Beilinson **のスペクトル**系列を用いた空間曲 線の構成

眞鍋岳

2010年2月9日

1 準備

与えられた $g \ge 0$ と $d \ge 1$ に対して、種数が g で、次数が d となるような \mathbb{P}^3 内の非特異代数曲線を構成したい.

定義 1.1 $\mathscr F$ と $\mathscr G$ を $\mathrm{rank}\,\mathscr F=1$ を満たす $\mathbb P^3$ 上のベクトル束とする. このとき, $\varphi\in\mathrm{Hom}(\mathscr F,\mathscr G)$ に対して,

$$C(\varphi) := \{ x \in \mathbb{P}^3 \mid \operatorname{rank} \varphi(x) < \operatorname{rank} \mathscr{F} \}$$

とする.

補題 1.2 (Buchsbaum and Eisenbud) $C(\varphi)$ が非特異代数曲線のとき、ある $m \in \mathbb{Z}$ に対して、

$$0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{I}_{C(\varphi)}(m) \to 0$$

は完全系列である.

定理 1.3 (Beilinson) \mathscr{S} を \mathbb{P}^n 上の連接層としたとき,

$$E_1^{p,q} = H^q(\mathscr{S}(p)) \otimes \Omega_{\mathbb{P}^n}^{-p}(-p)$$

であり, $p+q\neq 0$ に対して $E^{p,q}_\infty=0$ で $\oplus_{q=0}^n E^{-q,q}_\infty$ が $\mathscr S$ のフィルター付けに対応する次数付き層となるようなスペクトル系列 $\{E^{p,q}_r\}$ が存在する.

2 構成法

1. 次数 d, 種数 g となるような非特異代数曲線 $C \subset \mathbb{P}^3$ が存在すると仮定する. $\mathscr{I}_C(3)$ に Beilinson の定理を適用する.

- 2. Beilinson のスペクトル系列における $E_1^{p,q}$ を d や g を用いて具体的に計算する.
- 3. Beilinson のスペクトル系列の極限を求めることで、計算した $E_1^{p,q}$ と $\mathscr{I}_C(3)$ との関係が分かる.
- 4. $E_1^{p,q}$ を用いて、

$$0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{I}_C(3) \to 0$$

が完全系列となるように \mathscr{F} と \mathscr{G} を決定する.

5. 次数 d,種数 g となるような非特異代数曲線が本当に存在するならば, $C(\varphi)$ が非特異代数曲線となるような $\varphi \in \mathrm{Hom}(\mathscr{F},\mathscr{G})$ が存在し, $C(\varphi)$ は次数 d,種数 g となる.

3 次数6,種数3の場合

 $E_1^{p,q}$ は以下の2 通りが考えられる.

2次超田面に入らない					2 次超田面に入る				
	0	0	0	0		0	0	0	0
	$3\mathscr{O}_{\mathbb{P}^3}(-1)$	0	0	0		$3\mathscr{O}_{\mathbb{P}^3}(-1)$	0	0	0
	0	0	0	0		0	0	$\Omega^1_{\mathbb{P}^3}(1)$	0
	0	0	0	$4\mathscr{O}_{\mathbb{P}^3}$		0	0	$\Omega^1_{\mathbb{P}^3}(1)$	$4\mathscr{O}_{\mathbb{P}^3}$

ここから次の完全系列がそれぞれ得られる.

$$0 \to 3\mathscr{O}_{\mathbb{P}^3}(-1) \to 4\mathscr{O}_{\mathbb{P}^3} \to \mathscr{I}_C(3) \to 0$$
$$0 \to 3\mathscr{O}_{\mathbb{P}^3}(-1) \oplus \Omega^1_{\mathbb{P}^3}(1) \to 4\mathscr{O}_{\mathbb{P}^3} \oplus \Omega^1_{\mathbb{P}^3}(1) \to \mathscr{I}_C(3) \to 0$$

定理 3.1

$$\mathscr{F} = 3\mathscr{O}_{\mathbb{P}^3}(-1) \oplus \Omega^1_{\mathbb{P}^3}(1), \mathscr{G} = 4\mathscr{O}_{\mathbb{P}^3} \oplus \Omega^1_{\mathbb{P}^3}(1)$$

とする. $\varphi \in \text{Hom}(\mathcal{F}, \mathcal{G})$ に対して,

$$C(\varphi) := \left\{ x \in \mathbb{P}^3 \mid \operatorname{rank} \varphi(x) < \operatorname{rank} \mathscr{F} \right\}$$

が非特異代数曲線となるとき、その次数は6で種数は3である.

このような $\varphi \in \text{Hom}(3\mathcal{O}_{\mathbb{P}^3}(-1), 4\mathcal{O}_{\mathbb{P}^3})$ として, たとえば

$$\varphi = \left(\begin{array}{ccc} w & x & y \\ x & w & z \\ y & w & x \\ 0 & z & w \end{array} \right)$$

がある.