無限体上における Nullstellensatz について

理工学部 数理科学科 楫研究室 1G06L048-5 手島 悠人

1 動機

定理 (Nullstellensatz)

代数閉体 k 上の多項式環 $k[x_1,\ldots,x_n]$ において, I をそのイデアルとすると,

$$\mathbf{I}\left(\mathbf{V}\left(I\right)\right) = \sqrt{I}$$

が成り立つ.

Nullstellensatz を用いる事で、代数閉体 k 上多項式環 $k[x_1,\ldots,x_n]$ において、I を根基イデアルとすると、

$$\mathbf{I}\left(\mathbf{V}\left(I\right)\right) = I$$

が成り立つ事が分かる. ただし,

$$\mathbf{V}\left(I
ight) = \{(a_1,\ldots,a_n) \in k^n | \, orall f \in I \$$
に対して $f\left(a_1,\ldots,a_n
ight) = 0\}$ $\mathbf{I}\left(\mathbf{S}
ight) = \{f \in k \left[x_1,\ldots,x_n\right] | \, orall \left(a_1,\ldots,a_n
ight) \in \mathbf{S} \subset k^n$ に対し $f\left(a_1,\ldots,a_n
ight) = 0\}$

とする.

しかし, k が代数閉体でないときは, I が根基イデアルだとしても, $\mathbf{I}(\mathbf{V}(I)) = I$ が成り立つとは限らない.

問題提起 無限体上で $\mathbf{I}(\mathbf{V}(I)) = I$ が成り立つ必要十分条件はどのようなものであるか.

2 主定理

- 主定理 1 ー

$$f \in kig[xig]$$
 で生成されるイデアル $I = \langle f \rangle \subset kig[xig]$ に対し、次が成り立つ。
$$f = 0 \ \mbox{又は} \ (\mathbf{V}(I))^\sharp = \deg(f) \qquad \Longleftrightarrow \qquad \mathbf{I}(\mathbf{V}(I)) = I$$

主定理 2 -

 $f \in k[x,y]$ を既約な多項式とし, $I = \langle f \rangle$ とする. このとき,

$$(\mathbf{V}(I))^{\sharp} = \infty \iff \mathbf{I}(\mathbf{V}(I)) = I$$

系 3

 $f=f_1\cdots f_s\in kig[x,yig]$ を既約な多項式の積で、任意の異なる i と j において、 f_i $\langle f_j$ として、 $I=\langle f\rangle$ とする.このとき、

$$1 \leq \forall l \leq s \ \mathfrak{C}\left(\mathbf{V}\left(\langle f_l \rangle\right)\right)^{\sharp} = \infty \iff \mathbf{I}\left(\mathbf{V}\left(I\right)\right) = I$$

主定理2の証明に次の命題を用いた.

命題

 $f,q\in kig[x,yig]$ で, $\deg_x(f)=l$ とする.このとき,次を満たす $h,r\in kig[x,yig]$ が存在する.

$$\left\{ \mathrm{LC}_{x}\left(q
ight)
ight\} ^{l}f=hq+r$$
 かつ $,\deg_{x}\left(r
ight) <\deg_{x}\left(q
ight)$

ただし、 $\deg_x(f)=l$ は f を k[y] 上の x の多項式と見たときの次数. $\mathrm{LC}_x(q)$ は同様の見方をしたときの、先頭項係数.

参考文献

- [1] D.Cox J.Little D.O'shea Ideals, Varieties, and Algorithms Springer (1996年)
- [2] 酒井 文雄, 環と体の理論, 共立出版株式会社 (1997年)