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Problem

Classify smooth polarized varieties (X , L) such that the linear system |L|
has a homogeneous member A.
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Problem

Classify smooth polarized varieties (X , L) such that the linear system |L|
has a homogeneous member A.

We say that a projective variety X is homogeneous if there exists a group
variety which acts transitively on X .
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Example

(1) If dimA = 1, then a classification of such (X , L) is already known.
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Example

(1) If dimA = 1, then a classification of such (X , L) is already known.
(2) If A ∼= P

n with n ≥ 2, then (X , L) ∼= (Pn+1,O(1)).
(3) If A ∼= Qn with n ≥ 3, then (X , L) ∼= (Pn+1,O(2)) or (Qn+1,O(1)).
(4) ¬∃(X , L) with A: ab. var. of dimA ≥ 2 (A. J. Sommese, ’76).
(5) ¬∃(X , L) with A ∼= G (r , Cn) unless r = 1, r = n − 1 or (n, r) = (4, 2)
(T. Fujita, ’81, ’82).
(6) If A and X are rational homogeneous varieties with ρ(A) = ρ(X ) = 1,
then a classification of such (X , L) is obtained by K.Konno (’88).
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Main Theorem 1

Theorem (W1)

Let (X , L) be as in Problem 1. Assume that dim A ≥ 2. Then (X , L) is

one of the following:
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(4) (Pm × P
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Problem

Classify smooth projective varieties acted by some linear algebraic groups.
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Definition

rG = min{ dim G/P | P ⊂ G : parabolic subgroup }.
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Definition

rG = min{ dim G/P | P ⊂ G : parabolic subgroup }.

Theorem (M. Andreatta, ’01)

X: a smooth projective variety of dimension n

G: a simple, simply connected linear algebraic group acting regularly and

non-trivially on X .

Then

(1) n ≥ rG ,

(2) if moreover n = rG , then X is homogeneous.
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Theorem (M. Andreatta, ’01)

X: a smooth projective variety of dimension n.

G: a simple, simply connected linear algebraic group of classical type

acting regularly and non-trivially on X .

Assume that n = rG + 1.

Then X is one of the following:

(1) P
n,

(2) Qn,

(3) Y × C, where Y is P
n−1 or Qn−1,

(4) P(OY ⊕ OY (m)), where Y is as in (3) and m > 0,

(5) P(TP2),
(6) C2(ω1 + ω2).
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Main Theorem 2

Theorem (W2)

X: a smooth projective variety of dimension n.

G: a simple, simply connected linear algebraic group of exceptional type

acting regularly and non-trivially on X .

Assume that n = rG + 1.

Then X is one of the following and the action of G is unique for each case:
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Main Theorem 2

Theorem (W2)

X: a smooth projective variety of dimension n.

G: a simple, simply connected linear algebraic group of exceptional type

acting regularly and non-trivially on X .

Assume that n = rG + 1.

Then X is one of the following and the action of G is unique for each case:

(1) E6(ω1),
(2) G2(ω1 + ω2),
(3) Y × Z, where Y is E6(ω1), E7(ω1), E8(ω1), F4(ω1), F4(ω4), G2(ω1) or

G2(ω2) and Z is a smooth projective curve,

(4) P(OY ⊕ OY (m)), where Y is as in (3) and m > 0.

A linear algebraic group of Dynkin type F4 acts on E6(ω1).
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Summary

(1) 等質多様体を豊富な因子として含む非特異偏極多様体の分類を行った．
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Summary

(1) 等質多様体を豊富な因子として含む非特異偏極多様体の分類を行った．
今まで知られていた結果の大幅な一般化．

(2) n = rG + 1なる例外型単純線型代数群の作用をもつ非特異射影多様体
の分類を行った．

Andreattaの結果と合わせると，n = rG + 1なる単純線型代数群の作用を
もつ非特異射影多様体の完全な分類を得る．
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