P³上の射影直線に関する,結びとグラスマン多様体への像の構造とその一般次元への拡張

楫研究室所属 1G06L037-7 菅井 謙

目次

1	序文	3
2	概要	3
3	命題の証明	7
4	謝辞	10
5	参考文献	10

1 序文

[C] の第8章6節において,2つの多様体の結びと,グラスマン多様体への 写像について記されており、その2つのことについて興味を持ち、研究しよ うと考えた. 先ず, 2 つの多様体の結びは, それぞれの多様体を結んででき る射影直線の集まりで定義する.したがって,射影空間における多様体の結 びの簡単な例として、それぞれの多様体の任意の点において直線が定義でき るように P³ 内の 2 つの多様体が交わらない場合,特に捩れの位置にある 2 本の射影直線を用いて理解しようと考えた。このとき , 結びは , P3 と一致し たことが判明した、そこで , \mathbf{P}^n についても , 同様のことが成り立つのではな いかと思い, 結びが \mathbf{P}^n となるような, 2 つの多様体を見つけようと研究し た.このとき, \mathbf{P}^i と同型な射影線形多様体と, $\mathbf{P}^{n-(i+1)}$ と同型な射影線形 多様体が交わりを持たないとき、この2つの多様体の結びが、 \mathbf{P}^n と一致す ることが判明した.次に,[C]の第8章6節の定理11において, P^3 上の射 影直線全体から、グラスマン多様体への写像 ω が全単射であることが書かれ ている.この写像は,[C]の第8章6節によれば,n次元射影空間上の射影 直線全体にも拡張できると書かれていた、そこで,実際に,n次元射影空間 上の射影直線全体から,多様体への全単射な写像 ω を構成して, n 次元にお けるグラスマン多様体の構造を見つけたいと考えた.そこで,最初に, \mathbf{P}^4 上 の射影直線全体から, \mathbf{P}^9 への写像 ω_4 (n=3 のときを ω_3 とする.) を ω_3 と 同様に定義したとき、 P^9 上の多様体で成り立つ関係式が、5つ見つかったの で、その関係式を零点とする集合と写像 ω_4 によって,全単射になるかを調 べた結果、全単射となった.そこで、 \mathbf{P}^n の場合においても同様の結果が得ら れると考え,関係式を予想した.それを,零点集合とする多様体と, \mathbf{P}^n の 直線全体が,全単射になることを証明することができて、 \mathbf{P}^n の直線全体の, グラスマン多様体への射の像の構造が判明した.

2 概要

先ず,基本的な定義をする.

Difinition.1

k を field とする.また, \mathbf{P}^n の斉次座標を $(x_0:x_1:\cdots:x_n)$ とし, $f\in k[x_0,x_1,\cdots,x_n]$ を斉次多項式とする.このとき, \mathbf{P}^n における零点集合を,

$$\mathbf{Z}(f) = \{(a_0 : a_1 : \dots : a_n) | f(a_0, a_1, \dots, a_n) = 0\}$$

で定義する.

最初に,2つ多様体の結びから考える.そこで,2つの多様体の結びのを[C]と同様に定義する.

Definition.2

 $X\subset {f P}^3$, $Y\subset {f P}^3$ を variety とし , variety の結び (join) を次のように定義する .

$$X * Y = \{ux - vy | x \in X, y \in Y, x \neq y, (u : v) \in \mathbf{P}^1\}$$

この多様体の結びの概念を用いて, ${f P}^3$ 上の捩れの位置にある 2 本の射影直線に対して,次のような問題が考えられる.

Question.1

k を field としたとき , 捩れの位置にある 2 本の射影直線の結びは \mathbf{P}^3 に一致 するか. 特に,

$$L_1 = \mathbf{Z}(x_2, x_3)$$
$$L_2 = \mathbf{Z}(x_0, x_1)$$

の結びは P^3 に一致するか.

Question.1 は,肯定的に解決できた.さらに,[C]の第8章6節にある射影同値の概念を用いることにより,より多くのことが分かった.先ず,射影同値の定義を[C]と同様にしておく.

Definition.2

 $V_1\subset {f P}^n$, $V_2\subset {f P}^n$ を variety とする . $A\in GL(n+1,k)$ が存在して , $V_2=A(V_1)$ となるとき , V_1 と 以 は射影同値 (projective equivalent) という .

この射影同値を使うと,次のことが分かった.

Proposition.1

k を field とし, $X \in \mathbf{P}^3$ と, $Y \in \mathbf{P}^3$ を variety とする.さらに,射影直線 L_1 と L_2 を,

$$L_1 = \mathbf{Z}(x_2, x_3)$$
$$L_2 = \mathbf{Z}(x_0, x_1)$$

とする.このとき, $A(X)=L_1$, $A(Y)=L_2$ なる $A\in GL(4,k)$ が存在するならば, $X*Y={\bf P}^3$ が成り立つ.

この事実をふまえて, \mathbf{P}^n に対しても 2 つの多様体がどのようなときに結び が \mathbf{P}^n となるのかを考えた.

Question.2

2 つの variety $X \in \mathbf{P}^n$, $Y \in \mathbf{P}^n$ が , それぞれ ,

$$\mathbf{Z}(x_{i+1}, x_{i+2}, \cdots, x_n) \cong \mathbf{P}^i$$

 $\mathbf{Z}(x_0, x_1, \cdots, x_i) \cong \mathbf{P}^{n-(i+1)}$

と射影同値となるときに, 2 つの variety X, Y の結びが \mathbf{P}^n に一致するか.

この Question.2 も肯定的であった.

Proposition.2

k を field とし, $X \in \mathbf{P}^n$, $Y \in \mathbf{P}^n$ を variety とする.このとき, $X \cap Y = \emptyset$ であり, $A(X) \cong \mathbf{P}^i$, $A(Y) \cong \mathbf{P}^{n-(i+1)}$ なる $A \in GL(n+1,k)$ と $0 \le i \le n-1$ が存在するならば, $X * Y = \mathbf{P}^n$ が成り立つ.

次に , グラスマン多様体への写像 ω について考えた . [C] の第 8 章 6 節の定理 1 1 では、次のようなことを主張していた .

Theorem

 ${f P}^3$ の射影直線の相異なる 2 点, $p=(a_0:a_1:a_2:a_3)$, $q=(b_0:b_1:b_2:b_3)$ に対して, $\omega_3:\{{f P}^3$ 上の射影直線全体 $\}$

$$\longrightarrow Z(z_{01}z_{23} - z_{02}z_{13} + z_{03}z_{12}) \subset \mathbf{P}^3$$

を次のように定義する.

$$\omega_3 \begin{pmatrix} a_0 & a_1 & a_2 & a_n \\ b_0 & b_1 & b_2 & b_3 \end{pmatrix} = (z_{ij})_{0 \le i < j \le 3} := (a_i b_j - a_j b_i)_{0 \le i < j \le 3}$$

このとき, ω_3 は全単射である.また,

$$z_{01}z_{23} - z_{02}z_{13} + z_{03}z_{12} = 0$$

を , Plücker の関係式という .

 ${f P}^n$ の場合を考える前に , 先ず , ${f P}^4$ の場合で考えた . ${f P}^4$ 上の射影直線全体から , ${f P}^9$ への写像 ω_4 を ${f P}^3$ の場合と同様に定義した .

Difinition.3

 ${f P}^4$ の射影直線の相異なる 2 点, $p=(a_0:a_1:\cdots:a_4)$, $q=(b_0:b_1:\cdots:b_4)$ に対して, ${f P}^4$ の射影直線から, ${f P}^9$ への写像

 $\omega_4:\{{f P}^4$ 上の射影直線全体 $\}$

$$\longrightarrow V_4 \subset \mathbf{P}^9$$

を次のように定義する.

$$\omega_4 \begin{pmatrix} a_0 & a_1 & \cdots & a_4 \\ b_0 & b_1 & \cdots & b_4 \end{pmatrix} = (z_{ij})_{0 \le i < j \le 4} := (a_i b_j - a_j b_i)_{0 \le i < j \le 4}$$

このとき,

$$(z_{ij})_{0 \le i < j \le 3} = (a_i b_j - a_j b_i)_{0 \le i < j \le 3}$$

に対しては , \mathbf{P}^3 の場合を考えると , \mathbf{P}^4 においても , $\mathrm{Pl\ddot{u}cker}$ の関係式

$$p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$$

が成り立っている. そこで,

$$p_{01}p_{24} - p_{02}p_{14} + p_{04}p_{12} = 0$$

$$p_{01}p_{34} - p_{03}p_{14} + p_{04}p_{13} = 0$$

$$p_{02}p_{34} - p_{03}p_{24} + p_{04}p_{23} = 0$$

$$p_{12}p_{34} - p_{13}p_{24} + p_{14}p_{23} = 0$$

が成り立っていると考えられ,実際,成り立っている(*)実際に, \mathbf{P}^9 における \mathbf{P}^9 においる $\mathbf{P}^$

Question.3

Difinition.3 において,

$$V_4 = \mathbf{Z}(z_{ij}z_{kl} - z_{ik}z_{jl} + z_{il}z_{jk}|0 \le i < j < k < l \le 4)$$

としたとき, ω_4 は全単射か.

この問題は,肯定的に解決した.

Proposition.3

Difinition.3 における, P^4 の射影直線から, P^9 への写像

 $\omega_4:\{\mathbf{P}^4$ 上の射影直線全体 $\}$

$$\longrightarrow \mathbf{Z}(z_{ij}z_{kl} - z_{ik}z_{jl} + z_{il}z_{jk}|0 \le i < j < k < l \le 4) \subset \mathbf{P}^9$$
は全単射 .

この事実に基づいて, \mathbf{P}^n の場合を考える. ω_n を同様に定義する.

Difinition.4

 ${f P}^n$ の射影直線の相異なる 2 点, $p=(a_0:a_1:\cdots:a_n)$, $q=(b_0:b_1:\cdots:b_n)$ に対して, ${f P}^n$ の射影直線から, $\left(egin{array}{c} n+1 \\ 2 \end{array}
ight)-1$ 次元射影空間への写像

 $\omega_n:\{\mathbf{P}^n$ 上の射影直線全体 $\}$

 $\longrightarrow V_n$

を次のように定義する.

$$\omega_n \begin{pmatrix} a_0 & a_1 & \cdots & a_n \\ b_0 & b_1 & \cdots & b_n \end{pmatrix} = (z_{ij})_{0 \le i < j \le n} := (a_i b_j - a_j b_i)_{0 \le i < j \le n}$$

 \mathbf{P}^4 の場合と同様の問題を考える.

Question.4

Difinition.4 において,

$$V_n = \mathbf{Z}(z_{ij}z_{kl} - z_{ik}z_{jl} + z_{il}z_{jk}|0 \le i < j < k < l \le n)$$

としたとき, ω_n は全単射か.

Proposition.3 と同様の結果が得られた.

Proposition.4

Difinition.4 における, \mathbf{P}^n の射影直線から, $\left(egin{array}{c} n+1 \\ 2 \end{array}
ight)-1$ 次元射影空間

への写像

 $\omega_n:\{\mathbf{P}^n$ 上の射影直線全体 $\}$

 $\longrightarrow \mathbf{Z}(z_{ij}z_{kl} - z_{ik}z_{jl} + z_{il}z_{jk}|0 \le i < j < k < l \le n)$

は全単射.

したがって, $\{\mathbf{P}^n$ 上の射影直線全体 $\}$ の ω_n による像は,

$$\mathbf{Z}(z_{ij}z_{kl} - z_{ik}z_{jl} + z_{il}z_{jk}|0 \le i < j < k < l \le n)$$

であることが判明した.

3 命題の証明

先ず, 結びに関する, 命題から示す. Proposition.1 は Proposition.2 と同様に示せるので, Proposition.2 を示す.

Proposition.2

k を field とし, $X \in \mathbf{P}^n$, $Y \in \mathbf{P}^n$ を variety とする.このとき, $X \cap Y = \emptyset$ であり, $A(X) \cong \mathbf{P}^i$, $A(Y) \cong \mathbf{P}^{n-(i+1)}$ なる $A \in GL(n+1,k)$ と $0 \le i \le n-1$ が存在するならば, $X * Y = \mathbf{P}^n$ が成り立つ.

Proof

 $X*Y\subset {\bf P}^n$ は明らか.逆である ${\bf P}^n\subset X*Y$ を示す. $X\cap Y=\emptyset$ より, $A(X)\cap A(Y)=\emptyset$ なので,

$$A(X) = \mathbf{Z}(x_{i+1}, x_{i+2}, \dots, x_n) \cong \mathbf{P}^i$$

$$A(Y) = \mathbf{Z}(x_0, x_1, \dots, x_i) \cong \mathbf{P}^{n-(i+1)}$$

となるので, $\mathbf{Z}(x_{i+1},x_{i+2},\cdots,x_n)*\mathbf{Z}(x_0,x_1,\cdots,x_i)=\mathbf{P}^n$ を示せばよい.これは, $\mathbf{Proposition.1}$ と同様に示せる.先ず, $p\in A(X)\cup A(Y)$ のときは明らか.次に,任意の $p=(p_0:p_1:\cdots:p_n)\in\mathbf{P}^n\backslash A(X)\cup A(Y)$ に対して, $(p_0:p_1:\cdots:p_i)=t(q_0:q_1:\cdots:q_i)$ を満たす, $t\in k$, $q=(q_0:q_1:\cdots:q_i:0:\cdots:0)\in A(X)$ が存在する.この p と q を通る直線 L は,

$$L = \{(utq_0 - vq_0 : utq_1 - vq_1 : \dots : utq_i - vq_i : up_{i+1} : \dots : up_n) | (u : v) \in \mathbf{P}^1\}$$

したがって, A(Y) との交点は, u, v に関する連立方程式

$$utq_0 - vq_0 = 0$$

$$\vdots$$

$$utq_i - vq_i = 0$$

を解けば求められる.これは,明らかに自明解以外の解 (u:v)=(1:t) を持つ.したがって,L と A(Y) との交点は必ず存在し, $p\in A(X)*A(Y)$ が成り立つ.ゆえに, $A(X)*A(Y)\subset \mathbf{P}^n$ なので, $X*Y\subset \mathbf{P}^n$ が成り立つ.

次に,グラスマン多様体の写像に関する命題を示す.命題を示す前に,まず,(*)を示しておく.

Lemma

$$(p_{ij})_{0 \le i < j \le n} = (a_i b_j - a_j b_i)_{0 \le i < j \le n}$$

とする.任意の $0 \le i < j < k < l \le n$ に対して,

$$p_{ij}p_{kl} - p_{ik}p_{jl} + p_{il}p_{jk} = 0$$

が成り立つ.

Proof

定義に基づいて実際に計算する.

$$\begin{aligned} p_{ij}p_{kl} - p_{ik}p_{jl} + p_{il}p_{jk} \\ &= (a_ib_j - a_jb_i)(a_kb_l - a_lb_k) - (a_ib_k - a_kb_i)(a_jb_l - a_lb_j) \\ &+ (a_ib_l - a_lb_i)(a_jb_k - a_kb_j) \\ &= a_ib_ja_kb_l - a_ib_ja_lb_k - a_jb_ia_kb_l + a_jb_ia_lb_k \\ &- a_ib_ka_jb_l + a_ib_ka_lb_j + a_kb_ia_jb_l - a_kb_ia_lb_j \\ &+ a_ib_la_jb_k - a_ib_la_kb_j - a_lb_ia_jb_k + a_lb_ia_kb_j \\ &= 0 \end{aligned}$$

次に,命題を示すが, Proposition.3 は Proposition.4 と同様に示せるので, Proposition.4 を示す.

Proposition.4

$$\mathbf{P}^n$$
 の射影直線の相異なる 2 点, $p = (a_0:a_1:\cdots:a_n)$, $q = (b_0:b_1:\cdots:b_n)$ に対して, \mathbf{P}^n の射影直線から, $\binom{n+1}{2}-1$ 次元射影空間への写像 $\omega_n:\{\mathbf{P}^n$ 上の射影直線全体 $\}$ \longrightarrow $\mathbf{Z}(z_{ij}z_{kl}-z_{ik}z_{jl}+z_{il}z_{jk}|0\leq i< j< k< l\leq n)$ を次のように定義する.

$$\omega_n \begin{pmatrix} a_0 & a_1 & \cdots & a_n \\ b_0 & b_1 & \cdots & b_n \end{pmatrix} = (z_{ij})_{0 \le i < j \le n} := (a_i b_j - a_j b_i)_{0 \le i < j \le n}$$

この ω_n は全単射

Proof

直線 L と, $L^{'}$ をある零でない λ が存在して, $\omega_n(L)=\lambda\omega_n(L^{'})$ を満たすとする. L 上の任意の相異なる 2 点を $p:=(a_0:a_1:\cdots:a_n)$, $q:=(b_0:b_1:\cdots:b_n)$ とし, $L^{'}$ 上の任意の相異なる 2 点を $p^{'}:=(a_0^{'}:a_1^{'}:\cdots:a_n^{'})$, $q^{'}:=(b_0^{'}:b_1^{'}:\cdots:b_n^{'})$ とすると,任意の $0\leq i< j\leq n$ に対して,次が成り立つ.

$$a_{i}b_{j} - a_{j}b_{i} = \lambda(a'_{i}b'_{j} - a'_{j}b'_{i})$$

このとき, $a_ib_j-a_jb_i$ のいずれかは,零でないので, \mathbf{P}^n の座標を入れ替えることにより, $a_0b_1-a_1b_0\neq 0$ としてよい.そこで,次の 2 点 P,Q を考える.

$$\begin{array}{lll} P & = & \left(0:-(a_0b_1-a_1b_0):-(a_0b_2-a_2b_0):\cdots:-(a_0b_n-a_nb_0)\right) \\ & = & \left(0:-\lambda(a_0^{'}b_1^{'}-a_1^{'}b_0^{'}):-\lambda(a_0^{'}b_2^{'}-a_2^{'}b_0^{'}):\cdots:-\lambda(a_0^{'}b_n^{'}-a_n^{'}b_0^{'})\right) \\ & = & \left(0:-(a_0^{'}b_1^{'}-a_1^{'}b_0^{'}):-(a_0^{'}b_2^{'}-a_2^{'}b_0^{'}):\cdots:-(a_0^{'}b_n^{'}-a_n^{'}b_0^{'})\right) \\ Q & = & \left(a_0b_1-a_1b_0:0:-(a_1b_2-a_2b_1):-(a_1b_3-a_3b_1):\cdots:-(a_1b_n-a_nb_1)\right) \\ & = & \left(\lambda(a_0^{'}b_1^{'}-a_1^{'}b_0^{'}):0:-\lambda(a_1^{'}b_2^{'}-a_2^{'}b_1^{'}):-\lambda(a_1^{'}b_3^{'}-a_3^{'}b_1^{'}):\cdots:-\lambda(a_1^{'}b_n^{'}-a_n^{'}b_1^{'})\right) \\ & = & \left(a_0^{'}b_1^{'}-a_1^{'}b_0^{'}:0:-(a_1^{'}b_2^{'}-a_2^{'}b_1^{'}):-(a_1^{'}b_3^{'}-a_3^{'}b_1^{'}):\cdots:-(a_1^{'}b_n^{'}-a_n^{'}b_1^{'})\right) \end{array}$$

このとき,

$$P = b_0 p - a_0 q = b'_0 p' - a'_0 q'$$

$$P = b_1 p - a_1 q = b'_1 p' - a'_1 q'$$

となるので,この 2 点 P ,Q は,両方とも,L , $L^{'}$ に含まれる.射影直線は,射影直線上の 2 点により決まるので, $L=L^{'}$ が成り立ち,単射が分かった. $(p_{01}:p_{02}:\cdots p_{n-1}\ _{n}\in Z(z_{ij}z_{kl}-z_{ik}z_{jl}+z_{il}z_{jk}|0\leq i< j< k< l\leq n)$ とする.このとき, p_{ij} のいずれかは,零でないので, \mathbf{P}^{n} の座標を入れ替えることにより, $p_{01}\neq 0$ としてよい.そこで,次の 2 点を考える.

$$(0:-p_{01}:-p_{02}:\cdots:-p_{0n})$$

$$(p_{01}:0:-p_{12}:-p_{13}:\cdots:-p_{1n})$$

この 2 点により,1 つの射影直線を定めることできる.このとき, ω_n の像は,任意の $0 \leq i < j < k < l \leq n$ に対して,

$$p_{ij}p_{kl} - p_{ik}p_{jl} + p_{il}p_{jk} = 0$$

であるので,

$$p_{01}p_{ij} = p_{0i}p_{1j} - p_{0j}p_{1i}$$

に注意すると、

$$\omega_{n} \begin{pmatrix} 0 & -p_{01} & -p_{02} & \cdots & -p_{0n} \\ p_{01} & 0 & -p_{12} & \cdots & -p_{1n} \end{pmatrix}$$

$$= (p_{01}^{2} : p_{01}p_{02} : p_{01}p_{03} : \cdots : p_{01}p_{0n} : p_{01}p_{12} : \cdots : p_{01}p_{1n}$$

$$: p_{02}p_{13} - p_{03}p_{12} : \cdots : p_{0i}p_{1j} - p_{0j}p_{1i} : \cdots : p_{0\ n-1}p_{1n} - p_{0n}p_{1\ n-1})$$

$$= (p_{01} : p_{02} : p_{03} : \cdots : p_{0n} : p_{12} : \cdots : p_{1n} : p_{23} : \cdots : p_{ij} : \cdots : p_{n-1\ n})$$

となり,全射が言えた.

4 謝辞

卒業論文作成にあたり,お忙しい中,たくさんの指導,指摘,意見をいただいた,楫先生や,楫研究室の皆様に,この場を借りて,お礼申し上げます.

5 参考文献

[C]: D.Cox J.Little D.O'Shea $\it Ideals, Varieties, and Algorithms$ -An Introduction to Computational Algebraic Gepmetry and Commutative Algebra Springer-Verlag(1992)