1/3}-i2^{1/3}\sqrt{3}\right)\&\&z=-\frac{1}{4}i\left(-i2^{1/3}+2^{1/3}\sqrt{3}\right)\right)||\\ &\left(t=0\&\&x=\frac{1}{2^{2/3}}\&\&y=\frac{1}{4}\left(2^{1/3}+i2^{1/3}\sqrt{3}\right)\&\&z=-\frac{1}{4}i\left(i2^{1/3}+2^{1/3}\sqrt{3}\right)\right)||\\ &\left(t=0\&\&x=-\frac{1}{2^{2/3}}\&\&y=\frac{1}{4}\left(2^{1/3}+i2^{1/3}\sqrt{3}\right)\&\&z=-\frac{1}{4}i\left(i2^{1/3}+2^{1/3}\sqrt{3}\right)\right)||\\ &\left(t=0\&\&x=-\frac{(-1)^{1/3}}{2^{2/3}}\&\&y=\frac{1}{4}\left(-(-2)^{1/3}-(-1)^{5/6}2^{1/3}\sqrt{3}\right)\&\&\\ &z=\frac{1}{4}\left((-2)^{1/3}-(-1)^{5/6}2^{1/3}\sqrt{3}\right)\right)||\\ &\left(t=0\&\&x=-\frac{(-1)^{1/3}}{2^{1/3}}+(-1)^{5/6}2^{1/3}\sqrt{3}\right)\&\&z=\frac{1}{4}\left((-2)^{1/3}+(-1)^{5/6}2^{1/3}\sqrt{3}\right)\right)||\\ &\left(t=6\&\&x=-\frac{1}{2}\left(-\frac{1}{2}\right)^{1/3}\&\&y=\frac{1}{2}\left(-\frac{1}{2}\right)^{1/3}\&\&z=\frac{(-1)^{1/12}}{2^{7/12}}\right)||\end{aligned}$$

9.4 [1],[7]

[1] の計算.

Reduce [$\{4 * q^4 + (-t^2 + 4) * r^4 = 0, p = 0\}, \{p, q, r\}$]

$$(t = -2 \&\&p = 0 \&\&q = 0) || (t = 2 \&\&p = 0 \&\&q = 0) || \left(-4 + t^{2} \neq 0 \&\&p = 0 \&\&r = -\frac{\sqrt{2} q}{\left(-4 + t^{2}\right)^{1/4}} \right) || \left(-4 + t^{2} \neq 0 \&\&p = 0 \&\&r = -\frac{i \sqrt{2} q}{\left(-4 + t^{2}\right)^{1/4}} \right) || \left(-4 + t^{2} \neq 0 \&\&p = 0 \&\&r = \frac{i \sqrt{2} q}{\left(-4 + t^{2}\right)^{1/4}} \right) || \left(-4 + t^{2} \neq 0 \&\&p = 0 \&\&r = \frac{\sqrt{2} q}{\left(-4 + t^{2}\right)^{1/4}} \right)$$

Reduce $\left\{ 4 * x^3 + 2 * t * x * y^2 = 0, 4 * y^3 + 2 * t * x^2 * y = 1, \right\}$

$$\begin{aligned} \mathbf{4} \star \mathbf{z}^{3} &= \frac{\sqrt{2}}{\left(-4+t^{2}\right)^{1/4}}, \, \mathbf{y} + \frac{\sqrt{2}}{\left(-4+t^{2}\right)^{1/4}} \star \mathbf{z} = 0 \Big\}, \, \{\mathbf{x}, \mathbf{y}, \mathbf{z}\} \Big] \\ \left(\mathbf{t} = 0 \&\& \mathbf{x} = 0 \&\& \mathbf{y} = \left(-\frac{1}{2}\right)^{2/3} \&\& \mathbf{z} = -\frac{\left(-1\right)^{11/12}}{2^{2/3}} \Big) || \\ \left(\mathbf{t} = 0 \&\& \mathbf{x} = 0 \&\& \mathbf{y} = \frac{1}{2^{2/3}} \&\& \mathbf{z} = -\frac{\left(-1\right)^{1/4}}{2^{2/3}} \right) || \\ \left(\mathbf{t} = 0 \&\& \mathbf{x} = 0 \&\& \mathbf{y} = -\frac{\left(-1\right)^{1/3}}{2^{2/3}} \&\& \mathbf{z} = \frac{\left(-1\right)^{7/12}}{2^{2/3}} \right) || \\ \left(\mathbf{t} = 0 \&\& \mathbf{x} = 0 \&\& \mathbf{y} = -\frac{\left(-1\right)^{1/3}}{2^{2/3}} \&\& \mathbf{z} = \frac{\left(-1\right)^{7/12}}{2^{2/3}} \right) || \\ \left(-4+t^{2} \neq 0 \&\& t \neq 0 \&\& \mathbf{x} = -\frac{\sqrt{t}}{\sqrt{2} \left(-\left(-4+t^{2}\right)^{2}\right)^{1/6}} \&\& \\ \mathbf{y} = \frac{4-t^{2}}{\left(-\left(-4+t^{2}\right)^{2}\right)^{2/3}} \&\& \mathbf{z} = \frac{\left(-4+t^{2}\right)^{5/4}}{\sqrt{2} \left(-\left(-4+t^{2}\right)^{2}\right)^{2/3}} \right) || \left(-4+t^{2} \neq 0 \&\& t \neq 0 \&\& \\ \mathbf{x} = \frac{\sqrt{t}}{\sqrt{2} \left(-\left(-4+t^{2}\right)^{2}\right)^{1/6}} \&\& \mathbf{y} = \frac{4-t^{2}}{\left(-\left(-4+t^{2}\right)^{2}\right)^{2/3}} \&\& \mathbf{z} = \frac{\left(-4+t^{2}\right)^{5/4}}{\sqrt{2} \left(-\left(-4+t^{2}\right)^{2}\right)^{2/3}} \right) || \end{aligned}$$

$$\begin{cases} -4 + t^{2} \pm 0.55 t \pm 0.65 x = -\frac{(-1)^{1/2} \sqrt{t^{2}}}{\sqrt{2} \left(-(-4 + t^{2})^{2}\right)^{1/4}} \delta 5 \\ y = \frac{(-1)^{1/3} \left(-4 + t^{2}\right)}{\left(-(-4 + t^{2})^{2}\right)^{2/3}} \delta 5 x = -\frac{(-1)^{1/3} \left(-4 + t^{2}\right)^{2/3}}{\sqrt{2} \left(-(-4 + t^{2})^{2}\right)^{2/3}} \right) || \\ \left(-4 + t^{2} + 0.55 t + 0.55 x = \frac{(-1)^{1/3} \sqrt{t}}{\sqrt{2} \left(-(-4 + t^{2})^{2}\right)^{1/5}} \delta 5 y = \frac{(-1)^{1/3} \left(-4 + t^{2}\right)^{2}}{\left(-(-4 + t^{2})^{2}\right)^{2/3}} \delta 5 \\ z = -\frac{(-1)^{1/3} \left(-4 + t^{2}\right)^{2}}{\sqrt{2} \left(-(-4 + t^{2})^{2}\right)^{2/3}} \right) || \left(-4 + t^{2} \pm 0.55 t \pm 0.55 x = -\frac{(-1)^{2/3} \sqrt{t}}{\sqrt{2} \left(-(-4 + t^{2})^{2}\right)^{1/5}} \delta 5 \\ y = -\frac{(-1)^{2/3} \left(-4 + t^{2}\right)^{2}}{\left(-(-4 + t^{2})^{2}\right)^{2/3}} \delta 5 z = \frac{(-1)^{2/3} \left(-4 + t^{2}\right)^{2/3}}{\sqrt{2} \left(-(-4 + t^{2})^{2}\right)^{1/6}} \delta 5 \\ y = -\frac{(-1)^{2/3} \left(-4 + t^{2}\right)}{\left(-(-4 + t^{2})^{2}\right)^{2/3}} \delta 5 z = \frac{(-1)^{2/3} \sqrt{t}}{\sqrt{2} \left(-(-4 + t^{2})^{2}\right)^{1/6}} \delta 5 \\ y = -\frac{(-1)^{2/3} \left(-4 + t^{2}\right)}{\left(-(-4 + t^{2})^{2}\right)^{2/3}} \delta 5 z = \frac{(-1)^{2/3} \sqrt{t}}{\sqrt{2} \left(-(-4 + t^{2})^{2}\right)^{1/6}} \delta 5 \\ y = -\frac{(-1)^{2/3} \left(-4 + t^{2}\right)}{\left(-(-4 + t^{2})^{2}\right)^{2/3}} \delta 5 z = \frac{(-1)^{2/3} \sqrt{t}}{\sqrt{2} \left(-(-4 + t^{2})^{2}\right)^{2/3}} \right]$$
MatrixRank [{{(0, (-\frac{1}{2})^{2/3}, -(-1)^{1/3/4}}, (-1)^{1/3/4}, (-1)^{1/3/4}, (-1)^{1/3/4}}, (-1)^{1/3/4}, (-1)^{

$$\left\{ -\frac{(-1)^{2/3} \sqrt{t}}{\sqrt{2} \left(-\left(-4+t^{2}\right)^{2} \right)^{1/6}}, -\frac{(-1)^{2/3} \left(-4+t^{2}\right)}{\left(-\left(-4+t^{2}\right)^{2} \right)^{2/3}}, \frac{(-1)^{2/3} \left(-4+t^{2} \right)^{5/4}}{\sqrt{2} \left(-\left(-4+t^{2}\right)^{2} \right)^{2/3}} \right\}, \\ \left\{ \frac{(-1)^{2/3} \sqrt{t}}{\sqrt{2} \left(-\left(-4+t^{2}\right)^{2} \right)^{1/6}}, -\frac{(-1)^{2/3} \left(-4+t^{2} \right)}{\left(-\left(-4+t^{2}\right)^{2} \right)^{2/3}}, \frac{(-1)^{2/3} \left(-4+t^{2} \right)^{5/4}}{\sqrt{2} \left(-\left(-4+t^{2}\right)^{2} \right)^{2/3}} \right\} \right\} \right]$$

[7] の計算.

Reduce [{4 * p^4 + (-t^2 + 4) * r^4 = 0, q = 0}, {p, q, r}]
(t = -2 & & p = 0 & q = 0) || (t = 2 & p = 0 & q = 0) ||

$$\left(-4 + t^2 \neq 0 & q = 0 & r = -\frac{\sqrt{2} p}{(-4 + t^2)^{1/4}}\right) || \left(-4 + t^2 \neq 0 & q = 0 & r = -\frac{i \sqrt{2} p}{(-4 + t^2)^{1/4}}\right) ||$$

$$\left(-4 + t^2 \neq 0 & q = 0 & r = \frac{i \sqrt{2} p}{(-4 + t^2)^{1/4}}\right) || \left(-4 + t^2 \neq 0 & q = 0 & r = \frac{\sqrt{2} p}{(-4 + t^2)^{1/4}}\right)$$

Reduce $\left[\left\{ 4 * x^3 + 2 * t * x * y^2 = 1, 4 * y^3 + 2 * t * x^2 * y = 0, \right]$

$$\begin{aligned} \mathbf{4} \star \mathbf{z}^{3} &= \frac{\sqrt{2}}{\left(-4 + t^{2}\right)^{1/4}}, \ \mathbf{x} + \frac{\sqrt{2}}{\left(-4 + t^{2}\right)^{1/4}} \star \mathbf{z} == 0 \Big\}, \ \{\mathbf{x}, \mathbf{y}, \mathbf{z}\} \Big] \\ \left(t = 0 \&\& x = \left(-\frac{1}{2}\right)^{2/3} \&\& y = 0 \&\& z = -\frac{(-1)^{11/12}}{2^{2/3}} \right) || \\ \left(t = 0 \&\& x = \frac{1}{2^{2/3}} \&\& y = 0 \&\& z = -\frac{(-1)^{1/4}}{2^{2/3}} \right) || \\ \left(t = 0 \&\& x = -\frac{(-1)^{1/3}}{2^{2/3}} \&\& y = 0 \&\& z = \frac{(-1)^{7/12}}{2^{2/3}} \right) || \\ \left(-4 + t^{2} \neq 0 \&\& x = \frac{1}{\left(4 - t^{2}\right)^{1/3}} \&\& y = -\frac{i\sqrt{t}}{\sqrt{2}} \frac{\sqrt{t}}{\left(4 - t^{2}\right)^{1/3}} \&\& z = -\frac{\left(-4 + t^{2}\right)^{1/4}}{\sqrt{2} \left(4 - t^{2}\right)^{1/3}} \right) || \\ \left(-4 + t^{2} \neq 0 \&\& x = \frac{1}{\left(4 - t^{2}\right)^{1/3}} \&\& y = \frac{i\sqrt{t}}{\sqrt{2} \left(4 - t^{2}\right)^{1/3}} \&\& z = -\frac{\left(-4 + t^{2}\right)^{1/4}}{\sqrt{2} \left(4 - t^{2}\right)^{1/3}} \right) || \end{aligned}$$

[5] の計算.

Reduce[{ $r = 0, p^4 + (t) * p^2 * q^2 + q^4 = 0$ }, {p, q, r}]

$$\left[q = -\frac{\sqrt{-p^{2} t - p^{2} \sqrt{-4 + t^{2}}}{\sqrt{2}} & 66 \ r = 0 \right] || \left[q = \frac{\sqrt{-p^{2} t - p^{2} \sqrt{-4 + t^{2}}}{\sqrt{2}} & 66 \ r = 0 \right] || \left[q = -\frac{\sqrt{-p^{2} t + p^{2} \sqrt{-4 + t^{2}}}{\sqrt{2}} & 66 \ r = 0 \right] || \left[q = \frac{\sqrt{-p^{2} t + p^{2} \sqrt{-4 + t^{2}}}{\sqrt{2}} & 66 \ r = 0 \right]$$

$$Reduce \left[\left\{ 4 * x^{3} + 2 * t * x * y^{2} = 1, 4 * y^{3} + 2 * t * x^{2} * y = -\frac{\sqrt{-t - \sqrt{-4 + t^{2}}}}{\sqrt{2}} \\ 4 * z^{3} = 0, x - \frac{\sqrt{-t - \sqrt{-4 + t^{2}}}}{\sqrt{2}} y = 0 \right\}, \ \{x, y, z\} \right]$$

$$\left[-4 + t^{2} \neq 0.666 \ x = \frac{\left(-4 + t^{2} + t \sqrt{-4 + t^{2}}\right)^{1/3}}{2^{2/3} \left(-4 + t^{2}\right)^{1/3}} & 66 \ y = \frac{\left(\sqrt{-t - \sqrt{-4 + t^{2}}} - t + \sqrt{-4 + t^{2}}\right)^{1/3}}{2^{2/3} \left(-4 + t^{2}\right)^{1/3}} & 66 \ z = 0 \right] || \left[-4 + t^{2} \neq 0.666 \ x = -\frac{\left(-1\right)^{1/3} \left(-4 + t^{2} + t \sqrt{-4 + t^{2}}\right)^{1/3}}{2^{2/3} \left(-4 + t^{2}\right)^{1/3}} & 66 \ y = -\left(\left[\left(-1\right)^{1/3} \sqrt{-t - \sqrt{-4 + t^{2}}} - \left(-t + \sqrt{-4 + t^{2}}\right) \left(-4 + t^{2} + t \sqrt{-4 + t^{2}}\right)^{1/3} \right] \right]$$

 $\left(4 \times 2^{1/6} \left(-4 + t^2\right)^{1/3}\right) \right) \&\& z = 0$

$$\begin{pmatrix} -4 + t^{2} \neq 0 \&\& x = \frac{(-1)^{2/3} \left(-4 + t^{2} + t \sqrt{-4 + t^{2}} \right)^{1/3}}{2^{2/3} \left(-4 + t^{2} \right)^{1/3}} \&\& \\ y = \left((-1)^{2/3} \sqrt{-t - \sqrt{-4 + t^{2}}} \left(-t + \sqrt{-4 + t^{2}} \right) \left(-4 + t^{2} + t \sqrt{-4 + t^{2}} \right)^{1/3} \right) / \\ \left(4 \times 2^{1/6} \left(-4 + t^{2} \right)^{1/3} \right) \&\& z = 0$$

Reduce $\left[\left\{ x^{4} + y^{4} + z^{4} + t * x^{2} * y^{2} = 0 \right\} \right]$

$$\frac{\left(-4 + t^{2} + t\sqrt{-4 + t^{2}}\right)^{1/3}}{2^{2/3} \left(-4 + t^{2}\right)^{1/3}} * x + \left(\left(\sqrt{-t - \sqrt{-4 + t^{2}}} \left(-t + \sqrt{-4 + t^{2}}\right)\right) + \sqrt{-4 + t^{2}}\right)^{1/3} + \frac{1}{2} \left(-4 + t^{2} + t\sqrt{-4 + t^{2}}\right)^{1/3} + \frac{1}{2} \left(4 \times 2^{1/6} \left(-4 + t^{2}\right)^{1/3}\right) + \frac{1}{2} \left$$

9.6 [4]

(

[4] の計算.

```
\begin{aligned} & \text{Reduce} \left[ \left\{ (2916 \text{t}^4 - 23\,328 \text{t}^2 + 46\,656) * \text{q}^8 + \\ & (27 \text{t}^6 + 1836 \text{t}^4 - 19\,440 \text{t}^2 + 46\,656) * \text{q}^4 * \text{r}^4 + (16 \text{t}^6) * \text{r}^8 = 0, \\ & (-108 \text{t}^2 + 432) * \text{q}^6 + (8 \text{t}^3) * \text{p}^2 * \text{r}^4 + (-\text{t}^4 - 72 \text{t}^2 + 432) * \text{q}^2 * \text{r}^4 = 0, \\ & (27 \text{t}^2 - 108) * \text{p}^2 * \text{q}^2 + (2 \text{t}^3) * \text{r}^4 = 0, \\ & (108 \text{t}^2 - 432) * \text{p}^4 + (108 \text{t}^2 - 432) * \text{q}^4 + (\text{t}^4 + 72 \text{t}^2 - 432) * \text{r}^4 = 0 \right\}, \\ & \text{q}, \text{r} \right\} \end{aligned}
```

$$\begin{array}{l} \left(\left(\texttt{t} = -2 \right) \mid \texttt{t} = 2 \right) \&\& r = 0 \mid \texttt{I} \\ \left(\texttt{t} = 0 \&\& p = 0 \&\& \left(\texttt{r} = -(-1)^{1/4} \texttt{q} \mid \texttt{r} = -(-1)^{3/4} \texttt{q} \mid \texttt{r} = (-1)^{3/4} \texttt{q} \mid \texttt{r} = (-1)^{3/4} \texttt{q} \mid \texttt{r} = (-1)^{1/4} \texttt{q} \right) \right) \mid \texttt{I} \\ \left(\texttt{t} \left(-4 + \texttt{t}^2 \right) \neq 0 \&\& \left(\texttt{q} = -\frac{1}{4} \sqrt{ \left(-\frac{432 \texttt{p}^2}{\texttt{t}^3} + \frac{72 \texttt{p}^2}{\texttt{t}^3} + \frac{72 \texttt{p}^2}{\texttt{t}} + \texttt{p}^2 \texttt{t} - \frac{\texttt{p}^2 \left(-36 + \texttt{t}^2 \right)^{3/2} \sqrt{-4 + \texttt{t}^2}}{\texttt{t}^3} \right) \mid \texttt{I} \\ q = \frac{1}{4} \sqrt{ \left(-\frac{432 \texttt{p}^2}{\texttt{t}^3} + \frac{72 \texttt{p}^2}{\texttt{t}} + \texttt{p}^2 \texttt{t} + \frac{\texttt{p}^2 \left(-36 + \texttt{t}^2 \right)^{3/2} \sqrt{-4 + \texttt{t}^2}}{\texttt{t}^3} \right) \mid \texttt{I} \\ q = -\frac{1}{4} \sqrt{ \left(-\frac{432 \texttt{p}^2}{\texttt{t}^3} + \frac{72 \texttt{p}^2}{\texttt{t}} + \texttt{p}^2 \texttt{t} + \frac{\texttt{p}^2 \left(-36 + \texttt{t}^2 \right)^{3/2} \sqrt{-4 + \texttt{t}^2}}{\texttt{t}^3} \right) } \right) \\ \left(\texttt{r} = -\frac{1}{4} \sqrt{ \left(-\frac{432 \texttt{p}^2}{\texttt{t}^3} + \frac{72 \texttt{p}^2}{\texttt{t}} + \texttt{p}^2 \texttt{t} + \frac{\texttt{p}^2 \left(-36 + \texttt{t}^2 \right)^{3/2} \sqrt{-4 + \texttt{t}^2}}{\texttt{t}^3} \right) } \right) \\ \left(\texttt{r} = -\frac{1}{2 \sqrt{2} 3^{1/4}} \left(-4 + \texttt{t}^2 \right)^{1/4} \left(48 \texttt{p}^4 + 48 \texttt{q}^4 - 78 \texttt{p}^2 \texttt{q}^2 \texttt{t} + 8 \texttt{p}^4 \texttt{t}^2 - \texttt{p}^2 \texttt{q}^2 \texttt{t}^3 \right)^{1/4} \right) \\ r = -\frac{1}{2 \sqrt{2} 3^{1/4}} \left(-4 + \texttt{t}^2 \right)^{1/4} \left(48 \texttt{p}^4 + 48 \texttt{q}^4 - 78 \texttt{p}^2 \texttt{q}^2 \texttt{t} + 8 \texttt{p}^4 \texttt{t}^2 + 8 \texttt{q}^4 \texttt{t}^2 - \texttt{p}^2 \texttt{q}^2 \texttt{t}^3 \right)^{1/4} \right) \\ r = \frac{1}{2 \sqrt{2} 3^{1/4}} \texttt{i} \left(-4 + \texttt{t}^2 \right)^{1/4} \left(48 \texttt{p}^4 + 48 \texttt{q}^4 - 78 \texttt{p}^2 \texttt{q}^2 \texttt{t} + 8 \texttt{p}^4 \texttt{t}^2 + 8 \texttt{q}^4 \texttt{t}^2 - \texttt{p}^2 \texttt{q}^2 \texttt{t}^3 \right)^{1/4} \right) \\ \left(\texttt{t} = 0 \&\&\&\&e - \texttt{q} \texttt{p} \texttt{t} @ \texttt{b} \& \texttt{k} \texttt{q} = 0 \&\&\&\& \texttt{k} \texttt{r} = -(-1)^{1/4} \left(\texttt{q} \texttt{p}^4 \texttt{t} \texttt{k} \texttt{q}^4 - 78 \texttt{p}^2 \texttt{q}^2 \texttt{t} \texttt{t} \texttt{k} \texttt{p}^4 \texttt{t}^2 + 8 \texttt{q}^4 \texttt{t}^2 - \texttt{p}^2 \texttt{q}^2 \texttt{t}^3 \right)^{1/4} \right) \\ \left(\texttt{t} = 0 \&\&\&\&\&e - \texttt{q} \texttt{p} \texttt{t} @ \texttt{b} \& \texttt{k} \texttt{q} = (-1)^{1/4} \left(\texttt{q} \texttt{p}^4 \texttt{t} \texttt{k} \texttt{q} + 78 \texttt{p}^2 \texttt{q}^2 \texttt{t} \texttt{t} \texttt{k} \texttt{p}^4 \texttt{t}^2 + 8 \texttt{q}^4 \texttt{t}^2 - \texttt{p}^2 \texttt{q}^2 \texttt{t}^3 \right)^{1/4} \right) \\ \\ \left(\texttt{t} = 0 \&\&\&e - \texttt{k} \texttt{p} \texttt{t} @ \texttt{b} \& \texttt{k} \texttt{k} \texttt{t} = (-1)^{1/4} \left(\texttt{k} \texttt{p}^4 \texttt{t} \texttt{k} \texttt{q} \texttt{t} = (-1)^{3/4} \texttt{k} \left(\texttt{p}^4 \texttt{t}^2 + 8 \texttt{q}^4 \texttt{t}^2 - \texttt{p}^2 \texttt{q}^2 \texttt{t}^3 \right)^{1/4} \right) \\ \\ \\ (\texttt{t} = -\frac{1}{2 \sqrt{2} 3^{1/4}$$

9.7
$$F = x^4 + y^4 + z^4 + tx^2yz \mathcal{O}$$
 inflection point
Det[D[x^4+y^4+z^4+t*x^2*y*z, {{x, y, z}, 2}]]
-12 t² x⁶ - 48 t² x² y⁴ + 6 t³ x⁴ y z + 1728 x² y² z² + 288 t y³ z³ - 48 t² x² z⁴
Reduce[{% == 0, x^4+y^4+z^4+t*x^2*y*z == 0}, {x, y, z}]

(前略)

$$\begin{cases} t \neq 0 \ 6 \ 6 \ y = -\operatorname{Root} \left[16 \ t^9 \ x^{24} + \left(73 \ 728 \ t^4 \ x^{20} - 3072 \ t^9 \ x^{20} + 27 \ t^{12} \ x^{20} \right) \ \text{m1} + \\ & \left(84 \ 934 \ 656 \ x^{16} - 2 \ 088 \ 960 \ t^4 \ x^{16} + 7680 \ t^9 \ x^{16} + 81 \ t^{12} \ x^{16} \right) \ \text{m1}^2 + \\ & \left(169 \ 869 \ 312 \ x^{12} - 5 \ 832 \ 704 \ t^4 \ x^{12} + 47 \ 104 \ t^8 \ x^{12} \right) \ \text{m1}^3 + \\ & \left(84 \ 934 \ 656 \ x^8 - 2 \ 162 \ 688 \ t^4 \ x^1 - 168 \ 96 \ t^2 \ x^3 \right) \ \text{m1}^2 - \\ & 196 \ 6608 \ t^4 \ x^4 \ \text{m1}^5 + 65 \ 536 \ t^4 \ \text{m1}^6 \ x^{10} + 127 \ t^{12} \ x^{20} \right) \ \text{m1} + \\ & \left(84 \ 934 \ 656 \ x^8 - 2 \ 108 \ 960 \ t^4 \ x^{16} + 7680 \ t^6 \ x^{16} + 10 \ t^{12} \ x^{16} \right) \ \text{m1}^2 + \\ & \left(169 \ 869 \ 312 \ x^{12} - 5 \ 832 \ 704 \ t^4 \ x^{12} \ 471 \ 104 \ t^6 \ x^{12} \right) \ \text{m1}^4 - \\ & 196 \ 608 \ t^4 \ x^4 \ \text{m1}^5 + 65 \ 536 \ t^4 \ \text{m1}^6 \ x, \ 1 \ 1^{1/4} \ | 1 \\ y = i \ \operatorname{Root} \left[16 \ t^6 \ x^{24} + \left(73 \ 728 \ t^4 \ x^{20} - 3072 \ t^6 \ x^{20} + 27 \ t^{12} \ x^{20} \right) \ \text{m1} + \\ & \left(84 \ 934 \ 656 \ x^{16} - 2 \ 088 \ 960 \ t^4 \ x^{16} + 7680 \ t^6 \ x^{16} \ \text{m1}^2 + \\ & \left(169 \ 869 \ 312 \ x^{12} - 5 \ 832 \ 704 \ t^4 \ x^{12} \ 471 \ 104 \ t^6 \ x^{12} \right) \ \text{m1}^2 + \\ & \left(169 \ 869 \ 312 \ x^{12} - 5 \ 832 \ 704 \ t^4 \ x^{12} \ 471 \ 04 \ t^6 \ x^{12} \ 11^3 + \\ & \left(84 \ 934 \ 656 \ x^{16} - 2 \ 088 \ 960 \ t^4 \ x^{16} + 7680 \ t^6 \ x^{16} \ 11^3 + \\ & \left(84 \ 934 \ 656 \ x^{16} - 2 \ 088 \ 960 \ t^4 \ x^{16} + 7680 \ t^6 \ x^{1} \ 11^2 + \\ & \left(169 \ 869 \ 312 \ x^{12} - 5 \ 832 \ 704 \ t^4 \ x^{12} + 471 \ 104 \ t^6 \ x^{12} \ 11^3 + \\ & \left(84 \ 934 \ 656 \ x^{16} - 2 \ 088 \ 960 \ t^4 \ x^{16} + 7680 \ t^6 \ x^{16} + 11^2 \ x^{16} \right) \ \text{m1}^2 + \\ & \left(169 \ 869 \ 312 \ x^{12} - 5 \ 832 \ 704 \ t^4 \ x^{12} + 471 \ 104 \ t^6 \ x^{12} \ 11^3 + \\ & \left(84 \ 934 \ 656 \ x^{16} - 2 \ 168 \ 860 \ t^{16} \ x^{16} + 168 \ x^{1} \ 11^2 + \\ & \left(169 \ 869 \ 312 \ x^{12} - 5 \ 832 \ 704 \ t^4 \ x^{12} + 471 \ 104 \ t^6 \ x^{12} \ 11^2 + \\ & \left(169 \ 869 \ 312 \ x^{12} - 5 \ 832 \ 704 \ t^$$

```
y = -Root \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
               \left(84\ 934\ 656\ x^{16}-2\ 088\ 960\ t^4\ x^{16}+7680\ t^8\ x^{16}+81\ t^{12}\ x^{16}\right)\ \sharp 1^2+
              \left(169\,869\,312~x^{12}-5\,832\,704~t^4~x^{12}+47\,104~t^8~x^{12}\right)~\pm1^3+
              (84\ 934\ 656\ x^8 - 2\ 162\ 688\ t^4\ x^8 + 16\ 896\ t^8\ x^8)\ \pm 1^4 -
              196\,608\,t^4\,x^4\,\pm 1^5+65\,536\,t^4\,\pm 1^6\,\epsilon,\,3
   \left( 84\ 934\ 656\ x^{16} - 2\ 088\ 960\ t^4\ x^{16} + 7680\ t^8\ x^{16} + 81\ t^{12}\ x^{16} \right)\ \#1^2 + \\
              (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
              (84934656x^8 - 2162688t^4x^8 + 16896t^8x^8) \pm 1^4 -
              196\,608\,t^4\,x^4\,\pm 1^5+65\,536\,t^4\,\pm 1^6\,\epsilon, 3]<sup>1/4</sup> ||
  y = i \operatorname{Root} \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
               \left( 84\ 934\ 656\ x^{16} - 2\ 088\ 960\ t^4\ x^{16} + 7680\ t^8\ x^{16} + 81\ t^{12}\ x^{16} \right)\ \sharp 1^2 + 
              \left(169\,869\,312\;x^{12}-5\,832\,704\;t^4\;x^{12}+47\,104\;t^8\;x^{12}\right)\;\pm\!\!1^3+
              (84\ 934\ 656\ x^8 - 2\ 162\ 688\ t^4\ x^8 + 16\ 896\ t^8\ x^8)\ \pm 1^4 -
              196608 t^4 x^4 \pm 1^5 + 65536 t^4 \pm 1^6 a, 3
  y = Root \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
            (84\ 934\ 656\ x^{16} - 2\ 088\ 960\ t^4\ x^{16} + 7680\ t^8\ x^{16} + 81\ t^{12}\ x^{16})\ \pm 1^2 +
            (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
            (84\,934\,656\,x^8 - 2\,162\,688\,t^4\,x^8 + 16\,896\,t^8\,x^8) #1<sup>4</sup> -
            196\,608\,t^4\,x^4\,\pm 1^5+65\,536\,t^4\,\pm 1^6\,\epsilon, 3]<sup>1/4</sup> ||
  y = -Root \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
               \left( 84\ 934\ 656\ x^{16} - 2\ 088\ 960\ t^4\ x^{16} + 7680\ t^8\ x^{16} + 81\ t^{12}\ x^{16} \right)\ \#1^2 + \\
              (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
              (84\,934\,656\,x^8 - 2\,162\,688\,t^4\,x^8 + 16\,896\,t^8\,x^8) #1<sup>4</sup> -
              196\,608\,t^4\,x^4\,\pm 1^5+65\,536\,t^4\,\pm 1^6\,\epsilon,\,4
  y = -i \operatorname{Root} \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20} \right) \ddagger 1 + 
              (84\ 934\ 656\ x^{16}\ -\ 2\ 088\ 960\ t^4\ x^{16}\ +\ 7680\ t^8\ x^{16}\ +\ 81\ t^{12}\ x^{16})\ \pm1^2 +
              (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
              (84\,934\,656\,x^8 - 2\,162\,688\,t^4\,x^8 + 16\,896\,t^8\,x^8) #1<sup>4</sup> -
              196\,608\,t^4\,x^4\,\pm 1^5+65\,536\,t^4\,\pm 1^6\,\epsilon,\,4
  y = i \operatorname{Root} \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
              (84\ 934\ 656\ x^{16} - 2\ 088\ 960\ t^4\ x^{16} + 7680\ t^8\ x^{16} + 81\ t^{12}\ x^{16})\ \pm 1^2 +
              (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
              (84\ 934\ 656\ x^8 - 2\ 162\ 688\ t^4\ x^8 + 16\ 896\ t^8\ x^8)\ \pm 1^4 -
              196608 t<sup>4</sup> x<sup>4</sup> \pm 1^5 + 65536 t<sup>4</sup> \pm 1^6 &, 4]<sup>1/4</sup> ||
  y = Root \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
             (84\ 934\ 656\ x^{16} - 2\ 088\ 960\ t^4\ x^{16} + 7680\ t^8\ x^{16} + 81\ t^{12}\ x^{16})\ \pm 1^2 +
            (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
            (84\ 934\ 656\ x^8 - 2\ 162\ 688\ t^4\ x^8 + 16\ 896\ t^8\ x^8)\ \pm 1^4 -
            196\,608\,t^4\,x^4\,\pm 1^5+65\,536\,t^4\,\pm 1^6\,\epsilon,\,4
```

```
y = -Root \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
                  \left(84\ 934\ 656\ x^{16}-2\ 088\ 960\ t^{4}\ x^{16}+7680\ t^{8}\ x^{16}+81\ t^{12}\ x^{16}\right)\ \sharp 1^{2}\ +
                  (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
                  (84\,934\,656\,x^8 - 2\,162\,688\,t^4\,x^8 + 16\,896\,t^8\,x^8) #1<sup>4</sup> -
                  196\,608\,t^4\,x^4\,\pm 1^5+65\,536\,t^4\,\pm 1^6\, &, 5]<sup>1/4</sup> ||
      y = -i \operatorname{Root} \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
                  (84\ 934\ 656\ x^{16} - 2\ 088\ 960\ t^4\ x^{16} + 7680\ t^8\ x^{16} + 81\ t^{12}\ x^{16})\ \pm 1^2 +
                  (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
                  (84\ 934\ 656\ x^8 - 2162688 t<sup>4</sup> x<sup>8</sup> + 16896 t<sup>8</sup> x<sup>8</sup>) #1<sup>4</sup> -
                  196608 t^4 x^4 \pm 1^5 + 65536 t^4 \pm 1^6 \&, 5 \right]^{1/4} ||
      y = i \operatorname{Root} \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
                  (84\ 934\ 656\ x^{16} - 2\ 088\ 960\ t^4\ x^{16} + 7680\ t^8\ x^{16} + 81\ t^{12}\ x^{16})\ \pm 1^2 +
                  (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
                  (84\,934\,656\,x^8 - 2\,162\,688\,t^4\,x^8 + 16\,896\,t^8\,x^8) #1<sup>4</sup> -
                  196608 t^4 x^4 \pm 1^5 + 65536 t^4 \pm 1^6 x, 5
      y = Root \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
                  \left( 84\ 934\ 656\ x^{16} - 2\ 088\ 960\ t^4\ x^{16} + 7680\ t^8\ x^{16} + 81\ t^{12}\ x^{16} \right)\ \sharp 1^2 \ +
                (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
                \left(84\;934\;656\;x^{8}-2\;162\;688\;t^{4}\;x^{8}+16\,896\;t^{8}\;x^{8}\right)\;\pm\!\!1^{4}-
                196\,608\,t^4\,x^4\,\pm 1^5+65\,536\,t^4\,\pm 1^6\,\epsilon, 5
      y = -Root \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
                  (84\ 934\ 656\ x^{16}\ -\ 2\ 088\ 960\ t^4\ x^{16}\ +\ 7680\ t^8\ x^{16}\ +\ 81\ t^{12}\ x^{16})\ \pm1^2 +
                  (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
                  (84\ 934\ 656\ x^8 - 2\ 162\ 688\ t^4\ x^8 + 16\ 896\ t^8\ x^8)\ \pm 1^4 -
                  196\,608\,t^4\,x^4\,\pm 1^5+65\,536\,t^4\,\pm 1^6\, &, 6]<sup>1/4</sup> ||
      (84\ 934\ 656\ x^{16}\ -\ 2\ 088\ 960\ t^4\ x^{16}\ +\ 7680\ t^8\ x^{16}\ +\ 81\ t^{12}\ x^{16})\ \pm1^2\ +
                  (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
                  (84\ 934\ 656\ x^8 - 2\ 162\ 688\ t^4\ x^8 + 16\ 896\ t^8\ x^8)\ \pm 1^4 -
                  196608 t^4 x^4 \pm 1^5 + 65536 t^4 \pm 1^6 \&, 6 \right]^{1/4} ||
      y = i \operatorname{Root} \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
                  (84\ 934\ 656\ x^{16}\ -\ 2\ 088\ 960\ t^4\ x^{16}\ +\ 7680\ t^8\ x^{16}\ +\ 81\ t^{12}\ x^{16})\ \pm1^2\ +
                  (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
                  (84\ 934\ 656\ x^8 - 2\ 162\ 688\ t^4\ x^8 + 16\ 896\ t^8\ x^8)\ \pm1^4 -
                  196\,608\,t^4\,x^4\,\pm 1^5+65\,536\,t^4\,\pm 1^6\,\epsilon,\,6
      y = Root \left[ 16 t^8 x^{24} + (73728 t^4 x^{20} - 3072 t^8 x^{20} + 27 t^{12} x^{20}) \ddagger 1 + \right]
                 \left( 84\ 934\ 656\ x^{16} - 2\ 088\ 960\ t^4\ x^{16} + 7680\ t^8\ x^{16} + 81\ t^{12}\ x^{16} \right)\ \sharp 1^2 + \\
                (169869312 x^{12} - 5832704 t^4 x^{12} + 47104 t^8 x^{12}) \pm 1^3 +
                (84\ 934\ 656\ x^8\ -\ 2\ 162\ 688\ t^4\ x^8\ +\ 16\ 896\ t^8\ x^8)\ \pm 1^4\ -
```

 $196\,608\,t^4\,x^4\,\pm1^5+65\,536\,t^4\,\pm1^6\,$ &, $6]^{1/4}$) &&

...(以下省略)

```
0 & &
z = (y^3 (129850124217090048t^4x^{20} - 13056399932129280t^8x^{20} + 353208580964352t^{20})
                                 \texttt{t}^{12} \; \texttt{x}^{20} - \texttt{3} \; \texttt{234} \; \texttt{594} \; \texttt{816} \; \texttt{000} \; \texttt{t}^{16} \; \texttt{x}^{20} - \texttt{6} \; \texttt{581} \; \texttt{420} \; \texttt{032} \; \texttt{t}^{20} \; \texttt{x}^{20} + \texttt{340} \; \texttt{361} \; \texttt{216} \; \texttt{t}^{24} \; \texttt{x}^{20} - \texttt{6} \; \texttt{581} \; \texttt{420} \; \texttt{032} \; \texttt{t}^{20} \; \texttt{x}^{20} + \texttt{340} \; \texttt{361} \; \texttt{216} \; \texttt{t}^{24} \; \texttt{x}^{20} - \texttt{6} \; \texttt{581} \; \texttt{420} \; \texttt{032} \; \texttt{t}^{20} \; \texttt{x}^{20} + \texttt{340} \; \texttt{361} \; \texttt{216} \; \texttt{t}^{24} \; \texttt{x}^{20} - \texttt{6} \; \texttt{581} \; \texttt{420} \; \texttt{032} \; \texttt{t}^{20} \; \texttt{t}^{20
                            2 569 536 t ^{28} x ^{20} + 6561 t ^{32} x ^{20} + 299 174 686 196 175 470 592 x ^{16} y ^4 -
                            14 716 347 411 270 205 440 t^4 x^{16} y^4 + 240 312 903 498 989 568 t^8 x^{16} y^4 -
                            759144596373504t^{12}x^{16}y^4 - 20089046827008t^{16}x^{16}y^4 +
                            234 182 017 024 t<sup>20</sup> x<sup>16</sup> y<sup>4</sup> - 683 612 160 t<sup>24</sup> x<sup>16</sup> y<sup>4</sup> - 3 602 880 t<sup>28</sup> x<sup>16</sup> y<sup>4</sup> +
                            19683 t^{32} x^{16} y^4 + 598349372392350941184 x^{12} y^8 -
                            34 871 972 248 078 516 224 t^4 x^{12} y^8 + 714 334 322 106 040 320 t^8 x^{12} y^8 -
                            5 150 894 148 550 656 t^{12} x^{12} y^{8} – 22 439 257 964 544 t^{16} x^{12} y^{8} +
                            653 106 741 248 t^{20} x^{12} y^8 - 4 605 347 840 t^{24} x^{12} y^8 + 11 446 272 t^{28} x^{12} y^8 +
                            299 174 686 196 175 470 592 x^8 y^{12} – 14 716 347 411 270 205 440 t^4 x^8 y^{12} +
                            269 118 390 159 802 368 t^8 x^8 y^{12} – 1 753 957 269 504 000 t^{12} x^8 y^{12} –
                            9 925 770 084 352 t ^{16} x ^8 y ^{12} + 243 593 117 696 t ^{20} x ^8 y ^{12} -
                            1 666 351 104 t^{24} x^8 y^{12} + 4 105 728 t^{28} x^8 y^{12} - 692 533 995 824 480 256 t^4 x^4 y^{16} +
                            16 331 458 524 217 344 t^8 x^4 y^{16} – 65 693 672 275 968 t^{12} x^4 y^{16} –
                            883 655 966 720 t ^{16} x ^4 y ^{16} + 13 245 087 744 t ^{20} x ^4 y ^{16} - 47 775 744 t ^{24} x ^4 y ^{16} +
                            230 844 665 274 826 752 t^4 y^{20} – 5 477 217 173 766 144 t^8 y^{20} + 22 033 182 228 480
                                 t^{12} y^{20} + 298 097 573 888 t^{16} y^{20} - 4424 990 720 t^{20} y^{20} + 15925 248 t^{24} y^{20})) /
          (24 (3 913 788 948 480 t<sup>9</sup> x<sup>22</sup> - 91 955 920 896 t<sup>13</sup> x<sup>22</sup> + 363 331 584 t<sup>17</sup> x<sup>22</sup> +
                            5464064t^{21}x^{22} - 72128t^{25}x^{22} + 243t^{29}x^{22})))
```