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Chapter 1

Introduction

In this thesis, we study moduli stacks of torsion-free sheaves on K3 surfaces
and noncommutative Projective Calabi-Yau schemes. This thesis consists of
two main parts.

In Chapter 2, we study moduli stacks of torsion-free sheaves on K3 surfaces.
We also give an application to Brill-Noether theory.

When we consider moduli spaces of coherent sheaves, we have a serious
problem. The problem is that we cannot construct moduli spaces parametriz-
ing all coherent sheaves. We have two solutions to this problem. One is restrict-
ing coherent sheaves we consider to semistable sheaves. Then, we can construct
moduli spaces of semistable sheaves by using geometric invariant theory. The
other is constructing the moduli spaces as stacks, which are generalizations of
schemes. In this case, moduli spaces we obtain are not generally schemes, but
they parametrize all coherent sheaves. We often call moduli spaces as stacks
moduli stacks.

K3 surfaces are not only Calabi-Yau manifolds but also (holomorphic) sym-
plectic manifolds. Many examples of Calabi-Yau manifolds are known, while
known examples of irreducible symplectic manifolds are only 4 types up to de-
formations. Many of them are constructed by using moduli spaces of semistable
sheaves on K3 surfaces. From this point of view, studying moduli spaces of
coherent sheaves is important.

It seems that dealing with moduli stacks is more difficult than moduli
schemes because stacks are defined as fibered categories or pseudo functors
although schemes are defined as locally ringed spaces. Actually, moduli spaces
of semistable sheaves are more studied than moduli stacks of coherent sheaves.

On the other hand, different geometric properties of moduli stacks of co-
herent sheaves from moduli spaces of semistable sheaves are observed and
applications to studying schemes are given. Walter studied moduli stacks of
torsion-free sheaves of rank 2 on a ruled surface and gave an application to
Brill-Noether theory ([56]). In detail, he gave the irreducible decompositions
of moduli stacks of torsion-free sheaves of rank 2 and those of Brill-Noether
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loci of a Hilbert scheme of points on a ruled surface. As related results, various
types of stratifications of stacks are studied by Gómez, Sols and Zamora [14]
and Hoskins [16] and others.

Let X be a K3 surface over C of Picard rank ρ(X) = 1. Main results of
Chapter 2 are giving the irreducible decomposition of the moduli stack M tf(v)
of torsion-free sheaves on X with Mukai vector v and of Brill-Noether loci of
the Hilbert scheme HilbN(X) of N points on X. Since the properties of K3
surfaces are different from those of ruled surfaces, we need different ideas from
Walter to get the results and mainly use the theories of sheaves on K3 surfaces
by Yoshioka ([23], [24], [60], [63], [62]).

We denote by M ss(v) the moduli stack of semistable sheaves with Mukai
vector v. Our first result in Chapter 2 is the following.

Theorem 1.0.1. Let X be a K3 surface of ρ(X) = 1 over C, let v0 be a
primitive Mukai vector and, let v = ([v]0, [v]1, [v]2) := mv0 (m ∈ Z). We
assume [v]0 = 2. Then, we have the irreducible decomposition of M tf(v) as
follows.

M tf(v) =

{
M ss(v) ∪

⋃
(v1,v2)≤1 M HN

(v1,v2)
(v) if ⟨v0, v0⟩ ≥ −2⋃

M HN
(v1,v2)

(v) otherwise

,where the stack M HN
(v1,v2)

(v) is defined as

M HN
(v1,v2)

(v) :=

{
E ∈ M tf(v)

∣∣∣∣∣ ∃(0 ⊂ E1 ⊂ E) : Harder-Narasimhan filtration

such that v(E1) = v1, v(E/E1) = v2

}
.

Remark 1.0.2. Note that M ss(v) ̸= ∅ if and only if ⟨v0, v0⟩ ≥ −2 ([63, Corollary
0.3]). And, we can compute the dimensions of M tf(v) at each point by using
Theorem 2.1.1 and Lemma 2.3.11.

(Classical) Brill-Noether theory is study of special divsors on a curve. To be
accurate, a Brill-Noether locus is defined as a special locus of the Picard variety
Pic(C) of a smooth projective curve C, which is well-studied for a long time
([1],[2]). On the other hand, a Brill-Noether locus of a moduli space of sheaves
on a smooth projective variety is a special locus defined by cohomologies of
coherent sheaves in the space, which is naturally a generalization of a classical
Brill-Noether locus on a curve. We think of Hilbert schemes of points as moduli
spaces of ideal sheaves of finite schemes and define Brill-Noether loci of Hilbert
schemes of points by using the identifications.

In our case, the Brill-Noether locus W i
N(nH) is defined as

W i
N(nH) = {[Z] ∈ HilbN(X) | h1(IZ(nH)) > i},

where i, n,N ∈ Z≥0 and H is ample generator of Pic(X). In particular, A
Brill-Noether locus of Hilbert schemes of points parametrizes tuples of points
in special positional relationships. Because we have a bijection between the
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set of irreducible components of W i
N(nH) of HilbN(X) and a set of irreducible

components of M tf(v) for some Mukai vector v whose general member satisfies
certain conditions, we can classify the irreducible components of W i

N(nH)
of HilbN(X) as an application of the first result if we classify such special
irreducible components of M tf(v). The second result of Chapter 2 is classifying
W i
N(nH) when i = 0.

Theorem 1.0.3. Let X be a K3 surface of ρ(X) = 1 over C, let v :=
(2, nH, n

2

2
H2 − N + 2)= mv0 (v0 : primitive Mukai vector, m ∈ Z) and let

nH be an effective divisor on X (n ∈ Z≥0, H : the generator of Pic(X)). We
assume N ≤ h0(O(nH)). Then, we classify the irreducible components of

W 0
N(nH) = {[Z] ∈ HilbN(X) | h1(IZ(nH)) ≥ 1}

into one of the following.
(α) : for all (v1, v2), if ⟨v1, v2⟩ ≤ 1, [v1]1, [v2]1 ̸= 0 : effective and −1 < [v2]2,

there exists a unique irreducible component of W 0
N(nH) such that, for a general

member Z, the torsion-free sheaf E fitting into the extension

0 → OX → E → IZ(nH) → 0

is contained in M HN
(v1,v2)

(v).

(β) : if ⟨v0, v0⟩ ≥ −2 except for the case “ H2 = 2 and v = (2, 3H, 5) ” ,
there exists a unique irreducible component of W 0

N(nH) such that for a general
member Z, the torsion-free sheaf E fitting into the extension

0 → OX → E → IZ(nH) → 0

is contained in M ss(v).

Remark 1.0.4. If N > h0(O(nH)), then W 0
N(nH) = HilbN(X). And by using

Theorem 2.1.3, we see not only whether W 0
N(nH) is empty or not but also the

dimensions and the number of the irreducible components of W 0
N(nH).

Note that we consider all K3 surfaces of Picard rank 1 although Walter
([56]) only consider a special ruled surface P1 × P1 in applications of Brill-
Noether theory.

In Chapter3, we study noncommutative projective Calabi-Yau schemes.
Two Noetherian schemes S, T are reconstructed by the categories Coh(S)

and Coh(T ) of coherent sheaves on S, T , respectively. This is proved by Gabriel
in 1962 ([12]). On the other hand, it is well-known that the category Coh(S)
of coherent sheaves on a projective scheme S over a field k is equivalent to the
Serre quotient category qgr(R) of a the category of finitely R-graded modules
by the subcategory of torsion R-modules, where R is a graded k-algebra ([44]).
From this point of view, a noncommutative projective scheme proj(R) asso-
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ciated to a (not nececessarily commutative) graded k-algebra R is defined by
the pair (qgr(R),R), where R is the object in qgr(R) naturally given by R.

As mentioned above, to find an essentially new example of holomorphic
symplectic manifold is very difficult. On the other hand, a triangulated sub-
category of the derived category of a cubic fourfold in P5, which is obtained
by some semiorthogonal decompositions, has the same property as the derived
category of coherent sheaves on a projective K3 surface such as the Serre func-
tor exists and is the 2-shift functor [2] ([25]). Moreover, some such categories
are not obtained as the derived categories of coherent sheaves of projective K3
surfaces and called noncommutative K3 surfaces.

A noncommutative projective scheme proj(R) is Calabi-Yau n scheme if
qgr(R) is smooth and the Serre functor of Db(qgr(R)) is the n-shift functor.
It seems that describing a noncommutative K3 surface as the derived category
of a noncommutative projective scheme is interesting. However, there are few
examples of known noncommutative projective Calabi-Yau schemes. The only
example of a non-commutative projective Calabi-Yau scheme known to the
author is the one constructed by Kanazawa ([22]).

In Chapter 3, we construct new examples noncommutative projective
Calabi-Yau schemes by using noncommutative Segre products and weighted
hypersurfaces.

In order to construct noncommutative projective Calabi-Yau schemes as
noncommutative analogues of complete intersections in Segre products, we
perform a more detailed analysis of noncommutative projective schemes de-
fined by Z2-graded algebras, which were studied by Van Rompay ([53]). A
different approach to noncommutative Segre products is also studied in [15].
The result regarding noncommutative Segre products is the following.

Theorem 1.0.5. Let A := k⟨x0, · · · , xn⟩/(xjxi − qjixixj)i,j, B :=
k⟨y0, · · · , ym⟩/(yjyi − q′jiyiyj)i,j and C := A ⊗k B, where qji, q

′
ji ∈ k× for

all i, j. We regard C as an N2-graded algebra with bideg(xi) = (1, 0) and
bideg(yi) = (0, 1) for all i.

1. Let f :=
∑n

i=0 x
n+1
i and g :=

∑m
i=0 y

m+1
i . We assume that (i) qii =

qijqji = qn+1
ij = 1 for all i, j, (ii) q′ii = q′ijq

′
ji = q′m+1

ij = 1 for all i, j.

Then, proj(C/(f, g)) is a noncommutatative projective Calabi-Yau
scheme of dimension (n + m − 2) if and only if

∏n
i=0 qij and

∏m
i=0 q

′
ij

are independent of j, respectively.

2. Suppose that m = n + 1 (resp. m = n) and q′ij = 1 for all i, j. Let

f :=
∑n

i=0 x
n+1
i yi and g :=

∑n+1
i=0 y

n+1
i (resp.

∑n
i=0 y

n
i ). We assume that

qii = qijqji = qn+1
ij = 1 for all i, j.

Then, proj(C/(f, g)) is a noncommutatative projective Calabi-Yau
scheme of dimension (2n − 1)(resp. (2n − 2)) if and only if

∏n
i=0 qij

is independent of j.
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In order to construct noncommutative projective Calabi-Yau schemes as
noncommutative analogues of weighted hypersurfaces, we consider quotients
of weighted quantum polynomial rings. Local structures of noncommutative
projective schemes of quotients of weighted quantum polynomial rings are
somewhat complicated. This makes studying the smooothness of noncommu-
tative weighte hypersurfaces difficult. We overcome this by using the notion
of quasi-veronese algebras introduced by Mori ([33]). The result regarding
noncommutative weighted hypersurfaces is the following.

Theorem 1.0.6. Let (d0, · · · , dn) ∈ Zn+1
>0 and d :=

∑n
i=0 di such that d is

divisible by di for all i. Let C := k⟨x0, · · · , xn⟩/(xjxi − qjixixj)i,j, where qji ∈
k×, deg(xi) = di for all i, j. Let f :=

∑n
i=0 x

hi
i , where hi := d/di.

We assume that qii = qijqji = qhiij = q
hj
ij = 1 for all i, j. Then, proj(C/(f))

is a noncommutative projective Calabi-Yau scheme of dimension (n−1) if and
only if there exists c ∈ k such that cdj =

∏n
i=0 qij for all j.

Moreover, we prove that some our constructions in Theorem 1.0.6 give
essentially new examples of noncommutative projective Calabi-Yau schemes
which are not isomorphic to commutative Calabi-Yau manifolds.

Proposition 1.0.7. There exists a noncommutative projective Calabi-Yau
scheme of dimension 2 which is obtained in Theorem 1.0.6 and not isomor-
phic to either commutative Calabi-Yau surfaces or noncommutative projective
Calabi-Yau schemes of dimensions 2 obtained in [22].
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Chapter 2

Classifying the irreducible
components of moduli stacks of
torsion-free sheaves on K3
surfaces and an application to
Brill-Noether theory

2.1 Introduction

Moduli spaces of sheaves is one of the most central areas of algebraic geom-
etry. By considering them, many interesting objects have been found. On
K3 surfaces, moduli spaces of sheaves can have symplectic structures, which
was first observed by Mukai ([38]). On the other hand, as is well-known, we
can construct such moduli spaces by restricting objects to coherent sheaves
satisfying stability. However, the moduli spaces do not parametrize unstable
sheaves. In this point, stack is important and useful tool to construct moduli
spaces which is difficult to construct in the framework of scheme.

Our original motivation of the present paper is studying symplecticity of
moduli spaces of sheaves on K3 surfaces. Moreover, in [37] and [63] and others,
it was shown that non-emptiness, irreducibility and other properties of moduli
schemes depend essentially on Mukai vector. In [24] and [62], properties of
the moduli stacks of semistable sheaves on K3 surfaces are studied. Although
we can study moduli spaces of unstable sheaves on K3 surfaces by using stack
theory, detailed observations are less than studies of moduli schemes.

Various types of stratifications of stacks are studied by Gómez, Sols and
Zamora [14] and Hoskins [16] and others. However, it seems that irreducible
decomposition of moduli stacks of sheaves is not treated in these papers. In the
present article, we first classify the irreducible components of moduli stacks
of torsion-free sheaves of rank 2 on K3 surfaces of Picard number ρ = 1.
Classifying the irreducible components of moduli stacks of torsion-free sheaves
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on ruled surfaces is discussed in [56]. However, we need new ideas to solve our
problem because K3 surfaces have trivial canonical sheaves and may not be
fibered surfaces. Important results and methods in this paper are studies of
moduli stacks of semistable sheaves and filtered sheaves by Yoshioka ([23], [24],
[62], [60]), the classical theory by Shatz ([45]) and generalized Shatz’s theory
by Nitsure ([39]). By using these theories, we obtain our first result. More
precisely, we first take stratification of moduli stacks of torsion-free sheaves by
moduli stacks of semistable sheaves and ones of Harder-Narasimhan filtrations.
After that, we analyze the strata and describe the irreducible components by
using the above theory of Yoshioka.

If M tf(v) and M ss(v) denote respectively the moduli stacks of torsion-free
sheaves and semistable sheaves with Mukai vector v (in detail, see Definition
2.2.1), our first result is the following.

Theorem 2.1.1. Let X be a K3 surface of ρ(X) = 1 over C, let v0 be a
primitive Mukai vector and, let v = ([v]0, [v]1, [v]2) := mv0 (m ∈ Z). We
assume [v]0 = 2. Then, we have the irreducible decomposition of M tf(v) as
follows.

M tf(v) =

{
M ss(v) ∪

⋃
⟨v1,v2⟩≤1 M HN

(v1,v2)
(v) if ⟨v0, v0⟩ ≥ −2⋃

M HN
(v1,v2)

(v) otherwise

, where the stack M HN
(v1,v2)

(v) is defined as

M HN
(v1,v2)

(v) :=

{
E ∈ M tf(v)

∣∣∣∣∣ ∃(0 ⊂ E1 ⊂ E) : Harder-Narasimhan filtration

such that v(E1) = v1, v(E/E1) = v2

}
.

We call M HN
(v1,v2)

(v) the moduli stack of Harder-Narasimhan filtrations with

type (v1, v2). (in detail, see Definition 2.3.3)

Remark 2.1.2. Note that M ss(v) ̸= ∅ if and only if ⟨v0, v0⟩ ≥ −2 ([63, Corollary
0.3]). And, we can compute the dimensions of M tf(v) at each point by using
Theorem 2.1.1 and Lemma 2.3.11.

The second purpose of this paper is classifying the irreducible components
of Brill-Noether loci of Hilbert schemes of points on K3 surfaces by using the
first result. Originally, in [56], components of Brill-Noether loci of Hilbert
schemes of points on ruled surfaces were classified. In [56], Castelnuovo-
Mumford regularity and the Bertini’s theorem were mainly used. However,
we need more detailed analysis to achieve the application for K3 surfaces.
Namely, we focus on the method of the proof of the Bertini theorem ([4]) and
more recent results about K3 surfaces ([24], [63]). Our second result is the
following.

Theorem 2.1.3. Let X be a K3 surface of ρ(X) = 1 over C, let v :=
(2, nH, n

2

2
H2 − N + 2)= mv0 (v0 : primitive Mukai vector, m ∈ Z) and let

11



nH be an effective divisor on X (n ∈ Z≥0, H : the generator of Pic(X)). We
assume N ≤ h0(O(nH)). Then, we classify the irreducible components of

W 0
N(nH) = {[Z] ∈ HilbN(X) | h1(IZ(nH)) ≥ 1}

into one of the following.
(α) : for all (v1, v2) satisfying v = v1 + v2 and v1 > v2 (about this notation,

see Definiton 2.3.2), if ⟨v1, v2⟩ ≤ 1,−1 < [v2]2, and [v1]1, [v2]1 are non zero
effective divisors, there exists a unique irreducible component of W 0

N(nH) such
that, for a general member Z, the torsion-free sheaf E fitting into the extension

0 → OX → E → IZ(nH) → 0

is contained in M HN
(v1,v2)

(v).

(β) : if ⟨v0, v0⟩ ≥ −2 except for the case “ H2 = 2 and v = (2, 3H, 5) ” ,
there exists a unique irreducible component of W 0

N(nH) such that for a general
member Z, the torsion-free sheaf E fitting into the extension

0 → OX → E → IZ(nH) → 0

is contained in M ss(v).

Remark 2.1.4. If N > h0(O(nH)), then W 0
N(nH) = HilbN(X). And by using

Theorem 2.1.3, we see not only whether W 0
N(nH) is empty or not but also the

dimensions and the number of the irreducible components of W 0
N(nH).

Remark 2.1.5. About what happens in the exceptional case “ H2 = 2 and
v = (2, 3H, 5) ” in Theorem 2.1.3, see Claim 2.4.7 and a few paragraphs after
that.

2.2 Preliminaries

In this paper, the word a surface means a two-dimensional algebraic variety
over C. The word an algebraic stack means an Artin stack over C. In addition,
the word open (resp. closed, resp. locally closed) substack means a strictly
substack whose inclusion map is an open (resp. closed, resp. locally closed)
immersion (in detail, see [26] or [50]).

2.2.1 Mukai vectors

Definition 2.2.1 (Mukai vectors [17]). Let X be a K3 surface and let E
be a coherent sheaf on X.Then the Mukai vector v(E) of E is (rank(E),

c1(E),
c1(E)2

2
− c2(E)+rank(E)) ∈ Z ⊕ Pic(X) ⊕ Z.

Definition 2.2.2 (Mukai paring [17]). Let X be a K3 surface and let v :=
([v]0, [v]1, [v] 2), v

′ := ([v′]0, [v
′]1, [v

′]2) ∈ Z⊕ Pic(X)⊕ Z. Then, we define the
Mukai pairing of v and v′ to be ⟨v, v′⟩:= −[v]0[v

′]2 + [v]1[v
′]1 − [v]2[v

′]0 ∈Z.
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Definition 2.2.3 (([17])). For any v ∈ Z ⊕ Pic(X) ⊕ Z, v is primitive if
“v′ ∈ Z⊕ Pic(X)⊕ Z, m ∈ Z, v = mv′ ⇒ m = 1 or − 1”

2.2.2 Moduli stacks

Definition 2.2.4 (Moduli stacks of torsion-free sheaves). Let X be a K3
surface over C, and let v ∈ Z⊕NS(X)⊕Z. we define the moduli stack M tf(v)
of torsion-free sheaves with Mukai vector v on X to be the following category

1. Objects: (S, E), where S : scheme over C, E : quasi-coherent locally of
finite presentation sheaves over X ×C S(=: Z) and flat over S, and Et :
torsion-free sheaf over Zt = Xk(t) such that v(E) = v, (∀t ∈ S);

2. Morphisms : morphisms from (S, E) to (S ′, E ′) are the pairings (φ :
S → S ′, α : φ∗E ′ → E) such that α is an isomorphism.

Remark 2.2.5. M tf (v) is an algebraic stack. And, we can define moduli stacks
M (v) of coherent sheaves with Mukai vector v on X in the same way.

Definition 2.2.6 (Points of algebraic stacks [26], [50]). Let X be an algebraic
stack. Then,

|X | :=
∐

K/C:extension of fields

X (Spec(K))/ ∼,

where if let E ∈ X (Spec(K)), let E ′ ∈ X (Spec(K ′)) and let K,K ′ be exten-
sions of C, we write E ∼ E ′ if there exists a extension K ′′ of K,K ′ such that
E |XSpec(K′′)

≃ E ′ |XSpec(K′′)
.

Definition 2.2.7 (Topological spaces of algebraic stacks [26], [50]). Let X be
an algebraic stack. Then the set {U ⊆ |X | | ∃U : open substack of X such
that |U | = U} satisfies the axiom of open sets of X . We think of |X | as a
topological space by applying the definition.

Definition 2.2.8 (Relative dimensions [26],[50]). Let P : U → X be a mor-
phism from a scheme, and we assume u ∈ U maps to x ∈ |X |. Then, we
define dimu(P ) as follows. In the commutative diagram

U ×X Spec(k) //

��

Spec(k)

x

��
U

P // X ,

✷

dimu(P ) := dimx(U ×X Spec(k)).

Definition 2.2.9 (Dimensions of algebraic stacks at points [26], [50]). Let X
be an algebraic stack, let x ∈ X (Spec(K)) where K/C is an extension and let
P : U → X be a smooth morphism from a scheme. We assume u ∈ U maps
to x ∈ |X |. Then

dimx(X ) := dimu(U)− dimu(P ).
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Remark 2.2.10. If there is no confusion, we do not distinguish X with |X |.
And, Irreducible decomposition of X means irreducible decomposition of |X |.

2.2.3 Harder-Narasimhan filtrations and polygons

Theorem 2.2.11 (Harder-Narasimhan(HN) filtration [17]). Let X be a projec-
tive surface over C, let H be an ample divisor on X and let E be a torsion-free
sheaf on X. Then, for E and H, there exists a unique filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Es−1 ⊂ Es = E

such that Ei/Ei−1 is semistable (in the sense of Gieseker) with respect to H
(i = 1, · · · s) and

p(E1/E0) > p(E2/E1) > · · · > p(Es−1/Es−2) > p(Es/Es−1)

, where p(Ei/Ei−1) are the reduced Hilbert polynomials (cf.[17, Def 1.2.3])
of Ei/Ei−1 and each p(Ei/Ei−1) > p(Ei+1/Ei) means p(Ei/Ei−1)(m) >
p(Ei+1/Ei)(m) for m ≫ 0 . It is called Harder-Narasimhan(HN) filtration
of E for stability (in the sense of Gieseker) with respect to H.

In the same way, we have HN filtration of E for µ-stability w.r.t. H.

Definition 2.2.12 (Harder-Narasimhan polygon[39],[45]). Let Q[λ] be the
polynomial ring in one variable over Q. Let X be a projective surface over C,
H be an ample divisor on X and E be a torsion-free sheaf on X. We assume
that E has the HN filtration for stability w.r.t. H

0 = E0 ⊂ E1 ⊂ · · · ⊂ Es−1 ⊂ Es = E.

Then, we define the HN polygon HNP(E) of E for stability w.r.t. H to be the
subset of Z × Q[λ] which is the union of the segments xixi+1 for 0 ≤ i ≤ s,
where xi := (rank(Ei), p(Ei)) and each xixi+1 consists of all (a, f) ∈ Z×Q[λ]
such that (a, f) = txi + (1− t)xi+1 for some t ∈ Q with 0 ≤ t ≤ 1.

We can also define the HN polygon HNPµ(E) of E for µ-stability w.r.t. H.

Remark 2.2.13. In this paper, a HN-filtration (resp. polygon) means a HN-
filtration (resp. polygon) for stability (not for µ-stability).

2.3 Irreducible decomposition of M tf(v)

Notation 2.3.1. In this and next section, X always means a K3 surface of
ρ(X) = 1 and H means the ample generator of Pic(X). We denote the open
substack of semi stable sheaves and of µ-semi stable sheaves of M tf(v) by
M ss(v) and M µss(v). If {p} ∋ p′, then we write p ⇝ p′, where p, p′ denote
points of a topological space and say that p specializes p′. We always assume
that [v]0 = 2.
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Definition 2.3.2. Let vi := (1, diH, ai) ∈ Z ⊕ Pic(X) ⊕ Z, (i = 1, 2). Then,
we say v1 > v2 if (i) d1 > d2, or (ii) d1 = d2 and a1 > a2.

Definition 2.3.3. Let vi := (1, diH, ai) ∈ Z⊕Pic(X)⊕Z, (i = 1, 2) such that
v = v1 + v2 and v1 > v2. We define M HN

(v1,v2)
(v) to be a substack of M tf(v)

whose objects and morphisms are defined as follows.
Objects: E ∈ M tf(v) such that E’s HN-filtration is 0 ⊂ E1 ⊂ E with

v(E1) = (1, d1H, a1), v(E/E1) = (1, d2H, a2);
Morphisms: α : E → E ′: an isomorphism preserving their HN-filtrations.

Remark 2.3.4. In Definition 2.3.3, if the condition “v1 > v2” does not hold,
then M HN

(v1,v2)
(v) = ∅.

Notation 2.3.5. Let v be an element of Z
⊕

Pic(Z)
⊕

Z. We define

QX(F, v) := {F ↠ E | E : coherent on X, v(E) = v},

RN,m(v) :=

{
[φ : OX(−m)⊕N ↠ E] ∈ QX(OX(−m)⊕N , v)

∣∣∣∣ H0(φ(m)) : isomorphism

Hi(E(m)) = 0(i > 0)

}
,

RN,m
tf := RN,m ×M (v) M tf(v),

RN,m
ss := RN,m ×M (v) M ss(v) ≃ RN,m

tf ×tf
M (v)M ss(v),

RN,m
(v1,v2)

:= RN,m ×M (v) MHN
(v1,v2)

(v) ≃ RN,m ×M tf(v) MHN
(v1,v2)

(v).

Remark 2.3.6. [RN,m
ss /GL(N)] → M ss(v) and [RN,m

(v1,v2)
/GL(N)] → M HN

(v1,v2)
(v)

are open immersions because [RN,m/GL(N)] → M (v) is an open immersion
([20, Proposition 9.6]). In addition, we have dim[RN,m

ss /GL(N)] = dimRN,m
ss −

dimGL(N) and dim[RN,m
(v1,v2)

/GL(N)] = dimRN,m
(v1,v2)

− dimGL(N).

2.3.1 Irreducibility of moduli stacks of sheaves and
known results

In this subsection, we refer to irreducibility of moduli stacks of HN-filtrations
and known results needed to prove the our results.

Lemma 2.3.7 ([23, Theorem 1.2]). Let X be a K3 surface of Picard number
1. If ⟨v, v⟩ > 0, then M ss(v) is an irreducible algebraic stack.

Remark 2.3.8. When ⟨v, v⟩ ≤ 0 and M ss(v) ̸= ∅, the topological spaces of
moduli stacks and moduli schemes are homeomorphic because the stacks are
quotient stacks and all semistable sheaves are polystable. Therefore, the mod-
uli stacks are irreducible.

Lemma 2.3.9 ([60, Lemma 2.5]). Let M HN
(v1,v2)

(v) be the moduli stack of
torsion-free sheaves with Mukai vector v whose Harder-Narasimhan type is
(v1, v2). Then

1. the morphism M HN
(v1,v2)

(v) → M (v) is an immersion;
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2. Let E ∈ M HN
(v1,v2)

(v), whose HN-filtration corresponds to 0 → F1 → E →
F2 → 0 and let M HN

(v1,v2)
(v) → M ss(v1) × M ss(v2) be a morphism which

sends [E] 7→ ([F1], [F2]). Then, all irreducible components of M HN
(v1,v2)

(v)

are obtained as the pullback of an irreducible component of M ss(v1) ×
M ss(v2).

Corollary 2.3.10. M HN
(v1,v2)

(v) is an irreducible algebraic stack.

We explain facts about dimM ss(v) and dimM HN
(v1,v2)

(v), which are necessary
to prove a proposition later.

Lemma 2.3.11 ([23, Theorem 1.2] [24, Lemma 5.3], [31, Lemma 5.3.2]). Let
X be K3 surface of Picard number 1. v = lv0 with v0 : primitive and l ∈ Z.
Then,

dimM ss(v) =


⟨v, v⟩+ 1 ⟨v, v⟩ > 0

⟨v, v⟩+ l ⟨v, v⟩ = 0

⟨v, v⟩+ l2 ⟨v0, v0⟩ = −2

dimM HN
(v1,v2)

(v) = ⟨v1, v1⟩+ ⟨v2, v2⟩+ ⟨v1, v2⟩+ 2.

We also explain facts which are necessary to prove Theorem 2.1.1.

Lemma 2.3.12 ([23, Proposition 1.1]). The dimensions of all irreducible com-
ponents of M (v) is more than(or equal to) ⟨v, v⟩+ 1.

Lemma 2.3.13 ([11, Lemma 2.21]). Let X be a pseudo-catenary, jacobson,
and locally noetherian algebraic stack. If |X | is irreducible, then dimxX is
constant for all x ∈ |X |.

Remark 2.3.14. (i) algebraic stacks which are locally of finite type satisfy
the assumption of Lemma 2.3.13.

(ii) by Lemma 2.3.12 and Lemma 2.3.13, we get dimxM tf (v) ≥ ⟨v, v⟩ + 1
(∀x ∈ |M tf (v)|).

2.3.2 A criterion of the irreducible components of
M tf(v)

In this section, we classify the irreducible components of M tf(v).
Let v1, v2, v

′
1, v

′
2 ∈ Z⊕ Pic(X)⊕ Z such that v = v1 + v2 = v′1 + v′2, v1 > v2

and v′1 > v′2. We also suppose v1 ̸= v′1 and v2 ̸= v′2.

Lemma 2.3.15. if dimM HN
(v1,v2)

(v) ≥ dimM HN
(v′1,v

′
2)
(v), We have M HN

(v1,v2)
(v) ⊈

M HN
(v′1,v

′
2)
(v).
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Proof. We assume that M HN
(v1,v2)

(v) ⊆ M HN
(v′1,v

′
2)
(v) holds. If let p and p′ be the

generic points of M HN
(v1,v2)

(v) and M HN
(v′1,v

′
2)
(v) respectively, there exist N,m ∈

Z≥0 such that the morphism RN,m
(v1,v2)

→ M HN
(v1,v2)

(v) is dominant, i.e., RN,m
(v1,v2)

∋
∃q 7→ p ∈ M HN

(v1,v2)
(v). Note that RN,m

(v1,v2)
is irreducible.

By the fact that p′ ⇝ p and [26] , there exists q′ ∈ RN,m
(v′1,v

′
2)

such that

RN,m
(v′1,v

′
2)
∋ q′ 7→ p′ ∈ M HN

(v1,v2)
(v) and q′ ⇝ q in RN,m

tf and we think of q′ as the

generic point of RN,m
(v′1,v

′
2)
. So, we get dimRN,m

(v1,v2)
= dimRN,m

(v1,v2)
and dimRN,m

(v′1,v
′
2)
=

dimRN,m
(v′1,v

′
2)
. In addition, we have M HN

(v1,v2)
(v) ̸= M HN

(v′1,v
′
2)
(v) . Therefore, it

holds that dimRN,m
(v′1,v

′
2)
> dimRN,m

(v1,v2)
. ( if dimRN,m

(v′1,v
′
2)

= dimRN,m
(v1,v2)

, we have

RN,m
(v′1,v

′
2)
= RN,m

(v1,v2)
, this contradicts to uniqueness of generic points.)

On the other hand, the condition dimM HN
(v1,v2)

(v) ≥ dimM HN
(v′1,v

′
2)
(v) is equiv-

alent to dimRN,m
(v1,v2)

≥ dimRN,m
(v′1,v

′
2)

because of the irreducibility of M HN
(v1,v2)

(v)

(cf.Corollary 2.3.10) and Remark 2.3.6. This contradicts to the above inequal-
ity dimRN,m

(v′1,v
′
2)
> dimRN,m

(v1,v2)
.

Lemma 2.3.16. We have M HN
(v1,v2)

(v) ⊈ M HN
(v′1,v

′
2)
(v).

Proof. We assume M HN
(v1,v2)

(v) ⊆ M HN
(v′1,v

′
2)
(v). Let p and p′ be the generic points

of M HN
(v1,v2)

(v) and M HN
(v′1,v

′
2)
(v) respectively. Then, we have p′ ⇝ p. On the other

hand, the map |M tf(v)| ∋ p′′ 7→ HNP(p′′) is upper semicontinuous by [45] or
[39], where HNP(p′′) := HNP(E ′′)(E ′′ is a corresponding object in M tf(v) to
p′′). So, we have HNP(p) ≥ HNP(p′). Let v1 := (1,mH, m

2H2

2
− ℓ1 + 1) and

v′1 := ⟨1,m′H, m
′2H2

2
− ℓ′1 + 1⟩. Then, this means m ≥ m′.

If v2 := (1, (n−m)H, (n−m)2H2

2
− ℓ2 + 1), then

dimMHN
(v1,v2)

(v) = ⟨v1, v1⟩+ ⟨v2, v2⟩+ ⟨v1, v2⟩+ 2

= (2ℓ1 − 2) + (2ℓ2 − 2)

+

{
m(n−m)H2 −

(
m2H2

2
− ℓ1 + 1

)
−
(
(n−m)2H2

2
− ℓ2 + 1

)}
+ 2

= 3(ℓ1 + ℓ2)− 4 +m(n−m)H2 − m2H2

2
− (n−m)2H2

2

= −2m(n−m)H2 − m2H2

2
− (n−m)2H2

2
+ (3c2 − 4)

= H2
(
m− n

2

)2
+ 3c2 − 4− 3n2H2

4
.

Note that ℓ1 + ℓ2 + m(n − m)H2 = c2 in the above calculation. From this
calculation, we have dimM HN

(v1,v2)
(v) ≥ dimM HN

(v′1,v
′
2)
(v) by the above calculation.
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This contradicts to Lemma 2.3.15. Therefore, we get M HN
(v1,v2)

(v) ⊈
M HN

(v′1,v
′
2)
(v).

Remark 2.3.17. 1. It is shown that M ss(v) ⊇ M HN
(v1,v2)

(v) implies

dimM ss(v) > dimM HN
(v1,v2)

(v) by the method of the proof of Lemma

2.3.15, Remark 2.3.6 and the irreducibility of M ss(v) and M HN
(v1,v2)

(v)

(cf. Lemma 2.3.7, Corollary 2.3.10).

2. If M ss(v) ̸= ∅, we have M ss(v) ⊈ M HN
(v1,v2)

(v). Actually, if M ss(v) ⊆
M HN

(v1,v2)
(v), then we have HNP(p1) ≥ HNP(p2) where p1 and p2 are the

generic points of M ss(v) and M HN
(v1,v2)

(v) respectively. However, this does
not occur.

2.3.3 The proof of Theorem 2.1.1

We prove Theorem 2.1.1 by using the lemmas before.

Proof. Any Mukai vector v satisfies one of the following disjoint conditions ;

(a) : ⟨v, v⟩ > 0,

(b) : ⟨v, v⟩ = 0,−2 and v is primitive ,

(c) : ⟨v0, v0⟩ = 0,−2 and v is non-primitive ,

(d) : ⟨v, v⟩ < −2 and ⟨v0, v0⟩ ̸= −2.

And, we will prove Theorem 2.1.1 in each case. We first have a stratification
of M tf(v) by M ss(v) and M HN

(v1,v2)
(v). (About HN stratification, for example,

see [39] or [16], Section 5). In the case of (a) and (b), if ⟨v1, v2⟩ ≤ 1,

dimM ss(v) = ⟨v, v⟩+ 1 = ⟨v1, v1⟩+ ⟨v2, v2⟩+ 2⟨v1, v2⟩+ 1

= dimM HN
(v1,v2)

(v) + ⟨v1, v2⟩ − 1.

By Remark 2.3.17, we get M ss(v) ⊉ M HN
(v1,v2)

(v) and M ss(v) ⊈ M HN
(v1,v2)

(v).

On the other hand, we consider the case ⟨v1, v2⟩ > 1. We assume M ss(v) ⊉
M HN

(v1,v2)
(v). Then, for general x ∈ M HN

(v1,v2)
(v), we have dimxM tf(v) < ⟨v, v⟩+

1 and this contradicts Remark 2.3.14. So we have M ss(v) ⊇ M HN
(v1,v2)

(v).

By Lemma 2.3.7, Remark 2.3.8, and Corollary 2.3.10, the stacks M ss(v) and
M HN

(v1,v2)
(v) are irreducible. Thus by Lemma 2.3.16, we get the irreducible

decomposition of M tf(v) as the statements of the theorem.
In the case of (c), we can show that for any stack of HN-filtrations, ⟨v1, v2⟩ ≤

0 and dimM HN
(v1,v2)

(v) ≥ dimM ss(v). Let v := (2, nH, n
2H2

2
− c2 + 2). Then, we

have
1

4
⟨v, v⟩ = ⟨v0, v0⟩ =

−n2H2

4
+ c2 − 2 = 0 or − 2.
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And let v1 := (1, kH, k
2H2

2
− ℓ1 + 1), v2 := (1, lH, l

2H2

2
− ℓ2 + 1). Then,

⟨v1, v2⟩ = klH2 − n2H2

2
+ c2 − 2 = klH2 − n2H2

4
+ (

n2H2

4
+ c2 − 2)

= −H2

4
(n2 − 4kl) + (

n2H2

4
+ c2 − 2)

= −H2

4
(k − l)2 + (

n2H2

4
+ c2 − 2)

= −H2

4
(k − l)2 +

{
0 ⟨v0, v0⟩ = 0

−2 ⟨v0, v0⟩ = −2
≤ 0.

So, we have dimMHN
(v1,v2)

(v) = ⟨v, v⟩ − ⟨v1, v2⟩+ 2 ≥ dimM ss(v). we get M ss(v) ⊉
MHN

(v1,v2)
(v) and M ss(v) ⊈ MHN

(v1,v2)
(v) for any pair (v1, v2) such that v = v1 + v2 by

Remark 2.3.17. This induces the statement of the theorem.
In the case (d), we have M ss(v) = ∅ by [63, Corollary 0.3]. So, we can classify

the irreducible components.

2.4 An application to Brill-Noether theory of

Hilbert schemes of points

In [56], an application of the irreducible components of moduli stacks of
torsion-free sheaves on ruled surfaces are performed. In this section, we replace
ruled surfaces by K3 surfaces. For a K3 surface X, let N be a non-negative
integer and let D be an effective divisor on X such that h0(X,O(D)) ≥ N .
And let HilbN(X) be the Hilbert scheme of finite schemes of length N on X.
For the Hilbert schemes HilbN(X) of finite schemes of length N on X, We
define W i

N(D) as follows.

W i
N(D) := {[Z] ∈ HilbN(X) | h1(IZ(D)) ≥ i+ 1}.

Then, it is known that W i
N(D) ⊆ HilbN(X) is a closed subscheme from upper

semicontinuity of cohomology of flat families of sheaves and h1(IZ(D)) = i+1
for general members of each irreducible component of W i

N(D). In particular,
if i = 0, we have a bijection between the irreducible components of W i

N(D)
and the irreducible components of M tf(v) whose general member E satisfies
the conditions (1) : H1(X,E) = H2(X,E) = 0 and (2) : ∃s ∈ H0(X,E) such
that E/sOX is torsion-free. where, v := (2, D, D

2

2
− N + 2). Note that the

conditions (1) and (2) are open conditions. Moreover, if E is a general member
of an irreducible component M ′ of M tf(v) which satisfies (1), (2) and let the
corresponding irreducible component of W i

N(D) be V , then

dimV = dimM ′ + h0(E). (♠)

Proof of Theorem 2.1.3. We get the claim of Theorem 2.1.3 by the above com-
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ment, Lemma 2.4.1, Lemma 2.4.6 and calculating and rearranging χ(v) > 0
and h0(OX(n−m)) > ℓ2.

For example, a not semistable component M HN
(v1,v2)

(v) ⊂ M tf(v) corre-

sponds to a component of W 0
N(nH) if and only of the following conditions

hold :

• ⟨v1, v2⟩ ≤ 1 ( because M HN
(v1,v2)

(v) is an irreducible component of M tf(v)),

• 2m ≥ n > m > 0 ⇔ [v1]1, [v2]1 : non zero effective divisors and v1 > v2,

• χ(v) > 0 ( this always holds by the assumption N ≤
h0(O(n)) and the Riemann-Roch formula),

• h0(OX(n−m)) > ℓ2 ⇔ −1 < [v2]2,

where v1 := (1,mH, m
2H2

2
− ℓ1 +1) and v2 := (1, (n−m)H, (n−m)2H2

2
− ℓ2 +1).

Thus, we have (α) of Theorem 2.1.3. In the same way, we have (β) of Theorem
2.1.3.

2.4.1 About not semistable components

Lemma 2.4.1. Let v := (2, nH, n
2H2

2
−N+2), let v1 := (1,mH, m

2H2

2
−ℓ1+1),

and let v2 := (1, (n − m)H, (n−m)2H2

2
− ℓ2 + 1) such that v = v1 + v2 and

v1 > v2. We assume that E is a general member of M HN
(v1,v2)

(v). Then, E

satisfies the conditions (1), (2) if and only if the following conditions hold.
(a) : 2m ≥ n > m > 0, (b) : χ(E) > 0, (c) : h0(OX(n−m)) > ℓ2.

Proof.

(1), (2) ⇒ (a), (b), (c) If the conditions (1), (2) are satisfied, it is clear
that a general E satisfies (b). Let

0 → IZ1(m) → E → IZ2(n−m) → 0

be the exact sequence corresponding to the HN-filtration of E, where
v(IZ1(m)) = v1, v(IZ2(n − m)) = v2. Then, we have (a) because E ∈
M HN

(v1,v2)
(v) and h2(O(m)) = h2(O(n−m)) = 0. We also have h0(O(n−m)) >

ℓ2 because h1(IZ2(n −m)) = 0. Note that the condition h0(O(n −m)) = ℓ2
does not occur. If h0(O(n −m)) = ℓ2, then any global section s of a general
sheaf E ∈ M HN

(v1,v2)
(v) is included in H0(IZ1(m)). Because all non-zero sec-

tions in H0(IZ1(m)) never induce torsion-free quotients, so E/sOX includes a
torsion sheaf IZ1(m)/sOX . This contradicts to the condition (2). So, we have
the condition (c).
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(a), (b), (c) ⇒ (1),(2) Conversely, we assume that the conditions (a),
(b) and (c) are satisfied. First, we prove the condition (1) by induction for
ℓ1 (cf. [56, Lem 3.3 and Lem 4.5]). Note that H2(E) = 0 for a general
E ∈ M HN

(v1,v2)
(v) because H2(IZ1(m)) = H2(IZ2(n−m)) = 0. If ℓ1 = 0, then

we have H1(E) = 0 in the same way. For general ℓ1 > 0, we prove H1(E) = 0
for a general E ∈ M HN

(v1,v2)
(v). We assume E ′ fits in the exact sequence

0 → IZ′
1
(m) → E ′ → IZ′

2
(n−m) → 0

which is the HN filtration of E ′ with ℓ(Z ′
1) = ℓ1 − 1 and ℓ(Z ′

2) = ℓ2. If
H1(E ′) = 0 and E ′ satisfies the conditions (a), (b) and (c), then, E ′ have a
nonzero global section s. And, for a general point x ∈ X and a general one
dimensional quotient E ′ ↠ E ′ ⊗ k(x) ↠ k(x) of the fiber of E ′ at x denoted
by φ, we have φ(s) ̸= 0. Note that we can assume x /∈ Z ′

1. Let E be the kernel
of φ. Then, we have h0(E) = h0(E ′)− 1 and H1(E) = 0. And, we get the HN
filtration of E

0 → IZ′
1∪{x}(m) → E → IZ′

2
(n−m) → 0

because of the HN-filtration of E ′ and the assumption x /∈ Z ′
1. So, we get

condition (1) for general ℓ1 > 0.
Next, we prove the condition (2) under the condition (1). We consider the

conditions (α) : 2m = n, (β) : ℓ2 = 1. And, we divide our proof into two cases:
(i). (α) or (β) is not true, (ii). both (α) and (β) are true.

Case (i) It is enough to prove the following claim.

Claim 2.4.2. Let k be a positive integer. We assume that ℓ1 = 0. Then, we
have

h0(E(−k)) + dim|kH| < h0(E).

We show Claim 2.4.2 induces the condition (2) before proving it. If the
claim is true, then a general E ∈ M HN

(v1,v2)
(v) with ℓ1 = 0 is a vector bundle

because the Cayley-Bacharach property (cf. [17, Thm 5.1.1]) holds for a pair
(Z2,OX(n − 2m)) by the choice of m and ℓ2, where Z2 is a general set of ℓ2
points. And, the set H0(E) \

⋃
C∈|kH|,k∈NH

0(E(−C)) is a non-empty open set

from Claim 2.4.2. So, a general section s of a general E ∈ M HN
(v1,v2)

(v) with

ℓ1 = 0 defines a torsion-free quotient E/sOX because the zero set Z(s) of s is
a finite set (cf. [40, Ch. 1, §5]).

In the case ℓ1 > 0, we have a vector bundle E ′ fitting into the sequence

0 → OX(m) → E ′ → IZ2(n−m) → 0 (ℓ(Z2) = ℓ2)

whose general section s determines a torsion-free quotient because of the case
l1 = 0.

In addition, E ′ is generically globally generated. Note that we say that
E ′ is generically generated if the evaluation map ev : H0(E ′) ⊗ OX → E ′
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is surjective on an open set of X. Actually, from the condition (a) and (c),
OX(m) and IZ2(n−m) is generically globally generated. So, a simple diagram
chase shows that E ′ is generically global generated.

Let U be the subset of H0(E ′) of the sections defining torsion-free quo-

tients. Then, a natural C-linear homomorphism
∼
ev : H0(E ′) → H0(E ′ ⊗ k(x))

obtained from ev above is surjective and
∼
ev|U is dominant for general x ∈ X

because E ′ is generically globally generated. So, we can take general ℓ1 points
x1, · · · , xℓ1 on X and a general section s such that s /∈ OX(m) ⊗ k(xi) for all
i and s defines a torsion-free quotient. Then, we can take one-dimensional
quotients φi : E

′ ↠ E ′ ⊗ k(xi)↠ k(xi)(1 ≤ i ≤ ℓ1) such that φi|OX(m) ̸= 0 for

all i and φi(s) = 0 for all i. We consider the quotient φ : E ′ ↠
⊕ℓ1

i=1 k(xi)
obtained from φi. If let E be the kernel of φ, then E ∈ M HN

(v1,v2)
(v) and a

general section s of E defines a torsion-free quotient.

Proof of Claim 2.4.2. We prove the claim by cases. In this paper, we only
consider the case

2m > n > m > 0, ℓ(Z2) > h0(O(n−m− 1) =
(n−m− 1)2

2
H2 + 2,

m ≥ 3, n−m ≥ 3.

The other cases can be proved in the same way or more easily.
Because h0(O(n −m − 1) < ℓ(Z2) < h0(O(n −m)), we have H0(IZ2(n −

m−k)) = 0 for all positive integer k and general Z2. So, we have H
0(E(−k)) =

H0(O(m− k)).

In this condition, we have H0(E(−k)) = χ(O(m − k)) = (m−k)2
2

H2 + 2

and dim|kH| = h0(O(kH)) − 1 = k2

2
H2 + 1. Note that h0(E) = χ(E) =

m2

2
H2 + (n−m)2

2
H2 + 4− ℓ(Z2). Then, we can calculate as follows.

h0(E)− {h0(E(−k)) + dim|kH|} =
m2

2
H2 +

(n−m)2

2
H2

− (m− k)2

2
H2 − k2

2
H2 + 1− ℓ(Z2).

In addition, we have ℓ(Z2) < h0(O(n−m)) = (n−m)2

2 H2 + 2. So,

h0(E)− {h0(E(−k)) + dim|kH|} > H2k(m− k)− 1 > 0(∵ k,m− k > 0).

Case (ii) Next, we suppose (α) and (β) are true. In this case, note that

ℓ1 = 0 because χ(v1) > χ(v2) and every sheaf E ∈ M HN
(v1,v2)

(v) is isomorphic to

OX(m) ⊕ Ix(m) for some x ∈ X. We take sections s1, s2 ∈ H0(O(m)) such
that Z(s1)∩Z(s2) is a finite set, where Z(si) is the zero set of si(i = 1, 2). If x ∈
Z(s2), s1⊕s2 ∈ H0(OX(m)⊕Ix(m)). Since s1⊕s2 ∈ OX(m)⊕OX(m) defines a
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torsion-free quotient OX(m)⊕OX(m)/(s1⊕s2)OX , OX(m)⊕Ix(m)/(s1⊕s2)OX

is also torsion-free.

2.4.2 About semistable components

We will use the following lemmas to prove the Lemma 2.4.6.

Lemma 2.4.3 ([63] Lemma 1.4 or [61] Lemma 2.1). Let n be an odd integer.
If the exact sequence

0 → O

(
n− 1

2

)
→ E → IZ

(
n+ 1

2

)
→ 0

does not split, then E is a µ-stable sheaf, where IZ is the ideal sheaf of a
finite subscheme Z.

Lemma 2.4.4 ([63] Proposition 0.5 and Section 3.3). Let v := (2, nH, n
2H2

2
−

N + 2). We assume that v is primitive and “ v ̸= (2, nH, n
2H2

4
− 1) and n is

even”. Then, there exists a stable vector bundle with Mukai vector v.

Remark 2.4.5. In the Lemma 2.4.4, if n is odd, then any stable sheaf is µ-stable
. However, if n is even, a stable sheaf is not necessarily µ-stable.

Lemma 2.4.6. Let E be a general member of the stack M ss(v). Then, the
conditions (1) and (2) are equal to the conditions χ(E) > 0 and “H2 ̸= 2 or
v ̸= (2, 3H, 5)”.

Proof. If (1) and (2) satisfy, we have H1(E) = 0 and H0(E) ̸= 0. Therefore,
we have χ(E) > 0.

We will prove Lemma 2.4.6 only when n is an odd integer. We can also
prove this lemma in the same way when n is even. Note, for a general E, we
have H2(E) = 0 by semistability.

We assume χ(v) > 0. Note we do not assume the latter of the conditions
(The case “ H2 = 2 and v = (2, 3H, 5)” is excluded in Claim 2.4.7 below.).

When N > n2+1
4
H2+3 with odd n First, we assume that N > n2+1

4
H2+3.

This is equivalent to the condition that the closure of the stacks of Harder-
Narasimhan filtrations whose general sheaf is an extension

0 → IZ1

(
n+ 1

2

)
→ E → IZ2

(
n− 1

2

)
→ 0

is contained in the closure of M ss(v). Then, we can show that some E in the
closure of M ss(v) have no higher cohomology in the same way as in Lemma
2.4.1. Moreover, we can prove a general E have a global section which give a
torsion-free quotient.
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When n2+1
4
H2+3 ≥ N with odd n Next we assume that n2+1

4
H2+3 ≥ N .

From Lemma 2.4.4 and Remark 2.4.5, there exists a µ-stable vector bundle E
with Mukai vector v. We next consider E(−n−1

2
). Let E ′ := E(−n−1

2
) and

v′ := v(E ′). Then, E ′ fits into the following exact sequence

0 → OX → E ′ → IZ(1) → 0 (♣)

, where Z is a finite subscheme of X. Indeed, we have hom(E ′∨,OX) =
ext2(OX , E

′∨) = h2(E ′∨) = h0(E ′) ̸= 0 and hom(E ′,OX) = ext2(OX , E
′) =

h2(E ′) = 0 because χ(E ′) > 0 and E ′ is also µ-stable. So, we have the above
exact sequence by using these. Let v′ := v(E ′) = (2, H, H

2

2
− ℓ(Z) + 2). Be-

cause any non-split extension of IZ(1) by OX is a µ-stable sheaf from Lemma
2.4.3, the unique irreducible component of W 0

ℓ(Z)(H) corresponds to M ss(v′).

This means that a general sheaf in M ss(v′) satisfies the conditions (1), (2) and
any sheaf in irreducible components of M tf(v′) whose general member is not
semistable does not satisfy them.

Then, we see the following claim holds.

Claim 2.4.7. h1(IZ′(2)) = 0 for a general Z ′ ∈ W 0
ℓ(Z)(H) except for the case

“H2 = ℓ(Z) = 2 ” . In the case “ H2 = ℓ(Z) = 2 ”, W 0
ℓ(Z)(H) = W 0

ℓ(Z)(2H)

and h1(IZ′(3)) = 0 for a general Z ′ ∈ W 0
ℓ(Z)(H).

If the claim holds, this induces condition (1) except for the case “H2 =
2, v = (2, 3H, 5) ” and condition (1) never hold in this exceptional case. Before
proving the claim, we show this.

First, note that “n = 3, H2 = ℓ(Z) = 2” ⇒ v = (2, 3H, 5) and a general
F ∈ M ss(v) fits into an exact sequence

0 → OX(1) → F → IZ′(2) → 0

, where Z ′ ∈ W 0
2 (H). Here, W 0

2 (H) = W 0
2 (2H) from the claim and we have

h1(IZ′(2)) ̸= 0 for any Z ′ ∈ W 0
2 (H). Thus, h1(F ) ̸= 0 from the long exact

sequence of cohomology obtained from the above. This shows the condition
(1) never hold in the case “ H2 = 2, v = (2, 3H, 5). On the other hand, except
for this case, a general F ∈ M ss(v) fits into the following exact sequence

0 → OX

(
n− 1

2

)
→ F → IZ′

(
n+ 1

2

)
→ 0

, where Z ′ ∈ W 0
ℓ(Z)(H). Here, h1(IZ′(2)) = 0 for a general Z ′ ∈ W 0

ℓ(Z)(H)

and h1(IZ′(k)) ≥ h1(IZ′(k+ 1)) for all k > 0. This induces the condition (1)
holds in a general F ∈ M ss(v).

Proof of Claim 2.4.7. First, note that we have H2

2
+3 ≥ ℓ(Z) because χ(E ′) >

0. If H
2

2
+3 = ℓ(Z), then Hilbℓ(Z)(X) = W 0

ℓ(Z)(H). So we have h1(IZ′(2)) = 0

for a general Z ′ ∈ Hilbℓ(Z)(X) because h0(OX(2)) ≥ ℓ(Z).
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If H2

2
+ 2 ≥ ℓ(Z), then Hilbℓ(Z)(X) ̸= W 0

ℓ(Z)(H). We only consider the case
H2

2
+ 2 ≥ ℓ(Z) in the following. Let v′′ := (2, 2H, 2H2 − ℓ(Z) + 2). We divide

the rest of the proof into 4 steps.

1. We have M ss(v′′) = ∅ unless “H2 = ℓ(Z) = 4” or “H2 = ℓ(Z) = 2” by
[63, Cor 0.3].

Moreover, there is not an irreducible component of M tf(v′′) whose gen-
eral member is a HN-filtration satisfying the conditions (a), (b) and (c)
of Lemma 2.4.1 unless “H2 = 2 and ℓ(Z) = 3”. This is because a general
sheaf F in such a component fits into

0 → IY1(H) → F → IY2(H) → 0 (Y1, Y2 : finite schemes)

and v′′ = v(F ) = v(IY1(H)) + v(IY2(H)).

So, we have W 0
ℓ(Z)(2H) = ∅ except for the three cases. Thus,

h1(IZ′(2)) = 0 for a general Z ′ ∈ W 0
ℓ(Z)(H) except for the three cases.

2. When “H2 = ℓ(Z) = 4”, W 0
ℓ(Z)(2H) may not be empty. If W 0

ℓ(Z)(2H)

is not empty, the unique irreducible component corresponds to M ss(v′′).
Moreover, we can calculate the dimensions of W 0

ℓ(Z)(H) and W 0
ℓ(Z)(2H)

by using Lemma 2.3.11 and the formula ♠ and get dimW 0
ℓ(Z)(H) = 7

and dimW 0
ℓ(Z)(2H) = 4. This means that W 0

ℓ(Z)(H) ⫌ W 0
ℓ(Z)(2H) and we

have the claim.

3. When “H2 = ℓ(Z) = 2”, W 0
ℓ(Z)(2H) ̸= ∅ because the unique point of

M ss(v′′) is OX(H)⊕2 (cf. Remark 2.4.8). We also have dimW 0
ℓ(Z)(H) =

dimW 0
ℓ(Z)(2H) = 2. So, we have W 0

ℓ(Z)(H) = W 0
ℓ(Z)(2H). However,

W 0
ℓ(Z)(3H) = ∅ as above.

4. In the same way as in Step 2, we get the claim when “H2 = 2 and
ℓ(Z) = 3”.

Therefore, we get h1(IZ′(2)) = 0 for a general Z ′ ∈ W 0
ℓ(Z)(H) when H2 ̸= 2

or ℓ(Z) ̸= 2 , h1(IZ′(2)) ̸= 0 for any Z ′ ∈ W 0
ℓ(Z)(H) when H2 = ℓ(Z) = 2 and

h1(IZ′(3)) = 0 for a general Z ′ ∈ W 0
ℓ(Z)(H) when H2 = ℓ(Z) = 2.

Remark 2.4.8. We will explain how we calculate dimW 0
ℓ(Z)(H) and

dimW 0
ℓ(Z)(2H) when “ H2 = ℓ(Z) = 4” here. Similarly, we can also do when

“H2 = ℓ(Z) = 2” and “H2 = 2, ℓ(Z) = 3”.
It is sufficient to calculate dimM ss(v′), dimM ss(v′′), h0(E ′) and h0(E ′′)

from the formula ♠, where E ′′ is a general member of M ss(v′′). We can
calculate dimM ss(v′) and dimM ss(v′′) by using Lemma 2.3.11. We also do
h0(E ′) by using the exact sequence ♣. Moreover, we can obtain h0(E ′′) by the
fact that the unique member of M ss(v′′) is OX(H)⊕2 (in detail, see [37], [21]).
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Next,we prove the condition (2). It is enough to prove h0(E(−k)) +
dim|kH| < h0(E) as in the same way of the proof of Lemma 2.4.1 because
a general sheaf in M ss(v) is a vector bundle by Lemma 2.4.4. Note that we
have the following exact sequence for a general E,

0 → O

(
n− 1

2

)
→ E → IZ

(
n+ 1

2

)
→ 0

, where Z is a finite subscheme of X and h1(IZ

(
n+1
2

)
) = 0. So, for n−1

2
≥

k > 0,

h0(E)− {h0(E(−k)) + dim|kH|}

≥ (h0(IZ(
n+ 1

2
)) + χ(O(

n− 1

2
))

− (h0(IZ(
n+ 1

2
− k)) + χ(O(

n− 1

2
− k)) + dim|kH|)

= kH2(
n− 1

2
− k)− 1 + h0(IZ(

n+ 1

2
))− h0(IZ(

n+ 1

2
− k)) > 0.

(In the case of k = n−1
2 , we use h0(IZ(

n+1
2 )) = (n+1)2

8 H2−ℓ(Z)+2 and h0(IZ(1)) =
1
2H

2 − ℓ(Z) + 3 )

Remark 2.4.9. (In the case n is even) When n is even, we can prove that a
general sheaf E ∈ M ss(v) have a section defining a torsion-free quotient as in
the same way as in the proof above except v = (2, nH, n

2H2

2
) or (2, nH, n

2H2

4
−

1). In these case, any sheaf of M ss(v) is not vector bundle and the closure of
M ss(v) dose not contain any stack of HN-filtrations. However, we can prove
the condition (1), (2) in the same way of the proof of Lemma 2.4.1. In the
former case, note that any semistable sheaf is isomorphic to a sheaf of the form
Ix

(
n
2

)
⊕ Iy

(
n
2

)
(x, y ∈ X). In the latter case, note that a general quotient

O
(
n
2

)
→ ⊕3

i=1k(xi)(xi ∈ X) and any non split extension 0 → I{y1,y2}
(
n
2

)
→

E → Iy3

(
n
2

)
→ 0(yj ∈ X, j = 1, 2, 3) is a semistable sheaf with the Mukai

vector v = (2, nH, n
2H2

4
− 1) when n is even (cf. [63, Prop 3.4]).
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Chapter 3

Some examples of
noncommutative projective
Calabi-Yau schemes

3.1 Introduction

Calabi-Yau varieties are rich objects and play an important role in mathemat-
ics and physics. In noncommutative algebraic geometry, (skew) Calabi-Yau
algebras are often treated as noncommutative analogues of Calabi-Yau vari-
eties. Calabi-Yau algebras have a deep relationship with quiver algebras ([13],
[51]). For example, many known Calabi-Yau algebras are constructed by us-
ing quiver algebras. They are also used to characterize Artin-Schelter regular
algebras ([43], [42]). In particular, a connected graded algebra A over a field
k is Artin-Schelter regular if and only if A is skew Calabi-Yau.

On the other hand, a triangulated subcategory of the derived category of
a cubic fourfold in P5, which is obtained by some semiorthogonal decomposi-
tions, has the 2-shift functor [2] as the Serre functor. Moreover, the structure
of Hochschild (co)homology is the same as that of a projective K3 surface
([25]). However, some such categories are not obtained as the derived cate-
gories of coherent sheaves of projective K3 surfaces and called noncommutative
K3 surfaces.

Artin and Zhang constructed a framework of noncommutative projective
schemes in [3], which are defined from noncommutative graded algebras. In this
framework, we can think of Artin-Schelter regular algebras as noncommutative
analogues of projective spaces, which are called quantum projective spaces.
Our objective is to produce examples of noncommutative projective Calabi-
Yau schemes that are not obtained from commutative Calabi-Yau varieties. In
the future, it would be an interesting question to compare the derived category
of a noncommutative projective Calabi-Yau scheme created in the framework
of Artin-Zhang’s noncommutative projective schemes with a noncommutative
K3 surface obtained as a triangulated subcategory of the derived category of
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a cubic fourfold.
As the definition of noncommutative projective Calabi-Yau schemes, we

adopt the definition introduced by Kanazawa ([22]). His definition is a di-
rect generalization of the definition of commutative Calabi-Yau varieties to
noncommutative projective schemes. He also constructed the first examples
of noncommutative projective Calabi-Yau schemes that are not isomorphic
to commutative Calabi-Yau varieties as hypersurfaces of quantum projective
spaces. Recently, some examples constructed by Kanazawa play an important
role in noncommutative Donaldson-Thomas theory ([27], [28]).

In this chapter, we construct new examples of noncommutative projective
Calabi-Yau schemes by using noncommutative Segre products and weighted
hypersurfaces. There are many known examples of Calabi-Yau varieties in
algebraic geometry. Some of them are complete intersections in products of
projective spaces. Moreover, Reid gave a list of Calabi-Yau surfaces, which are
hypersurfaces in weighted projective spaces ([19, Table 1 in Section 13.3], [41,
Theorem 4.5]). Motivated by these two facts, we construct noncommutative
analogues of the two types of examples of Calabi-Yau varieties (Theorem 3.3.3,
Theorem 3.3.15) in Section 3.3.

In order to prove that a noncommutative projective scheme is Calabi-Yau,
we use the methods of Kanazawa. However, they are not sufficient because
the algebras we treat are more complicated than the ones he considered. In
order to construct noncommutative projective Calabi-Yau schemes as noncom-
mutative analogues of complete intersections in Segre products, we perform a
more detailed analysis of noncommutative projective schemes defined by Z2-
graded algebras, which were studied by Van Rompay ([53]). A different ap-
proach to noncommutative Segre products is also studied in [15]. In order
to construct noncommutative projective Calabi-Yau schemes as noncommuta-
tive analogues of weighted hypersurfaces, we consider quotients of weighted
quantum polynomial rings. In commutative algebraic geometry, the cate-
gory Coh(Proj(k[x0, · · · , xn])) of coherent sheaves on the projective spectrum
Proj(k[x0, · · · , xn]) of a weighted polynomial ring is not necessarily equivalent
to qgr(k[x0, · · · , xn]), where qgr(k[x0, · · · , xn]) is the quotient category associ-
ated to k[x0, · · · , xn] constructed in [3]. In fact, qgr(k[x0, · · · , xn]) is equivalent
to the category of coherent sheaves on a weighted projective space constructed
as a Deligne-Mumford stack. Moreover, qgr(k[x0, · · · , xn]) is thought of as
a nonsingular model of Proj(k[x0, · · · , xn]) (see [46, Example 4.9]). We use
this idea to construct new noncommutative projective Calabi-Yau schemes. In
addition, it should be noted that local structures of noncommutative projec-
tive schemes of quotients of weighted quantum polynomial rings are somewhat
complicated. An analysis of the local structures was performed by Smith ([46]).
We show that the local structure obtained in [46] is described by the notion of
quasi-Veronese algebras introduced by Mori ([32]).

In Section 3.4, we compare our constructions from weighted hypersurfaces
in Section 3.3 with commutative Calabi-Yau varieties and the first exam-
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ples constructed in [22], focusing on noncommutative projective Calabi-Yau
schemes of dimensions 2. We show that some of our constructions in Section
3.3 are not isomorphic to any of the commutative Calabi-Yau varieties and the
first examples constructed in [22] (Proposition 3.4.9). When we consider mod-
uli spaces of point modules of noncommutative projective schemes obtained
from weighted hypersurfaces in Section 3.3, there is a problem, which is that
in general weighted quantum polynomial rings are not generated in degree 1.
So, the notion of point modules is not necessarily useful in this case. In this
paper, we use theories of closed points studied in [33], [47] and [48], etc. A
different approach to closed points of weighted quantum polynomial rings is
studied in [49]. The notion of point modules defined in [49] corresponds to
those of ordinary and thin points in [33]. To show that some of our construc-
tions are not isomorphic to the examples obtained in [22], we use Morita theory
of noncommutative schemes, which is established in [8] (see also [3, Section 6]).
In the theory, we need to calculate the centers of noncommutative rings. By
using these calculations, we can do a detailed analysis and some classifications
of noncommutative projective Calabi-Yau surfaces.

3.2 Preliminaries

Notation and Terminology 3.2.1. In this chapter, k denotes an alge-
braically closed field of characteristic 0. We suppose N contains 0. Let A
be a k-algebra, M be an A-bimodule and ψ, ϕ be algebra automorphisms of
A. Then, we denote the associated A-bimodule by ψMϕ, i.e. ψMϕ = M as
k-modules and the new bimodule structure is given by a ∗m ∗ b := ψ(a)mϕ(b)
for all a, b ∈ A and all m ∈ M . Let C be a k-linear abelian category. We
denote the global dimension of C by gl.dim(C). An N-graded k-algebra A is
connected if A0 = k.

For any N-graded k-algebra A =
⊕∞

i=0Ai, we denote the category of graded
right A-modules (resp. finitely generated graded right A-modules) by Gr(A)
(resp. gr(A)). Let M ∈ Gr(A) and A◦ be the opposite algebra of A. We
define the Matlis dual M∗ ∈ Gr(A◦) by M∗

i := Homk(M−i, k) and the shift
M(n) ∈ Gr(A) by M(n)i := Mi+n (i, n ∈ Z). For M,N ∈ Gr(A), we write
HomA(M,N) :=

⊕
n∈Z HomGr(A)(M,N(n)) ∈ Gr(A). For M ∈ Gr(A) and a

homogeneous element m ∈ M , we denote the degree of m by deg(m). We
define the truncation M≥n :=

⊕
i≥nMi ∈ Gr(A) (n ∈ Z). An element m ∈ M

is called torsion if mA≥n = 0 for n ≫ 0. We say M is a torsion module if
any element of M is torsion. We denote the subcategory of torsion modules in
Gr(A) (resp. gr(A)) by Tor(A) (resp. tor(A)).

3.2.1 Noncommutaive schemes

Definition 3.2.2 ([3, Section 2]). Let A be a right noetherian N-graded k-
algebra. We define the quotient categories QGr(A) := Gr(A)/Tor(A) and
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qgr(A) := gr(A)/tor(A). We denote the projection functor by π and its right
adjoint functor by ω. The general (resp. noetherian) projective scheme of A is
defined as Proj(A) := (QGr(A), π(A)) (resp. proj(A) := (qgr(A), π(A))).

Definition 3.2.3 ([3, Section 2], [47, Chapter 3]). A quasi-scheme over k is
a pair (C,O) where C is a k-linear abelian category and O is an object in C.
A morphism from a quasi-scheme (C,O) to another quasi-scheme (C ′,O′) is
a pair (F, φ) consisting of a k-linear right exact functor F : C → C ′ and an

isomorphism φ : F (O)
≃→ O′. We call (F, φ) is an isomorphism if F is an

equivalence.
When A is as in Definition 3.2.2, we think of proj(A) = (qgr(A), π(A)) as

a quasi-scheme. For any (commutative) noetherian scheme X, (Coh(X),OX)
is also a quasi-scheme. From this observation, we regard X as a quasi-scheme.

3.2.2 Dualizing complexes

Definition 3.2.4 ([52, Section 4], [58, Section4]). Let A,B be N-graded k-
algebras and mA be A≥1. We define the torsion functor ΓmA

: Gr(A⊗k B
◦) →

Gr(A⊗k B
◦) by ΓmA

(M) := {m ∈ M | mA≥n = 0 for some n ∈ N}. We write
H i
mA

:= RiΓmA
.

Definition 3.2.5 ([52, Definition 6.1, 6.2], [58, Definition 3.3, 4.1] ). Let A
be a right and left noetherian connected N-graded k-algebra and Ae be the
enveloping algebra of A. Let R be an object of Db(Gr(Ae)). Then, R is called
a dualizing complex of A if (1) R has finite injective dimension over A and A◦,
(2) The cohomologies of R are finitely generated as both A and A◦-modules,
(3) The natural morphisms A → RHomA(R,R) and A → RHomA◦(R,R) are
isomorphisms in Db(Gr(Ae)). Moreover, R is called balanced if RΓmA

(R) ≃ A∗

and RΓmA◦ (R) ≃ A∗ in Db(Gr(Ae)).

3.3 Calabi-Yau conditions

Definition 3.3.1 ([22, Section 2.2]). Let A be a connected right noetherian
N-graded k-algebra. Then, proj(A) is a projective Calabi-Yau n scheme if the
global dimension of qgr(A) is n and the Serre functor of the derived category
Db(qgr(A)) is the n-shift functor [n].

Remark 3.3.2. Actually, we do not need the condition that the global dimension
of qgr(A) is n. If the Serre functor of the derived category Db(qgr(A)) is the
n-shift functor [n], then we can easily show that this condition holds. However,
when we prove the existence of the Serre functor of Db(qgr(A)), we essentially
need the condition that the global dimension of qgr(A) is n (cf. [9, Theorem
A.4, Corollary A.5], Lemma 3.3.10).

30



3.3.1 Z2-graded algebras and Segre products

In commutative algebraic geometry, a smooth complete intersection X ⊂ Pn×
Pm of bidegrees (n + 1, 0) and (0,m + 1) provides a Calabi-Yau variety. We
also have a little more complicated example that gives a Calabi-Yau variety.
That is a smooth complete intersection of bidegrees (n, 0) (resp. (n + 1, 0))
and (1, n + 1) in Pn × Pn (resp. Pn+1 × Pn). We construct noncommutative
analogues of these examples.

Let C be an N2-graded k-algebra. We denote the category of Z2-graded
right C-modules (resp. finitely generated Z2-graded right C-modules) by
BiGr(C) (resp. bigr(C)). Let M ∈ BiGr(C). We denote by C◦ (resp.
Ce) the opposite (resp. enveloping) algebra of C. We define the Matlis dual
M∗ ∈ BiGr(C◦) byM∗

i,j := Homk(M−i,−j, k) and the shiftM(n,m) ∈ BiGr(C)
by M(m,n)i,j := Mi+m,j+n (m,n, i, j ∈ Z). For M,N ∈ BiGr(C), we write
HomC(M,N) :=

⊕
m,n∈Z HomBiGr(C)(M,N(m,n)). For a bihomogeneous ele-

ment m ∈M , we denote the bidegree of m by bideg(m).
Let M ∈ BiGr(C). We define the truncation M≥n,≥n :=

⊕
i≥n,j≥nMi,j ∈

BiGr(C) (n ∈ Z). We say m ∈ M is torsion if mC≥n,≥n = 0 for n ≫ 0. If
all m ∈ M are torsion, then M is called a torsion C-module. We denote the
category of Z2-graded torsion C-modules by Tor(C). We also define tor(C) to
be the intersection of bigr(C) and Tor(C). When we assume that C is right
noetherian, we have the quotient categories QBiGr(C) := BiGr(C)/Tor(C)
and qbigr(C) := bigr(C)/tor(C) (cf. [53, Section 2]). We denote the projection
functor by π and its right adjoint functor by ω. We can define the general
(resp. noetherian) projective scheme Proj(C) (resp. proj(C)) associated to
C and the notion of noncommutative projective Calabi-Yau schemes as in the
case of N-graded algebras.

Let D be an N2-graded algebra. We take the tensor product C ⊗kD
◦ of C

and D◦ over k. We think of C⊗kD
◦ as an N2-graded algebra by (C⊗kD

◦)i,j :=⊕
i1+i2=i,j1+j2=j

Ci1,j1 ⊗k D
◦
i2,j2

. We define mC++ := C≥1,≥1 and the torsion
functor ΓmC++

: BiGr(C ⊗k D
◦) → BiGr(C ⊗k D

◦) by ΓmC++
(M) := {m ∈

M | mC≥n,≥n = 0 for some n ∈ N}. We write mC :=
⊕

i+j≥1Ci,j and define
another torsion functor ΓmC

: BiGr(C⊗kD
◦) → BiGr(C⊗kD

◦) by ΓmC
(M) :=

{m ∈ M | mC≥n = 0 for some n ∈ N}, where C≥n :=
⊕

i+j≥nCi,j ∈ BiGr(C).

See [42, Section 3] for details of ΓmC
. We writeH i

mC++
:= RiΓmC++

andH i
mC

:=

RiΓmC
. The reason we define the functor ΓmC++

is that we can describe the

Serre duality in Db(qbigr(C)) by using RΓmC++
(cf. Lemma 3.3.10). However,

it is not easy to calculate the functor RΓmC++
directly. The reason we define the

functor ΓmC
is that we can use the theory of Z-graded modules to calculate

RΓmC
and we can reduce the calculation of RΓmC++

to that of RΓmC
(cf.

Lemma 3.3.6, the proof of Theorem 3.3.3).

Theorem 3.3.3. Let A := k⟨x0, · · · , xn⟩/(xjxi − qjixixj)i,j, B :=
k⟨y0, · · · , ym⟩/(yjyi − q′jiyiyj)i,j and C := A ⊗k B, where qji, q

′
ji ∈ k× for

all i, j. We regard C as an N2-graded algebra with bideg(xi) = (1, 0) and
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bideg(yi) = (0, 1) for all i.

1. Let f :=
∑n

i=0 x
n+1
i and g :=

∑m
i=0 y

m+1
i . We assume that (i) qii =

qijqji = qn+1
ij = 1 for all i, j, (ii) q′ii = q′ijq

′
ji = q′m+1

ij = 1 for all i, j.

Then, proj(C/(f, g)) is a noncommutatative projective Calabi-Yau
scheme of dimension (n + m − 2) if and only if

∏n
i=0 qij and

∏m
i=0 q

′
ij

are independent of j, respectively.

2. Suppose that m = n + 1 (resp. m = n) and q′ij = 1 for all i, j. Let

f :=
∑n

i=0 x
n+1
i yi and g :=

∑n+1
i=0 y

n+1
i (resp.

∑n
i=0 y

n
i ). We assume that

qii = qijqji = qn+1
ij = 1 for all i, j.

Then, proj(C/(f, g)) is a noncommutatative projective Calabi-Yau
scheme of dimension (2n − 1)(resp. (2n − 2)) if and only if

∏n
i=0 qij

is independent of j.

Notation 3.3.4. For simplicity, we denote the bidegrees of f, g in the theorem
by (d0, d1), (e0, e1), respectively.

Remark 3.3.5. • f, g are central elements in C because of the choices of
{qij}, {q′ij}.

• We have n+m−2 = d0+d1+e0+e1−4 in (1). We have 2n−1(resp. 2n−
2) = d0 + d1 + e0 + e1 − 4 also in (2).

• In (2) of the theorem, even if we do not assume q′ij = 1, the condition
for f, g to be central in C implies q′ij = 1 for all i, j after all.

• In the theorem, all equations appearing except for g of (2) are Fermat-
type equations.

To prove the theorem, we need to show some lemmas. Perhaps some ex-
perts may know the following lemmas. However, to the best of the author’s
knowledge, there are no references written on those lemmas, so the proofs are
given below. In addition, the following proofs do not depend on whether (1)
or (2) in the theorem is considered (except for Lemma 3.3.8).

Lemma 3.3.6. Let R := π(RΓmC/(f,g)++
(C/(f, g))∗) and R′ :=

π(RΓmC/(f,g)
(C/(f, g))∗). Then, the functors −⊗LR and −⊗LR′[−1] between

D(QBiGr(C/(f, g))) and itself are naturally isomorphic.

Proof. Let I1, I2 be the ideals generated by {x0, · · · , xn}, {y0 · · · , ym}, respec-
tively. Then, we have mC/(f,g)++

= I1 ∩ I2, mC/(f,g) = I1 + I2 and have the

following long exact sequence in BiGr(C/(f, g)e)

· · · → Hi
mC/(f,g)

(C/(f, g)) → Hi
I1(C/(f, g))⊕Hi

I2(C/(f, g)) → Hi
mC/(f,g)++

(C/(f, g)) → · · ·

by using the Mayer-Vietoris sequence in the sense of [7, Chapter 3] , where
ΓIj(j = 1, 2) is defined not by using the degrees of Ij but by using powers of
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Ij (i.e., ΓIj(M) := {m ∈ M | mInj = 0 for some n}). Note that we can use
the Mayer-Vietoris sequence in our case because I1, I2 are generated by normal
elements and this implies that I1, I2 satisfy Artin-Rees property. We also have
the exact triangle in D(BiGr(C/(f, g)e))

RΓmC/(f,g)
(C/(f, g)) → RΓI1(C/(f, g))⊕ RΓI2(C/(f, g)) → RΓmC/(f,g)++

(C/(f, g)).

Moreover, H i
I1
(C/(f, g))∗ and H i

I2
(C/(f, g))∗ are torsion modules for

mC/(f,g)++ from Sub-Lemma 3.3.7. So, the cohomologies of RΓI1(C/(f, g))
∗ ⊕

RΓI2(C/(f, g))
∗ are torsion. From this result, the above triangle gives an iso-

morphism between R and R′[−1] after taking the dual and applying π. Hence,
we get the claim.

Sub-Lemma 3.3.7. Let I1, I2 be as in the proof of Lemma 3.3.6.
H i
I1
(C/(f, g))∗ and H i

I2
(C/(f, g))∗ are torsion modules for mC/(f,g)++ for any

i.

Proof. We only show that H i
I1
(C/(f, g))∗ are torsion modules for mC/(f,g)++ .

We can show that H i
I2
(C/(f, g))∗ are torsion in the same way.

First, we prove that H i
I1
(C)∗ is torsion. We have ΓI1 = ΓIn+1

1
. Moreover, if

J1 is the ideal generated by xn+1
0 , · · · , xn+1

n , then we have ΓIn+1
1

= ΓJ1 . Note

that xn+1
0 , · · · , xn+1

n are central elements in C from the choice of {qij}.
Let M ∈ Gr(C) be injective. Then, we have a surjective localization

map M → M [x
−(n+1)
i ] for any i and ΓJ1(M) is injective in Gr(C) be-

cause J1 satisfies Artin-Rees property (cf. [55, Example 3.13], [10, Lemma
A1.4]). When M ′ is injective in Gr(Ce), then M ′ is injective in Gr(C), where
ResC : Gr(Ce) → Gr(C) is the restriction functor ([58, Lemma 2.1]). Thus, we
can calculate ResC(H

i
J1
(C)) by using a Čech complex C (xn+1

0 , · · · , xn+1
n ;C) (cf.

[30, Chapter 2, 3], [10, Theorem A1.3]). Then, we have C (xn+1
0 , · · · , xn+1

n ;C) =
C (xn+1

0 , · · · , xn+1
n ;A)⊗kB. This induces that ResC(H

i
J1
(C)) ≃ H i

mA
(A)⊗kB.

Because H i
mA

(A)>0 = 0 ([22, Proposition 2.4]), H i
J1
(C)∗ ≃ H i

I1
(C)∗ is torsion.

Finally, we consider the exact sequences of C-bimodules

0 → C(−d0,−d1)
×f→ C → C/(f) → 0, (3.3.1.1)

0 → C/(f)(−e0,−e1)
×g→ C/(f) → C/(f, g) → 0. (3.3.1.2)

Then, we take the long exact sequence for ΓI1 and we get the claim since
H i
I1
(C)∗ is torsion.

Lemma 3.3.8. gl.dim(qbigr(C/(f, g))) = d0 + d1 + e0 + e1 − 4.

Proof. We show the proposition only in (1) of the theorem. In (2) of
the theorem, the proposition can be shown in the same way (cf. Re-
mark 3.3.9). We consider a bigraded (commutative) algebra D :=
k[s0, · · · , sn, t0, · · · , tm]/(

∑n
i=0 si,

∑m
i=0 ti) with si = xn+1

i , ti = ym+1
i and
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the projective spectrum biProj(D) in the sense of [18, Section 1]. Then,
C/(f, g) is a finite D-module. So, qbigr(C/(f, g)) can be thought of
as the category of modules over a sheaf A of ObiProj(D)-algebras, where
A is the sheaf on biProj(D) which is locally defined by the algebra
(k[x0, · · · , xn, y0, · · · , ym]/(f, g)xiyj)(0,0) on each open affine scheme D+(sitj) ≃
Spec((Dsitj)(0,0)). Hence, it is enough to prove that

gl.dim((k[x0, · · · , xn, y0, · · · , ym]/(f, g)xiyj)(0,0)) = d0 + d1 + e0 + e1 − 4

= n+m− 2.

We can complete the rest of the proof in the same way as in [22, Section 2.3].
We give its sketch. For simplicity, we prove the claim when i = j = 0. We
define a k-algebra E by

E := k[S1, · · · , Sn, T1, · · · , Tm]

/(
1 +

n∑
i=1

Si, 1 +
m∑
i=0

Ti

)

with Si = si/s0, Ti = ti/t0. We also define an E-algebra F by

F := k⟨X1, · · · , Xn, Y1, · · · , Ym⟩

/
XiXj − (q0iqijqj0)XjXi,

YiYj − (q′0iq
′
ijq

′
j0)YjYi,

1 +
n∑
l=1

Xn+1
l , 1 +

m∑
l=1

Y m+1
l


i,j

with Xi = xi/x0, Yi = yi/y0. The module structure of F is given by the
identifications Si = Xn+1

i , Ti = Y m+1
i . Let Fm̃ be the localization of F at a

maximal ideal

m̃ := (S1 − a1, · · · , Sn − an, T1 − b1, · · · , Tm − bm)

of E with 1 +
∑n

i=1 ai = 1 +
∑m

i=1 bi = 0 (ai, bi ∈ k). Then, it is enough to
prove that the global dimension of Fm̃ is n+m− 2 ([22, Lemma 2.6, 2.7]).

If all ai, bi are not 0, then F/m̃F is a twisted group ring and hence semisim-
ple. Moreover, S1− a1, · · · , Sn− an, T1− b1, · · · , Tm− bm is a regular sequence
in Fm̃. This induces the claim ([29, Theorem 7.3.7]).

On the other hand, assume that one of {a1, · · · , an, b1, · · · , bm} is 0. For
example, assume a1 = 0. We consider F/(X1). Then, we can show that the
global dimension of (F/(X1))m̃ = n+m−3 because pdF (S) = pdF/(X1)(S)+1
for any simple F -module S with Ann(S) = m̃ ([29, Theorem 7.3.5]). If some
other ai, bj are 0, we repeat taking quotients and can reduce to considering the
global dimension of the algebra k[X, Y ]/(Xn+1 +1, Y m+1 +1), which is 0.

Remark 3.3.9. To prove Lemma 3.3.8 in (2) of the theorem, consider the projec-
tive spectrum X := biProj(k[s0, · · · , sn, t0, · · · , tn+1]/ (

∑n
i=0 siti,

∑n+1
i=0 t

n+1
i ))
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(resp. biProj(k[s0, · · · , sn, t0, · · · , tn]/ (
∑n

i=0 siti,
∑n

i=0 t
n
i ))) and the sheaf A

of algebras on X associated to C/(f, g).

Proof of Theorem 3.3.3. First, we calculate RΓmC/(f,g)
(C/(f, g))∗. From [22,

Proposition 2.4] (or [42, Example 5.5]) and the proof of [42, Lemma 6.1], we
have

RΓmC
(C)∗ ≃ RΓmA

(A)∗ ⊗ RΓmB
(B)∗

≃ ϕA1(−d0 − e0)⊗k
ψB1(−d1 − e1)[d0 + d1 + e0 + e1], (3.3.1.3)

where ϕ (resp. ψ) is the graded automorphism of A (resp. B) which maps
xj 7→

∏n
i=0 qjixj (resp. yj 7→

∏m
i=0 q

′
jiyj). Then, we consider the distinguished

triangles

RΓmC
(C(−d0,−d1))

×f−→ RΓmC
(C) −→ RΓmC/(f)

(C/(f)), (3.3.1.4)

RΓmC/(f)
((C/(f))(−e0,−e1))

×g−→ RΓmC/(f)
(C/(f)) −→ RΓmC/(f,g)(C/(f, g))

(3.3.1.5)

obtained from the exact sequences (3.3.1.1) and (3.3.1.2) of C-bimodules.
Combining the formula (3.3.1.3) and the triangle (3.3.1.4), we have

RΓmC/(f)
(C/(f))∗ ≃ ϕ⊗ψ(A⊗k B/(f))

1(−e0,−e1)[d0 + d1 + e0 + e1 − 1].

(3.3.1.6)

In addition, combining the triangle (3.3.1.5) and the formula (3.3.1.6), we have

RΓmC/(f,g)
(C/(f, g))∗ ≃ ϕ⊗ψ(A⊗k B/(f, g))

1[d0 + d1 + e0 + e1 − 2]. (3.3.1.7)

On the other hand, we have the Serre duality in Db(qbigr(C/(f, g))) from
Lemma 3.3.10. Thus, − ⊗L π(RΓmC/(f,g)++

(C/(f, g))∗)[−1] is the Serre func-

tor of Db(qbigr(C/(f, g))) because this functor induces an equivalence from
Lemma 3.3.6 and the formula (3.3.1.7). Finally, the Serre functor − ⊗L

π(RΓmC/(f,g)++
(C/(f, g))∗)[−1] induces the [d0 + d1 + e0 + e1 − 4]-shift functor

if and only if
∏n

i=0 qij and
∏m

i=0 q
′
ij are independent of j (cf. [22, Remark 2.5]).

This completes the proof.

The following lemma is well-known in the case of N-graded algebras (for
example, see [9], [59]).

Lemma 3.3.10 (Local Duality and Serre Duality for N2-graded algebras).
Let D be a connected right noetherian N2-graded k-algebra (connected means
D0,0 = k). Let E be a connected N2-graded k-algebra. We assume that ΓmD++

has finite cohomological dimension.
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1. Let Q := ω ◦ π : BiGr(D) → BiGr(D). Let M ∈ D(BiGr(D ⊗k E
◦)).

Then,

RΓmD++
(M)∗ ≃ RHomD(M,RΓmD++

(D)∗), (a)

RQ(M)∗ ≃ RHomD(M,RQ(D)∗) (b)

in D(BiGr(D◦ ⊗k E)), where we denote the natural extension of Q to a
functor between BiGr(D ⊗k E

◦) and itself by the same notation.

2. We assume that qbigr(D) has finite global dimension. Let M := π(M),
N := π(N) (M,N ∈ Db(bigr(D))). Let RD := π(RΓmD++

(D)∗) ∈
Db(qbigr(De)). Then, N ⊗L RD ∈ Db(qbigr(D)) and

HomDb(qbigr(D))(N ,M) ≃ HomDb(qbigr(D))(M, (N ⊗L RD)[−1])′,

which is functorial in M and N . Here, (−)′ denotes the k-dual.

Proof. Since RiΓmD++
(−) ≃ limn→∞ Exti(D/D≥n,≥n,−) andD is right noethe-

rian, one can check that RiΓmD++
(−) commutes with direct limits as in

[57, Proposition 16.3.19]. In addition, if K is a complex of graded free
right D-modules and L is a complex of graded right De-modules, then
ΓmD++

(K ⊗D L) ≃ K ⊗D ΓmD++
(L) (cf. [35, Lemma 6.10]). So, we can

apply the argument of [52, Theorem 5.1] (or [34, Theorem 2.1]) to prove (a)
of (1).

In order to prove (b) of (1), note that we have the canonical exact sequence
and the isomorphism (see also [6, Lemma 4.1.4, 4.1.5])

0 → ΓmD++
(M) →M → Q(M) → lim

n→∞
Ext1(D/D≥n,≥n,M) → 0,

RiQ(M) ≃ Ri+1ΓmD++
(M), (1 ≤ i,M ∈ BiGr(D)).

So, from the previous paragraph, Q has finite cohomological dimension, RiQ
commutes with direct limits. We also have Q(K ⊗D L) ≃ K ⊗D Q(L), where
K,L are as above (cf. [36, Lemma 3.28]). Hence, we can also apply the
argument of [52, Theorem 5.1] (or [36, Theorem 3.29]) to prove (b) of (1).

We can prove (2) in the same way as in [9, Lemma A.1, Theorem A.4]
by using (b) of (1). Note that we have a natural equivalence Db(qbigr(D)) ≃
Db

f (QBiGr(D)), where Db
f (QBiGr(D)) is the full subcategory of Db(QBiGr(D))

consisting of complexes with cohomology in qbigr(D) ([9, Lemma 2.2]).

As a corollary of Theorem 3.3.3, we construct examples of noncommutative
projective Calabi-Yau schemes by using Segre products. Let A,B, f and g be
as in Theorem 3.3.3.

Definition 3.3.11. 1. The Segre product A◦B of A and B is the N-graded
k-algebra with (A ◦B)i = Ai ⊗k Bi.
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2. Let M ∈ bigr(C) . We define a right graded A ◦ B-module M∆ as the
graded A ◦B-module with (M∆)i =Mi,i.

Lemma 3.3.12 ([53, Theorem 2.4]). We have the following natural isomor-
phism

qbigr(C) // qgr(A ◦B), π(M) ✤ // π(M∆).

In addition, the functor defined by −⊗A◦B C is the inverse of this equivalence.

Remark 3.3.13. Let J := (f, g) ∈ bigr(C). We similarly obtain an equivalence

qbigr(C/J) ≃ qgr(A ◦B/J∆).
Combining Theorem 3.3.3 with Remark 3.3.13, we get the following.

Corollary 3.3.14. Let J := (f, g) ∈ bigr(C). Then, proj(A ◦ B/J∆) is a
noncommutative projective Calabi-Yau scheme.

3.3.2 Weighted hypersurfaces

Reid produced the list of all commutative weighted Calabi-Yau hypersurfaces
of dimensions 2 (for example, see [19], [41]). In this section, we construct non-
commutative projective Calabi-Yau schemes from noncommutative weighted
projective hypersurfaces. Let A be a right noetherian N-graded k-algebra.
Then, the r-th Veronese algebra A(r) is the N-graded k-algebra with A(r)

i = Ari.
We consider the (commutative) weighted polynomial ring A = k[x0, · · · , xn]
with deg(xi) = di. Then, Coh(Proj(A)) is in general not equivalent to qgr(A),
but to qgr(A(n+1)lcm(d0,··· ,dn)). However, we can think of qgr(A) as a reso-
lution of singularities of Coh(Proj(A)) (cf. [46, Example 4.9]). Moreover,
we have qgr(A) ≃ Coh([(Spec(A)\{0})/Gm]) and [(Spec(A)\{0})/Gm] is a
smooth Deligne-Mumford stack whose coarse moduli space is Proj(A).

Theorem 3.3.15. Let (d0, · · · , dn) ∈ Zn+1
>0 and d :=

∑n
i=0 di such that d

is divisible by di for all i. Let C := k⟨x0, · · · , xn⟩/(xjxi − qjixixj)i,j, where
qji ∈ k×, deg(xi) = di for all i, j. Let f :=

∑n
i=0 x

hi
i , where hi := d/di.

We assume that qii = qijqji = qhiij = q
hj
ij = 1 for all i, j. Then, proj(C/(f))

is a noncommutative projective Calabi-Yau scheme of dimension (n−1) if and
only if there exists c ∈ k such that cdj =

∏n
i=0 qij for all j.

Remark 3.3.16. • f is a central element in C from the choice of {qij}.

• Theorem 3.3.15 is a generalization of [22, Theorem 1.1].

Lemma 3.3.17. The balanced dualizing complex of C/(f) is isomorphic to
ϕ(C/(f))1[n], where ϕ is a graded automorphism of C which maps xj 7→∏n

i=0 qjixj.
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Proof. Since C is Artin-Schelter regular, C is skew Calabi-Yau ([42, Lemma
1.2]). This implies that the balanced dualizing complex of C is isomorphic
to ϕC1(−d)[n + 1], where ϕ is the Nakayama automorphism of C. From [42,
Example 5.5], the automorphism ϕ is the map which maps xj 7→

∏n
i=0 qjixj.

By using this result, we can obtain the claim in the same way as in the
proof of Theorem 3.3.3 after Remark 3.3.9.

In general, C/(f) is not generated in degree 0 and 1. This fact prevents us
from using the idea of the proof of Lemma 3.3.8 to calculate the global dimen-
sion of qgr(C/(f)). So, we need to find a right noetherian N-graded k-algebra
R which is generated in degree 0 and 1 and satisfies qgr(R) ≃ qgr(C/(f)).
Quasi-Veronese algebras are effective in achieving this objective. We recall the
notion of quasi-Veronese algebras below. In detail, see [32, Section 3].

Definition 3.3.18 ([32, Section 3]). Let A be an N-graded k-algebra. The
l-th quasi-Veronese algebra A[l] of A is a graded k-algebra defined by

A[l] :=
⊕
i∈N

A
[l]
i :=

⊕
i∈N


Ali Ali+1 · · · Ali+l−1

Ali−1 Ali · · · Ali+l−2
...

...
. . .

...
Ali−l+1 Ali−l+2 · · · Ali.

 .

Remark 3.3.19. 1. We have Gr(A) ≃ Gr(A[l]) ([32, Lemma 3.9]). The
equivalence is obtained by the functor Ψ : Gr(A) → Gr(A[l]), which

is defined by Ψ(M) :=
⊕

i∈Z

(⊕l−1
j=0Mli−j

)
2. When A is right noetherian, A[l] ≃

⊕
0≤i,j≤n−1A(j − i)(l) ∈ gr(A(l)),

where A(l) is the l-th Veronese algebra of A and the A(l)-module structure
of A[l] is given by the natural inclusion A(l) ⊂ A[l] (cf. the proof of [33,
Proposition 4.11]). Then, A[l] is also right noetherian since A(l) is right
noetherian. In this case, Ψ induces an equivalence between qgr(A) and
qgr(A[l]).

Lemma 3.3.20. Let A be an N-graded k-algebra which is generated by ho-
mogeneous elements y0, · · · , yh with deg(yi) > 0 as an A0-algebra. Let
l ≥ max{deg(y0), · · · , deg(yh)}. Then, A[l] is generated in degree 0 and 1.

Proof. For any i ∈ N and any a, b ∈ {0, 1, · · · , l−1}, it is enough to show that
every homogeneous element m of the form

m =



m0,0 . . . m0,β . . . m0,l−1

...
...

...
mα,0 . . . mα,β . . . mα,l−1

...
...

...
ml−1,0 . . . ml−1,β . . . ml−1,l−1

 ∈ A
[l]
i ,


mα,β ∈

(
A

[l]
i

)
α,β

:= Ali+β−α,

mα,β = 0 when (α, β) ̸= (a, b)

0 ≤ α, β ≤ l − 1


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is generated in degree 0 and 1. Moreover, we can assume that ma,b =∏n1

j=0 yij (ij ∈ {0, · · · , h}, n1 ∈ N).
If ma,b is decomposed into

∏n1

j=0 yij =
∏n2

j=0 yij
∏n1

j=n2+1 yij (n2 ∈ N) such

that l − a ≤ deg(
∏n2

j=1 yij) ≤ 2l − a − 1, then we have
∏n2

j=0 yij ∈ (A
[l]
1 )a,c =

Al+c−a and
∏n1

j=n2+1 yij ∈ (A
[l]
i−1)c,b = Al(i−1)+b−c (0 ≤ ∃c ≤ l− 1). In this case,

we can show the claim by using induction on the degree of m. So, it is sufficient
to show that we have such a decomposition for all m. Indeed, we can find at
least one such decomposition from (2l− a− 1)− (l− a)+ 1 = l and the choice
of l. In detail, we have l−a ≤ deg(yi0) ≤ 2l−a−1 or there exists n3 ∈ N such
that deg(yi0yi1 · · · yin3

) < l−a and l−a ≤ deg(yi0yi1 · · · yin3
yin3+1) ≤ 2l−a−1

since 0 < deg(yi) ≤ l.

Lemma 3.3.21. gl.dim(qgr(C/(f))) = n− 1.

Proof. We use the idea of the proof of Lemma 3.3.8. We consider an N-graded
k-algebra B := k[s0, · · · , sn]/(

∑n
i=0 si) with si = xhii . Then, A[d] is right

noetherian and qgr(C/(f)) ≃ qgr((C/(f))[d]) from Remark 3.3.19. So, it is
enough to prove that gl.dim(qgr((C/(f))[d])) = n− 1. Because C/(f) is finite
over B, a B-submodule Z(C/(f))(d) of C/(f) is finite over B. From [33, Propo-
sition 4.10, 4.11], (C/(f))[d] is finite over Z(C/(f))(d). So, (C/(f))[d] is finite
over B. In addition, (C/(f))[d] is generated in degrees 0 and 1 from Lemma
3.3.20. So, qgr((C/(f))[d]) is equivalent to the category of coherent modules
over a sheaf A of OProj(B)-algebra, where A is the sheaf on the projective
spectrum Proj(B) which is locally defined by a tiled matrix algebra

Ni =


Ei,0 Ei,1 · · · Ei,d−1

Ei,−1 Ei,0 · · · Ei,d−2
...

... · · ·
...

Ei,−d+1 Ei,−d+2 · · · Ei,0


on each D+(si). Here, Ei := (C/(f))[x−1

i ] and Ei,j is the degree j part of Ei.
As in the proof of Lemma 3.3.8, it is enough to show that the global dimension
of Ni is n− 1 for all i.

On the other hand, two graded algebras

R1 := Ei ⊕ Ei(1)⊕ · · · ⊕ Ei(d− 2)⊕ Ei(d− 1),

R2 := Ei ⊕ Ei(1)⊕ · · · ⊕ Ei(di − 2)⊕ Ei(di − 1)

are progenerators in Gr(Ei). So, the category of right Endgr(R1)-modules
and the category of right Endgr(R2)-modules are equivalent because they are
equivalent to the category of graded right Ei-modules (cf. [47, Lemma 4.8],
[46, Remarks after Proposition 4.5]). We also have Endgr(R1) ≃ Ni and

Endgr(R2) ≃ Mi :=


Ei,0 Ei,1 · · · Ei,di−1

Ei,−1 Ei,0 · · · Ei,di−2
...

... · · ·
...

Ei,−di+1 Ei,−di+2 · · · Ei,0

 .
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So, it is sufficient to prove the global dimension of Mi is n− 1 for each i.
For simplicity, we assume i = 0. When i ̸= 0, we can show the claim in the

same way. Let D = k[S1, · · · , Sn]/(1 +
∑n

j=0 Sj) with Sj = sj/s0. We show
that the global dimension of the D-algebra M0 is n− 1. The module structure
of M0 is given by the identification Sj = (x

hj
j /x

h0
0 )Id0 ∈ M0, where Id0 is the

(d0 × d0)-identity matrix. Let

m̃ = (S1 − a1, · · · , Sn − an) (aj ∈ k)

be a maximal ideal of D with 1 +
∑n

j=1 aj = 0. It is sufficient to show that
gl.dim((M0)m̃) = n − 1, where (M0)m̃ is the localization of M0 at m̃ (cf. the
second paragraph of the proof of Lemma 3.3.8). We divide the proof of this
claim into two cases.

Case (a) : all aj are not 0. Because S1 − a1, · · · , Sn − an is a regular
sequence in (M0)m̃, we show that the global dimension of (M0)m̃/m̃(M0)m̃ ≃
M0/m̃M0 is 0 (cf. the third paragraph of the proof of Lemma 3.3.8).

First, the category of M0/m̃M0-modules is equivalent to the category of
graded E ′

0-modules, where

E ′
0 := E0/(x

h1
1 /x

h0
0 − a1, · · · , xhnn /x

h0
0 − an)E0.

This is a Morita equivalence obtained from the isomorphism Endgr(E
′
0) ≃

M0/m̃M0 (cf. the three previous paragraph).
Next, we see that E ′

0 is strongly graded. Since

E0 ≃ (C[x−1
0 ])/(1 + (xh11 /x

h0
0 ) + · · ·+ (xhnn /x

h0
0 )),

we have

E ′
0 ≃ (C[x−1

0 ])/(xh11 /x
h0
0 − a1, · · · , xhnn /x

h0
0 − an).

For any l ∈ Z, if x̃ := xl00 x
l1
1 · · · xlnn ∈ (E ′

0)l (l0 ∈ Z, l1, · · · ln ∈ N), then there

exist k1, · · · , kn ∈ N such that x̃′ := x
(−

∑
ki)h0−l0

0 xk1h1−l11 · · · xknhn−lnn ∈ (E ′
0)−l.

Because x̃ x̃′ ∈ k∗, we get 1 ∈ (E ′
0)l(E

′
0)−l and E

′
0 is strongly graded.

Since E ′
0 is strongly graded, we have Gr(E ′

0) ≃ Mod((E ′
0)0). Then, (E ′

0)0
is a twisted group algebra, where a k-basis of (E ′

0)0 is{
xe00 xe11 xe22 · · ·xenn ∈ (E′

0)0

∣∣∣∣ n∑
j=0

ejdj = 0 and 0 ≤ ej < hj (
∀j = 1, 2, · · · , n)

}
.

In particular, (E ′
0)0 is semisimple. Hence, the graded global dimension of E ′

0

is 0 and gl.dim(M0/m̃M0) = 0.
Case (b) : some of aj are 0. For example, we assume a1 = 0. Then,

(xh11 /x
h0
0 )Id0 is an annihilator of any simple M0-module N . On the other

hand, we have a unique integer r1 such that 0 ≤ deg(x1/x
r1
0 ) ≤ d0 − 1. If
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deg(x1/x
r1
0 ) = 0, then J = x1/x

r1
0 Id0 annihilates N . Otherwise, the matrix

J =


O

x1/x
r1
0

. . .

x1/x
r1
0

x1/x
r1+1
0

. . .

x1/x
r1+1
0

O


∈ M0

annihilates N because ∃nJ ∈ N such that JnJ = (xh11 /x
h0
0 )Id0 (the reduction of

Ni to Mi is used here). Thus, it is enough to prove that the global dimension
of (M0/JM0)m̃ = n−2 (cf. the fourth paragraph of the proof of Lemma 3.3.8).
Note that we have

M0/JM0 ≃


F0,0 F0,1 · · · F0,d0−1

F0,−1 F0,0 · · · F0,d0−2
...

... · · ·
...

F0,−d0+1 F0,−d0+2 · · · F0,0

 , (3.3.2.1)

where

F0 := E0/x1E0 ≃ k⟨x0, x2, · · · , xn⟩/(xjxi−qjixixj, xh00 +xh22 + · · ·+xhnn )i,j[x
−1
0 ]

and F0,j is the degree j part of F0.
If any of a2, · · · , an is not 0, we can reduce to the case (a) from (3.3.2.1).

If some of a2, · · · , an are 0, repeat the above process until we can reduce to
the case (a).

Proof of Theorem 3.3.15. gl.dim(qgr(C/(f))) is finite. So, the balanced dual-
izing complex ϕ(C/(f))1[n] of C/(f) induces the Serre functor of qgr(C/(f))
from [9, Theorem A.4]. We complete the proof as in the proof of Theorem
3.3.3.

3.4 Comparison and closed points

In this section, we calculate closed points of noncommutative projective Calabi-
Yau schemes of dimensions 2 obtained in Section 3.3.2 and compare our exam-
ples with commutative Calabi-Yau varieties and the first examples constructed
in [22]. In particular, we show that a noncommutative projective Calabi-Yau
scheme in Section 3.3.2 gives essentially a new example of noncommutative
projective Calabi-Yau schemes.

3.4.1 Closed points of noncommutative weighted hyper-
surfaces

Example 3.4.1. Any weight (d0, d1, d2, d3) of noncommutative projec-
tive Calabi-Yau schemes of dimensions 2 in Theorem 3.3.15 such that
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gcd(d0, d1, d2, d3) = 1 is one of the following (obtained by using a computer):

(d0, d1, d2, d3) =(1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 4, 6),

(1, 2, 2, 5), (1, 2, 3, 6), (1, 2, 6, 9), (1, 3, 4, 4), (1, 3, 8, 12),

(1, 4, 5, 10), (1, 6, 14, 21), (2, 3, 3, 4), (2, 3, 10, 15).

From now, we focus on the closed points of noncommutatative projective
Calabi-Yau schemes of dimensions 2 in Theorem 3.3.15 whose weights are
of type (1, 1, a, b). We recall the notion of closed points of noncommutative
projective schemes.

For simplicity, we often call an N-graded k-algebra of the form
k⟨z0, · · · , zm⟩/(zjzi − pjizizj)i,j (pji ∈ k×,m ∈ N) with deg(zi) > 0 and
pjipij = 1 a weighted quantum polynomial ring. (pji) is called the quantum
parameter.

Definition 3.4.2 ([33, Section 3.1]). Let A be a finitely generated right
noetherian connected N-graded k-algebra. A closed point of proj(A) is an ob-
ject of qgr(A) represented by a 1-critical module of A. We denote by |proj(A)|
the set of closed points of proj(A). For the definition of 1-critical modules, see
[33, Definition 3.1].

Remark 3.4.3 ([33, Section 3.1]). If A is a quotient of a weighted quantum
polynomial ring, then every closed point of proj(A) is one of the following:

1. An ordinary point, which is represented by a finitely generated 1-critical
module of multiplicity 1.

2. A fat point, which is represented by a finitely generated 1-critical module
of multiplicity > 1.

3. A thin point, which is represented by a finitely generated 1-critical mod-
ule of multiplicity < 1.

For the definition of multiplicities, see [33, Definition 3.10]. In addition, if A is
generated in degree 1, the notion of ordinary points and that of point modules
are the same, and there are no thin points.

Let C := k⟨x0, x1, x2, x3⟩/(xjxi − qjixixj)i,j whose weight is of type
(d0, d1, d2, d3) = (1, 1, a, b) (0 < a ≤ b). We assume that qijqji = qii = 1
for all i, j. Since d0 = 1, C[x−1

0 ] is strongly graded. So, from [33, Theorem
4.20], we have

|proj(C)| = |spec(C[x−1
0 ]0)|

⊔
|proj(C/(x0))|,

where we denote by |spec(C[x−1
0 ]0)| the set of simple modules of C[x−1

0 ]0. In
this equality, the 1 (resp. n > 1)-dimensional simple modules of spec(C[x−1

0 ]0)
correspond to ordinary (resp. fat) points in proj(C). Similarly, we have

|proj(C)| = |spec(C[x−1
0 ]0)|

⊔
|spec(C/(x0)[x−1

1 ]0)|
⊔

|proj(C/(x0, x1))|.
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We have an isomorphism C[x−1
0 ]0

≃−→ k⟨X1, X2, X3⟩/(XjXi − q′jiXiXj)i,j
which sends x1x

−1
0 , x2x

−a
0 and x3x

−b
0 to X1, X2 and X3, respectively. Here,

q′ji := qdi0jqjiq
dj
i0 (i, j ̸= 0). In the same way, C/(x0)[x

−1
1 ]0 is also isomorphic to

k⟨Y2, Y3⟩/(Y3Y2 − p32Y2Y3), where p32 := qa13q32q
b
21.

Let C1 := k⟨x′0, x′1, x′2, x′3⟩/(x′jx′i − q′jix
′
ix

′
j)i,j, where deg(x′i) = 1, q′0i =

q′j0 = 1 for all i, j. Let C2 := k⟨y1, y2, y3⟩/(yjyi− pjiyiyj)i,j, where deg(y
′
i) = 1,

p1i = pj1 = 1 for all i, j. Then, we can consider the point scheme of proj(C1)
(resp. proj(C2)), which is isomorphic to the set of ordinary points |proj(C1)|ord
(resp. |proj(C2)|ord) as sets. Thus, we regard |proj(C1)|ord (resp. |proj(C2)|ord)
as the point scheme of proj(C1) (resp. proj(C2)).

Let |spec(C[x−1
0 ]0)|1 (resp. |spec(C/(x0)[x−1

1 ]0)|1) be the set of 1-
dimensional simple modules of C[x−1

0 ]0 (resp. C/(x0)[x
−1
1 ]0). Because

C1[x
′
0
−1]0 ≃ C[x−1

0 ]0 and C2[y1
−1]0 ≃ C/(x0)[x

−1
1 ]0, we can think of

|spec(C[x−1
0 ]0)|1 (resp. |spec(C/(x0)[x−1

1 ]0)|1) as a locally closed subscheme
of |proj(C1)|ord (resp. |proj(C2)|ord) from [33, Theorem 4.20].

Lemma 3.4.4. 1. If q′ji ̸= 1 for all i, j ̸= 0, |spec(C[x−1
0 ]0)|1 is a union of

three affine lines.

2. If p32 ̸= 1, |spec(C/(x0)[x−1
1 ]0)|1 is a union of two affine lines. Otherwise,

|spec(C/(x0)[x−1
1 ]0)|1 ≃ A2.

Proof. (2) is well-known (for example, see [47, Section 4.3]). Regarding (1),
under the assumption of the lemma, proj(C1) belongs to case (3) or case (4)
in [54, Corollary 5.1]. This shows that |spec(C1[x

′
0
−1]0)|1 is isomorphic to⋃

i ̸=j Z(X
′
i, X

′
j) ⊂ A3 = Spec(k[X ′

1, X
′
2, X

′
3]) (cf. [54, Proposition 4.2] or [5,

Theorem 1]).

Remark 3.4.5. We consider the weights (1, 1, a, b) and the quantum parameters
which give noncommutative projective Calabi-Yau schemes of dimensions 2 in
Theorem 3.3.15. Then, we can check that if p32 ̸= 1, then q′ji ̸= 1 for all i, j ̸= 0
by using a computer. Moreover, if p32 = 1, then q′ji = 1 for all i, j ̸= 0. In this

case, |spec(C[x−1
0 ]0)|1 ≃ A3.

We consider C/(x0, x1) = k⟨x2, x3⟩/(x3x2−q32x2x3). Then, it is known that
a weighted quantum polynomial ring of 2 variables is a twisted algebra of a
commutative weighted polynomial ring k[x, y] with deg(x) = a > 0, deg(y) =
b > 0 (for example, see [49, Example 4.1] or [64, Example 3.6]). So, it is
enough to consider the closed points of proj(k[x, y]). We want to study the
closed points of proj(k[x, y]) in the case of (a, b) = (2, 2), (2, 4) or (4, 6). Note
that when (a, b) = (1, 1) or (1, 3), they are classified in [33, Theorem 3.16]. We
treat a more general setting below.

Lemma 3.4.6. Let R = k[x, y] be a commutative weighted polynomial ring
with deg(x) = a > 0, deg(y) = b > 0. Let g := gcd(a, b), a′ := a/g and
b′ := b/g. Then, every closed point of proj(R) is one of the following:
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1. πR/(x)(−i), i = 0, · · · , b− 1.

2. πR/(y)(−j), j = 0, · · · , a− 1.

3. πR/(βxb
′ − αya

′
)(−k), where (α, β) ∈ P1\{(0, 1), (1, 0)} and k =

0, · · · , g − 1.

Moreover, all of them are not isomorphic in proj(R).

Proof. The proof is almost the same as the proof of [33, Lemma 3.15, Theorem
3.16]. We give the sketch of the proof.

Firstly, every closed point of proj(R) is represented by a cyclic criti-
cal Cohen-Macaulay module of depth 1. Then, M ∈ gr(R) satisfies these
conditions and is generated in degree 0 if and only if M is isomorphic to
one of R/(x), R/(y) or R/(βxb

′ − αya
′
) (α, β ∈ k×). Since being cyclic

critical Cohen-Macaulay of depth 1 is invariant under shifting, any closed
point is represented by some shifts of one of the above modules (that is,
R/(x)(−l), R/(y)(−l), R/(βxb′ − αya

′
)(−l), l ∈ Z).

Finally, we classify the isomorphic classes of these modules in proj(R). We
have no isomorphisms between the three types of closed points by considering
their Hilbert polynomials and multiplicities. Then, we have πR/(βxb

′−αya′) ≃
πR/(βxb

′ − αya
′
)(−gl), (∀l ∈ Z, ∀(α, β) ∈ P1\{(1, 0), (0, 1)}). We also have

πR/(βxb
′ − αya

′
) ≃ πR/(β′xb

′ − α′ya
′
) if and only if (α, β) = (α′, β′) in

P1\{(1, 0), (0, 1)}. In addition, we can show that πR/(x) ≃ πR/(x)(−i) (resp.
πR/(y) ≃ πR/(y)(−j)) if and only if i ≡ 0 (mod b) (resp. j ≡ 0 (mod a)).
From these discussions, we get the claim.

3.4.2 Closed points of noncommutatative projective
Calabi-Yau schemes and a result about compar-
ison

We can study ordinary and thin points of noncommutative projective Calabi-
Yau schemes of dimensions 2 in Theorem 3.3.15 by using the above investi-
gations. We give examples of noncommutative projective Calabi-Yau schemes
whose moduli of ordinary closed points are different from those in [22, Propo-
sition 3.4] and commutative Calabi-Yau varieties.

Example 3.4.7. We consider the weight (1, 1, 2, 2) and the quantum param-
eter

q = (qij) =

1 1 1 ω2

1 1 ω2 1
1 ω 1 1
ω 1 1 1

, ω :=
−1 + i

√
3

2
.

Then, we have

q′ = (q′ij) =

 1 ω2 ω
ω 1 ω2

ω2 ω 1

, q213q32q
2
21 = ω2.

44



From Lemma 3.4.4 and Lemma 3.4.6, the set of ordinary and thin points

|proj(C/(f))|ord & thin = |spec(C/(f)[x−1
0 ]0)|1

⊔
|spec(C/(f, x0)[x

−1
1 ]0)|1⊔

|proj(C/(f, x0, x1))|

is 24 points. To be more precise, we have |spec(C/(f)[x−1
0 ]0)|1 =⊔

i ̸=j Z(Xi, Xj, 1 + X6
1 + X3

2 + X3
3 ) ⊂ A3, |spec(C/(f, x0)[x−1

1 ]0)|1 =⊔
i=1,2 Z(Yi, 1 + Y 3

2 + Y 3
3 ) and |proj(C/(f, x0, x1))| = {3pts} ⊔ {3pts}.

This calculation shows that for a fixed weight, if the set of ordinary and
thin points of proj(C/(f)) is finite, then the cardinality is independent of the
quantum parameters.

From the method in Example 3.4.7, Remark 3.4.5 and a direct computation,
we have the following.

Proposition 3.4.8. For a weight (1, 1, a, b) in Example 3.4.1 and a quantum
parameter q which gives a noncommutative projective Calabi-Yau scheme, if
the set of ordinary and thin points of proj(C/(f)) is finite, then the cardinality
is always 24.

The following proposition shows that some of noncommutative projective
Calabi-Yau schemes of dimensions 2 in Theorem 3.3.15 are essentially new
examples.

Proposition 3.4.9. There exists a noncommutative projective Calabi-Yau
scheme of dimension 2 which is obtained in Theorem 3.3.15 and not isomor-
phic to either commutative Calabi-Yau surfaces or noncommutative projective
Calabi-Yau schemes of dimensions 2 obtained in [22].

Proof. We divide the proof into four steps.
Step 1. We choose the weight (1, 1, a, b) and the quantum parameter q as in

Example 3.4.7. Then, the number of ordinary and thin points of proj(C/(f))
is finite. So, proj(C/f) is not isomorphic to any commutative Calabi-Yau
surfaces.

Step 2. We prove that proj(C/(f)) is not isomorphic to any noncommuta-
tive projective Calabi-Yau schemes of dimensions 2 in [22]. To prove this, we
use the theory established in [8]. First, note that we can think of qgr(C/(f))
as the category of coherent modules of a sheaf A of algebras on the projective
spectrum Proj(k[s0, s1, s2, s3]/(s0 + s1 + s2 + s3)) (cf. the proof of Lemma
3.3.21). We define a sheaf ZA to be the sheaf whose sections are

Γ(U,ZA) = {s ∈ Γ(U,A) | s|V ∈ Z(Γ(V,A)), ∀V ⊂ U : open}
for all open subsets U (cf. [8, Proposition 2.11]). In particular, if U is affine,
Γ(U,ZA) = Z(Γ(U,A)). Then, we show that Spec(Z(Γ(D+(si),A))) has 4
singular points when i = 0, 1 and a 1-dimensional singular locus when i = 2, 3.
In the following, we verify this claim for i = 0, 2. Similarly, the claim is proved
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for i = 1, 3. In the following, we write Zi as Z(Γ(D+(si),A)) for any i. We
also use the notations in the proof of Lemma 3.3.21.

When i = 0, any m ∈ Z0 is of the form m =
(
µ1e 0
0 µ2e

)
∈ N0, (e ∈

E0,0, µ1, µ2 ∈ k×) from the definition of A. We have

E0,0 ≃ k⟨X1, X2, X3⟩(XjXi − q′jiXiXj, 1 +X6
1 +X3

2 +X3
3 )i,j,

which is obtained from the identifications X1 = x1x
−1
0 , X2 = x2x

−2
0 and X3 =

x3x
−2
0 . Here, the q′ji are as in Example 3.4.7. So, we have

Z(E0,0) ≃ k[Y, Z,W,U ]/(1 + Y 2 + Z +W,Y ZW − λ1U
3) (λ1 ∈ k×),

which is obtained from the identifications Y = (x1x
−1
0 )3, Z = (x2x

−2
0 )3,W =

(x3x
−2
0 )3 and U = (x1x

−1
0 )(x2x

−2
0 )(x3x

−2
0 ). On the other hand, we define the

inclusion ϕ : Z(E0,0) → N0 in which Y, Z,W are mapped naturally and U
to ( U 0

0 ωU ). It is easy to see that ϕ(Z(E0,0)) ⊂ Z0. Because the choice of µ1

determines µ2 in the above form of m, the map ϕ induces Z0 ≃ Z(E0,0). Thus,
one can show that Spec(Z0) has 4 singular points by using the Jacobi criterion.

When i = 2, any m ∈ Z2 is of the form m =
(
µ1e 0
0 µ2e

)
∈ N2, (e ∈

E2,0, µ1, µ2 ∈ k×) from the definition of A. We also have

E2,0 ≃ k⟨X0, X1, X2, X3⟩

/(
XjXi − q′′jiXiXj ,

1 +X6
0 +X6

1 +X3
3 , X0X1 − λ2X

2
2

)
i,j

(λ2 ∈ k×),

which is obtained from the identifications X0 = x20x
−1
2 , X1 = x21x

−1
2 , X2 =

x0x1x
−1
2 and X3 = x3x

−1
2 . Here, the q′′ij are defined by the matrix

(q′′ij) =


1 ω ω2 ω
ω2 1 ω ω2

ω ω2 1 1
ω2 ω 1 1

 .

So, we have

Z(E2,0) ≃ k[X, Y,W,U, V ]

/(
X + Y + 1 +W,

XY − λ3U
2, XYW − λ4V

2

)
(λ3, λ4 ∈ k×),

which is obtained from the identifications X = (x20x
−1
2 )3, Y = (x21x

−1
2 )3,W =

(x3x
−1
2 )3, U = (x0x1x

−1
2 )3 and V = (x0x1x

−1
2 )(x3x

−1
2 ). On the other hand,

we define the inclusion ϕ : Z(E2,0) → N2 in which X, Y,W,U are mapped
naturally and V to ( V 0

0 ωV ). It is easy to see that ϕ(Z(E2,0)) ⊂ Z2. Because
the choice of µ1 determines µ2 in the above form of m, the map ϕ induces
Z2 ≃ Z(E2,0). Thus, one can show that Spec(Z2) has a 1-dimensional singular
locus by using the Jacobi criterion.

Step 3. We consider the weight (1, 1, 1, 1) and take a quantum parameter
which gives a noncommutative projective Calabi-Yau scheme proj(C ′/(f ′))
whose point scheme is finite. qgr(C ′/(f ′)) is thought of as the category
of coherent modules of a sheaf B of algebras on the projective spectrum
Proj(k[t0, t1, t2, t3]/(t0 + t1 + t2 + t3)).

The number of the choices of quantum parameters (qij) which satisfy the
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conditions of Theorem 3.3.15 and give a noncommutative projective Calabi-
Yau scheme whose moduli space of point modules is finite is 20 up to permutat-
ing variables (we get the list below by using a computer and hand calculations):

1.

(
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

)
, 2.

(
1 1 1 1
1 1 −i i
1 i 1 −i
1 −i i 1

)
, 3.

(
1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

)
, 4.

(
1 1 1 −1
1 1 −i −i
1 i 1 i
−1 i −i 1

)
,

5.

(
1 1 1 i
1 1 −1 −i
1 −1 1 −i
−i i i 1

)
, 6.

(
1 1 1 i
1 1 −i −1
1 i 1 1
−i −1 1 1

)
, 7.

(
1 1 1 −i
1 1 −1 i
1 −1 1 i
i −i −i 1

)
, 8.

(
1 1 1 −i
1 1 −i 1
1 i 1 −1
i 1 −1 1

)
,

9.

(
1 1 −1 −1
1 1 −i i
−1 i 1 i
−1 −i −i 1

)
, 10.

(
1 1 −1 i
1 1 i −1
−1 −i 1 −1
−i −1 −1 1

)
, 11.

(
1 1 −1 −i
1 1 −i −1
−1 i 1 −1
i −1 −1 1

)
, 12.

(
1 1 i i
1 1 −i −i
−i i 1 −1
−i i −1 1

)
,

13.

(
1 1 i −i
1 1 −i i
−i i 1 1
i −i 1 1

)
, 14.

(
1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

)
, 15.

(
1 −1 −1 −1
−1 1 −i i
−1 i 1 −i
−1 −i i 1

)
, 16.

(
1 −1 −1 i
−1 1 −1 i
−1 −1 1 i
−i −i −i 1

)
,

17.

(
1 −1 −1 −i
−1 1 −1 −i
−1 −1 1 −i
i i i 1

)
, 18.

(
1 −1 i i
−1 1 i i
−i −i 1 −1
−i −i −1 1

)
, 19.

(
1 i i i
−i 1 −i i
−i i 1 −i
−i −i i 1

)
, 20.

(
1 i i −i
−i 1 −i −i
−i i 1 i
i i −i 1

)
.

When we choose one (qij) of the above 20 quantum parameters, then for
any l, we have

Γ(D+(tl),B) ≃ k⟨Y1, Y2, Y3⟩/(YiYj − q′ijYjYi, Y
4
1 + Y 4

2 + Y 4
3 + 1)1≤i,j≤3,

where (q′ij) is represented by one of the following matrices (we can verify this
with direct calculations):

(a).

 1 −1 −1
−1 1 −1
−1 −1 1

 , (b).

 1 −i i
i 1 −i
−i i 1

 .

We write Z ′
l := Z(Γ(D+(tl),B)). When (q′ij) is type (a), Spec(Z ′

l) has 6 sin-
gular points because Z ′

l is generated by Y 2
1 , Y

2
2 , Y

2
3 and Y1Y2Y3 as a k-algebra.

When (q′ij) is type (b), Spec(Z
′
l) has 3 singular points because Z ′

l is generated
by Y 4

1 , Y
4
2 , Y

4
3 and Y1Y2Y3 as a k-algebra. Moreover, for any (qij) in the above

table, if B is type (a) (resp. (b)) on D+(tl) for some l, it is also type (a) (resp.
(b)) on D+(tl) for any other l.

Step 4. If qgr(C/(f)) is equivalent to qgr(C ′/(f ′)) then, we must have an
isomorphism of schemes between Spec(ZA) and Spec(ZB) by [8, Theorem 4.4]
(cf. [3, Section 6]). Since Spec(ZA) has infinitely many singular points, but,
Spec(ZB) has finitely many singular points, such a situation does not happen.
Hence, we complete the proof.
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