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Chapter 1

Introduction

In this thesis, we investigate the classification of ACM bundles and globally gen-
erated vector bundles on nonsingular projective algebraic varieties. We use the
Serre correspondence for rank two vector bundles on surfaces and the generalized
Hartshorne-Serre correspondence for vector bundles of higher rank on threefolds.
The classification problem of vector bundles is reduced to the classification problem
of subvarieties of codimension 2 in the base space by these correspondences. This
thesis consists of two main parts.

In Chapter 2, we consider rank 2 Arithmetically Cohen–Macaulay (ACM) bun-
dles. On a nonsingular projective variety X of dimension n with a polarization
OX(h), ACM bundles are defined as locally free sheaves E such that hi(X, E(th)) = 0
for t ∈ Z, 1 ≤ i ≤ n − 1. In a more algebraic context, an ACM bundle corresponds
to a maximal Cohen-Macaulay module over the homogeneous coordinate ring of X.
From this perspective as well, ACM bundles have been a subject of research for a
long time.

The property of being ACM is not affected by tensoring by OX(th), thus we can
restrict our attention to ACM bundles which satisfy the conditions h0(X, E) ̸= 0 and
h0(X, E(−h)) = 0 (we briefly say that E is initialized) and which are indecomposable,
i.e. bundles which do not split as a direct sum of bundles of lower ranks. On a fixed
pair (X,OX(h)), there exist initialized ACM bundles with the maximal number of
global sections, known as Ulrich bundles. Ulrich bundles have various intriguing
properties, particularly being globally generated. This motivates us to embark on a
study in Chapter 3.

The classification of ACM bundles on algebraic varieties is a fundamental and
classical topic in algebraic geometry. In 1964, G. Horrocks [27] proved that on Pn,
a vector bundle E splits as a direct sum of line bundles if and only if E is an ACM
bundle. This marked the starting point for the study of ACM bundles.

In 1988, D. Eisenbud and J. Herzog [22] provided the complete list of varieties
that have only finitely many initialized and indecomposable ACM bundles. For
instance, on Pn, the only initialized and indecomposable ACM bundle is OPn by
the theorem of Horrocks. Among these varieties is the smooth quadric surface
(P1 × P1,OP1×P1(1, 1)) in P3, where we write OP1×P1(1, 1) for OP1(1)⊠OP1(1).

Recently, there has been a focus on the classification of ACM bundles of low rank
on other surfaces and threefolds, such as hypersurfaces of low degrees and del Pezzo
threefolds. For instance, G, Casnati, D. Faenzi, M. Filip and F. Malaspina classified
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rank 2 ACM bundles on the del Pezzo threefolds of degree 6 and 7 [15, 16, 17].
The classification of ACM bundles on a specific variety heavily depends on the

chosen embedding. For instance, while the quadric surface (P1 × P1,OP1×P1(1, 1))
in P3 is a well-known example of a surface with only finitely many initialized in-
decomposable ACM bundles, there are currently no known results regarding the
classification of ACM bundles of low rank on P1 × P1 with respect to the general
polarization OP1×P1(a, b). Hence we pose the following problem.

Problem 1.0.1. Classify ACM bundles of rank 2 on (P1 × P1,OP1×P1(a, b)).

Faenzi and Malaspina treated the case of (P1 × P1,OP1×P1(1, 2)) in Theorem
3.1 of [24]. Therefore, we consider rank 2 ACM bundles on P1 × P1 with respect
to the polarization OP1×P1(2, 2), which is a del Pezzo surface of degree 8. On the
classification of ACM bundles on del Pezzo surfaces, Faenzi [23] classified ACM
bundles of rank 2 on cubic surfaces.

Our result is the following.

Theorem 1.0.2. Let E be an initialized indecomposable ACM bundle of rank 2 on
(X := P1 ×P1,OX(2, 2)), with Chern classes c1 = OX(a, b) (we write c1 = (a, b) for
short), where we may assume a ≤ b by symmetry, and c2 ∈ Z.

Then one of the following assertions holds.

1. c1 = (0, 0), c2 = 1. The zero–locus of its general section is a point.

2. c1 = (0, 1), c2 = 1. The zero–locus of its general section is a point.

3. c1 = (3, 4), c2 = 7. The zero–locus of its general section is a 0-dimensional
degree 7 subscheme contained in a pencil of hyperplanes and which is not the
complete intersection of curves C1 ∈ |OX(2, 1)| and C2 ∈ |OX(1, 3)|.

4. c1 = (3, 5), c2 = 9. In this case E is an Ulrich bundle. The zero–locus of its
general section is a 0-dimensional non–degenerate degree 9 subscheme.

5. c1 = (4, 4), c2 = 10. In this case E is an Ulrich bundle. The zero–locus of its
general section is a 0-dimensional non–degenerate degree 10 subscheme which
is not the complete intersection of curves C1 ∈ |OX(1, 3)| and C2 ∈ |OX(3, 1)|.

All the above cases actually occur on X.

By the Serre correspondence, we can construct a rank 2 vector bundle on a
surface if the local complete intersection subscheme of pure codimension 2 satisfies
the Cayley–Bacharach condition. In the proof, it is first shown that the zero–locus
of a general section of an ACM bundle is pure of codimension 2. Consequently, all
ACM bundles can be obtained from the zero–locus of a general section by the Serre
correspondence, leading to the classification result.

In Chapter 3, we explore globally generated bundles. The works on the classi-
fication of ACM and Ulrich bundles in recent years have prompted an interest in
the investigation of globally generated bundles, since Ulrich bundles are globally
generated.

Of course, globally generated vector bundles themselves are significant objects
in algebraic geometry. Nevertheless, even in the case of Pn, the classification of
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such bundles with a small first Chern class fixed has only been explored relatively
recently, as indicated by the works of [1, 29, 36, 37]. A globally generated vector
bundle on Pn corresponds to a map from Pn to a grassmannian. In 2006, J. C. Sierra
and L. Ugaglia [35] investigated globally generated vector bundles of rank 2 on Pn

from this viewpoint. They further extended their investigation in 2009 to classify
globally generated vector bundles of arbitrary rank on Pn with c1 = 2 [36].

Following this line of research, E. Ballico, S. Huh, and Malaspina explored
globally generated vector bundles with a fixed small first Chern class on various
projective varieties, including smooth quadric threefolds [6], complete intersection
Calabi-Yau threefolds [7], and Segre threefolds P1 × P1 × P1 [8] and P1 × P2 [9].
Additionally, Ballico studied the case of projective space blown up at finitely many
points [5]. These results are obtained by investigating nonsingular curves corre-
sponding to globally generated vector bundles via the generalized Hartshorne-Serre
correspondence.

According to the Hartshorne-Serre correspondence [3], on a nonsingular variety,
if a pure codimension 2 local complete intersection subscheme satisfies certain condi-
tions, then a vector bundles of rank r ≥ 2 can be constructed. The given subscheme
is then the degeneracy locus of r−1 global sections of the constructed vector bundle.
Conversely, it is known that for a globally generated vector bundles of rank r, there
exist r − 1 global sections the degeneracy locus of which is a pure codimension 2
subscheme, and furthermore, it is known to become nonsingular.

The classifications of globally generated vector bundles on various threefolds by
Ballico, Huh, Malaspina are inspired by the work on the classifications of ACM bun-
dles on del Pezzo threefolds by Casnati, Faenzi, Malaspina [15, 16, 17], as mentioned
by the authors [8]. More recently, Casnati and Genc [18] investigated instanton bun-
dles on two fano threefolds, namely, P1×P2 and the projective space blown up along
a line.

Inspired by these results, in Chapter 3, we consider globally generated vector
bundles on the projective space blown up along a line. We follow the notation
of [18]. Let X be the projective space blown up along a line, H̃ the pull-back of
a hyperplane, E the exceptional divisor. Our main result is the classification of
globally generated vector bundles on X with c1 = 2H̃ − E(= ξ + f), up to trivial
factor.

Theorem 1.0.3. Let π : X ∼= P(OP1(1)⊕O2
P1) → P1 be the natural projection and

let ξ and f be the classes of OP(OP1 (1)⊕O2
P1

)(1) and π∗OP1(1) respectively. Let E be

a globally generated vector bundle of rank r at least 2 on X with c1 = ξ + f and
c2 = αξ2 + βξf . If E has no trivial factor, then the possible rank r and (s;α, β) are
as follows (s is the number of connected components of associated curve to E via the
Hartshorne-Serre correspondence modulo trivial factor):

1. r = 2, (1; 1, 0);

2. r = 2, (1; 0, 1): In this case E ∼= OX(ξ)⊕OX(f);

3. r = 3, 4, (1; 1, 1);

4. r = 2, 3, (2; 0, 2);

5. 3 ≤ r ≤ 6, (1; 1, 2).
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Furthermore, there exists a globally generated vector bundle in each of these cases.

In fact, we provide a detailed description of curves associated with the globally
generated vector bundles via the Hartshorne-Serre correspondence. The complete
classification of nonsingular associated curves is obtained.

Throughout the whole thesis, we refer to [26] for all the unmentioned definitions,
notation and results.
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Chapter 2

Rank two ACM bundles on the
double embedding of a quadric
surface

2.1 Introduction

Let PN be the N -dimensional projective space over an algebraically closed field k of
characteristic 0.

If X ⊆ PN is a projective variety of dimension n with respect to the embed-
ding induced by OX(h) := OPN (1) ⊗ OX , we can ask for locally free sheaves E on
(X,OX(h)) such that hi

(
X, E(th)

)
= 0 for t ∈ Z, 1 ≤ i ≤ n − 1 which are called

Arithmetically Cohen–Macaulay bundles (ACM for short) with respect to OX(h).
The property of being ACM is not affected by tensoring by OX(th), thus we can

restrict our attention to ACM bundles which satisfy the conditions h0
(
X, E

)
̸= 0 and

h0
(
X, E(−h)

)
= 0 (we briefly say that E is initialized) and which are indecomposable,

i.e. bundles which do not split as a direct sum of bundles of lower ranks.
The varieties that have only finitely many initialized ACM bundles fall into a

short list (we refer the details to [22]). For example, if (X,OX(h)) = (P2,OP2(1)),
then the line bundle OP2 is the only initialized indecomposable ACM bundle by the
theorem of Horrocks (see [32]). The smooth quadric surface (P1 × P1,OP1×P1(1, 1))
in P3 also supports only finitely many ACM bundles, and all the initialized inde-
composable ACM bundles on it are line bundles (see again [22]).

Recently, the classification of ACM bundles of low rank on other surfaces and
threefolds has been considered. For example, there is a complete classification of
rank 2 ACM, indecomposable, and initialized bundles on a cubic surface ([23]), some
quartic surface ([13]), del Pezzo threefolds of degree at least 3 ([4, 15, 16, 17]). More
generally, many varieties with Picard number 1 are treated in [12].

By definition, the classification of ACM bundles on the fixed variety depends
largely on the chosen embedding. For example, although the quadric surface (P1 ×
P1,OP1×P1(1, 1)) in P3 is a classic example of a surface that has only finitely many
initialized ACM bundles, there are no known results on the classification of ACM
bundles of low rank on P1×P1 with respect to the general polarization OP1×P1(a, b).

In this direction, Faenzi and Malaspina treated the case of (P1×P1,OP1×P1(1, 2))
in Theorem 3.1 of [24].
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Therefore, in this paper, we consider rank 2 ACM bundles on P1×P1 with respect
to the polarization OP1×P1(2, 2), which is a del Pezzo surface of degree 8.

In the study of ACM bundles, the existence of ACM bundles which have maximal
number of global sections, namely, Ulrich bundles (see the next section) is of central
interest. Since the papers [10, 11], the possible Chern classes of Ulrich bundles are
intensively studied.

Our result is the following.

Main Theorem. Let E be an initialized indecomposable ACM bundle of rank 2 on
(X := P1 ×P1,OX(2, 2)), with Chern classes c1 = OX(a, b) (we write c1 = (a, b) for
short), where we may assume a ≤ b by symmetry, and c2 ∈ Z.

Then one of the following assertions holds.

1. c1 = (0, 0), c2 = 1. The zero–locus of its general section is a point.

2. c1 = (0, 1), c2 = 1. The zero–locus of its general section is a point.

3. c1 = (3, 4), c2 = 7. The zero–locus of its general section is a 0-dimensional
degree 7 subscheme contained in a pencil of hyperplanes and which is not the
complete intersection of curves C1 ∈ |OX(2, 1)| and C2 ∈ |OX(1, 3)|.

4. c1 = (3, 5), c2 = 9. In this case E is an Ulrich bundle. The zero–locus of its
general section is a 0-dimensional non–degenerate degree 9 subscheme.

5. c1 = (4, 4), c2 = 10. In this case E is an Ulrich bundle. The zero–locus of its
general section is a 0-dimensional non–degenerate degree 10 subscheme which
is not the complete intersection of curves C1 ∈ |OX(1, 3)| and C2 ∈ |OX(3, 1)|.

All the above cases actually occur on X.

We will prove this theorem by a method similar to the one used in the papers
[12], [13], [15] appropriately modified, Brill–Noether theory and case-by-case com-
putational analysis peculiar in our case.

In particular, we focus on the uniqueness of the extension as in the beginning
of 2.5.3 in order to prove the non-existence of the initialized indecomposable ACM
bundles in otherwise difficult cases.

On the other hand, the key point for proving the existence of ACM bundles is
Lemma 2.5.7 whose proof uses that X is Fano, and the discussion after it where we
seek for geometric properties of the set of points associated via the Serre correspon-
dence to these rank 2 ACM bundles.

2.2 Preliminaries

The general references for this and the next section are [12, 13, 15]. Let X := P1×P1

be a del Pezzo surface of degree 8, embedded in P8 by the very ample sheaf OX(h) :=
OX(2, 2).

Definition 2.2.1. ([30, Definition 1.2.2.]) A closed subvariety V ⊆ PN is Arith-
metically Cohen-Macaulay (ACM for short) if its homogeneous coordinate ring SV

is Cohen-Macaulay.
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ACM varieties are characterized by the vanishing of some cohomologies.

Lemma 2.2.2. ([30, Lemma 1.2.3.]) If dimV ≥ 1, then V ⊆ PN is ACM if and
only if H i

(
IV (th)

)
= 0 for t ∈ Z, 1 ≤ i ≤ dimV .

Theorem 2.2.3. ([33, Theorem 2.2.11.]) X = P1 × P1 embedded in P8 by the very
ample sheaf OX(2, 2) is an ACM variety.

Theorem 2.2.4. ([10, Corollary 3.5.]) Let E be a vector bundle of rank 2 on X. If
E is initialized and ACM, then h0

(
X, E

)
≤ deg(X)rank E = 16

Definition 2.2.5. We say that E is an Ulrich bundle if it is initialized, ACM and
the equality h0

(
X, E

)
= 16 holds.

Let E be a vector bundle of rank 2 on X and let s be a global section of E .
In general its zero–locus (s)0 ⊆ X is either empty or its codimension is at most 2.
Thus, if it is non–empty, we can write (s)0 = E ∪D where E has pure codimension
2 (or it is empty) and D is a divisor (or it is empty). In particular E(−D) has a
section vanishing exactly on E, thus we can consider its Koszul complex

0 −→ OX(D) −→ E −→ IE|X(c1 −D) −→ 0. (2.1)

Moreover we also have the following exact sequence

0 −→ IE|X −→ OX −→ OE −→ 0. (2.2)

The Künneth formula for line bundles on X is the following.

hi
(
X,OX(a, b)

)
=

∑
(i1,i2)∈N2,
i1+i2=i

hi1
(
P1,OP1(a)

)
hi2

(
P1,OP1(b)

)
.

Lemma 2.2.6. ([33, Lemma 4.2.1.]) There exists exactly 8 initialized ACM line bun-
dles on X, i.e. OX ,OX(1, 0),OX(0, 1),OX(1, 1),OX(1, 2),OX(2, 1),OX(1, 3),OX(3, 1).

Remark 2.2.7. In [33], the above lemma is proved through the characterization of
ACM divisors on del Pezzo surfaces as rational normal curves on X. However, in
this case, by using Künneth formula, this fact can be checked directly.

2.3 On the first chern class and zero–locus of general
sections

Let E be a vector bundle of rank 2 on X and c1, c2 its Chern classes. For the rest
of the paper, we denote by c1 = (a, b) and D = (c, d) that the first Chern class in
Pic(X) is OX(c1) = OX(a, b) and the divisor D is a general element of |OX(c, d)|.
We may assume a ≤ b by symmetry. For (x, y) a first Chern class or a divisor, we
say (x, y) is effective or (x, y) ≥ 0 if OX(x, y) has a global section, and this occurs
if and only if x, y ≥ 0.

Lemma 2.3.1. Let E be an initialized ACM bundle of rank 2 on X. Then E∨(2h)
is globally generated.
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Proof. Since KX = −h on X, we have hi
(
F, E∨((2−i)h)

)
= h2−i

(
F, E((i−3)h)

)
= 0,

i = 1, 2. This implies E∨(2h) is 0–regular in the sense of Castelnuovo–Mumford,
hence globally generated. ([31, Definition and Proposition of Lecture 14])

Remark 2.3.2. In particular, 4h− c1 = c1(E∨(2h)) is effective, forcing a, b ≤ 8.

Lemma 2.3.3. Let E be an indecomposable initialized ACM bundle of rank 2 on X.
If s ∈ H0

(
X, E

)
, then its zero locus (s)0 ⊆ X is non–empty.

Proof. Assume that (s)0 = ∅. Then sequence (2.1) becomes

0 −→ OX −→ E −→ OX(c1) −→ 0. (2.3)

This extension is non–split because E is indecomposable. Thus it gives a non–zero
element of the space Ext1

(
OX(c1),OX

)
= H1

(
X,OX(−c1)

)
, which is therefore non–

zero. Twisting the above exact sequence by OX(−c1) and using the formula for rank
2 vector bundles E∨ = E(−c1), we get

0 −→ OX(−c1) −→ E∨ −→ OX −→ 0.

Taking cohomology of the above exact sequence, we obtain a surjection H0
(
OX

)
→

H1
(
OX(−c1)

)
. Note that because of KX = −h and Serre duality, if E is ACM, so

is E∨. This implies that h1
(
X,OX(−c1)

)
= 1. Thanks to the Künneth formula, we

see that c1 is either (2, 0) or (0, 2). We may assume c1 = (0, 2).
Note that on P1 we have the dual of the Euler exact sequence

0 −→ OP1 −→ OP1(1)2 −→ OP1(2) −→ 0.

The pull–back of this sequence via the second projection P1 × P1 → P1 yields the
exact sequence

0 −→ OX −→ OX(0, 1)2 −→ OX(0, 2) −→ 0.

This is the same extension as (2.3) because h1
(
X,OX(−c1)

)
= 1. Hence E ∼=

OX(0, 1)2 and this is a contradiction because E is indecomposable.

Proposition 2.3.4. Let E be an indecomposable initialized ACM bundle of rank 2
on X with c1 = (a, b), and D the possible 1-dimensional part of the zero locus of a
general section of E. Then c1 −D is effective. In particular, c1 is effective.

Proof. Assume that c1 − D is not effective. The cohomogy of the sequence (2.2)
twisted by OX(c1−D) gives an exact sequence H0

(
OX(c1−D)

)
= 0 → H0

(
OE

)
→

H1
(
IE|X(c1 −D)

)
, which means that deg(E) ≤ h1

(
IE|X(c1 −D)

)
, where E is the

0-dimensional part of the zero locus of a general section of E . On the other hand, by
the cohomology of (2.1), h1

(
IE|X(c1 −D)

)
≤ h2

(
OX(D)

)
= h0

(
OX(−D − h)

)
= 0.

Hence deg(E) = 0 and E = ∅.
Therefore, by Lemma 2.3.3, we may assume D ̸= 0. The sequence (2.1) becomes

0 −→ OX(D) −→ E −→ OX(c1 −D) −→ 0.

Since D is effective, we can write OX(D) = OX(c, d) where c, d ≥ 0. The
cohomology of the above exact sequence twisted by OX

(
th
)
gives

H1
(
E(th)

)
= 0 → H1

(
OX(c1−D+th)

)
→ H2

(
OX(D+th)

)
= H0

(
OX(−D−(t+1)h)

)
.
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The last space is zero if t ≥ −1, hence h1
(
OX(c1 −D + th)

)
= 0 for t ≥ −1. Since

c1 −D is non–effective, we see by the Künneth formula that c1 −D + th for some
t ≥ −1 is one of the initialized ACM line bundles of Lemma 2.2.6. Hence we can
write OX(c1−D) = OX(e, f) where e, f ≤ 1 and one of them is negative since c1−D
is non–effective.

Since E is indecomposable, the above exact sequence defines a non–zero element
of H1

(
OX(D − (c1 − D))

)
= H1

(
OX(c − e, d − f)

)
. But the last space is zero by

the Künneth formula since we know c − e, d − f ≥ −1. This contradiction implies
that c1 −D is effective.

Before proceeding to the next proposition, we prepare some calculations. Let E
be an indecomposable initialized ACM vector bundle of rank 2 with Chern classes
c1, c2, then by Riemann–Roch theorem on X,

χ(E(th)) = 1

2
(c1

2 + (2t+ 1)c1h+ 2t(t+ 1)h2)− c2 + 2. (2.4)

Twisting the sequence (2.1) by O(−c1 + th) and using E∨ = E(−c1), we obtain an
exact sequence

0 −→ OX(D − c1 + th) −→ E∨(th) −→ IE|X(th−D) −→ 0. (2.5)

By the cohomology of the above exact sequence for t = 0, if we define

e(c1, D) :=

{
0 if c1 ̸= D,
1 if c1 = D,

then h2
(
E(−h)

)
= h0

(
E∨) = e(c1, D) because E ∪ D ̸= ∅ (see Lemma 2.3.3) and

c1 −D ≥ 0.
By Riemann–Roch (2.4), for c1 = (a, b),

χ(E(−h)) =
1

2
(c1

2 − c1h)− c2 + 2 (2.6)

= ab− a− b− c2 + 2.

If E is initialized and ACM, χ(E(−h)) = e(c1, D). Thus we have an equation

c2 = ab− a− b+ 2− e(c1, D) (2.7)

for a rank 2 indecomposable initialized ACM vector bundle E on X.
By the equation (2.4) and (2.7), we have

χ(E) = 2a+ 2b+ e(c1, D).

If E is initialized and ACM, by the cohomology of the sequence (2.5), H2
(
E
)
=

H0
(
E∨(−h)

)
= 0. Thus the above equation becomes

h0
(
E
)
= 2a+ 2b+ e(c1, D). (2.8)

Proposition 2.3.5. Let E be an indecomposable initialized ACM bundle of rank 2
on X with c1 = (a, b). Then one of the following assertions holds.
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1. 2h− c1 ≥ 0.

2. a+ b = 8. In this case E is an Ulrich bundle and D = 0.

Proof. First, we assume that H2
(
E(−2h)

)
= H0

(
E∨(h)

)
̸= 0. In this case, if E∨(th)

is initialized, then t ≤ 1. By Proposition 2.3.4, c1(E∨(th)) = 2th − c1 is effective
for some t ≤ 1. Then, since c1 is effective, we can take t = 1, hence (1) of the
proposition holds.

From now on, we assume that H2
(
E(−2h)

)
= 0 and prove that the case (2)

occurs. In this case E is 0-regular in the sense of Castelnuovo–Mumford, hence
globally generated. We may assume D = 0 because a general section of E is a
regular section (cf. [25, Example 12.1.11]). By Riemann–Roch,

χ(E(−2h)) =
1

2
(c1

2 − 3c1h+ 4h2)− c2 + 2 (2.9)

= 16− 2(a+ b) + e(c1, D).

By assumption, χ(E(−2h)) = 0. In particular, c1 cannot be (0, 0) and therefore
e(c1, D) = 0, a+ b = 8. Equation (2.8) implies H0

(
E
)
= 16 and E is Ulrich.

2.4 Bundles with D ̸= 0

Let E be an indecomposable initialized ACM bundle of rank 2 on X. Note that
c1−D ≥ 0 by Proposition 2.3.4. The purpose of this section is to show the following
proposition.

Proposition 2.4.1. If E is an indecomposable initialized ACM bundle of rank 2 on
X, the zero–locus of its general section is pure of codimension 2.

Proof. With reference to the proposition 2.3.5, let us assume that 2h − c1 ≥ 0 and
D ̸= 0. We can write c1 = (a, b), D = (c, d), 0 ≤ a, b, c, d ≤ 4. We will prove that
this case does not occur. In this case E is not globally generated, because otherwise
we could assume D = 0. Since E is initialized, by the cohomology of the sequence
(2.1), the same is true for OX(D). Thus one of c or d is 0 or 1.

By the cohomology of the sequence (2.1) twisted by OX(−2h), we have an exact
sequence H0

(
IE|X(c1 − D − 2h)

)
→ H1

(
OX(D − 2h)

)
→ 0. The cohomology

of the sequence (2.2) twisted by OX(c1 − D − 2h) gives an exact sequence 0 →
H0

(
IE|X(c1−D−2h)

)
→ H0

(
OX(c1−D−2h)

)
. But H0

(
OX(c1−D−2h)

)
= 0 by

the assumption that 2h−c1 ≥ 0 andD ̸= 0, hence we concludeH1
(
OX(D−2h)

)
= 0.

Therefore the cases D = (0, 4), (1, 4) (and their permutations) cannot occur.
If we moreover assume E = ∅, then the sequence (2.1) becomes

0 −→ OX(D) −→ E −→ OX(c1 −D) −→ 0.

On the quadric surface, an effective line bundle is globally generated. Since D and
c1 − D are effective, they are globally generated, hence the same is true for E ,
contradicting the hypothesis. Hence we see that if we assume D ̸= 0, then E is
non–empty.
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The degree of E coincides with the degree of c2(E(−D)) = c2 − c1D +D2. We
list all the possible cases of c1, D below. Since c2(E(−D)) ≥ 1 is necessary, only few
cases are actually possible. Note that we assumed that a ≤ b.

c1 D c2(E(−D)) c1 −D − 2h

(2, 3) (0, 1) 1 (−2,−2)

(2, 4) (0, 1) 2 (−2,−1)

(3, 3) (0, 1) 2 (−1,−2)

(3, 3) (1, 1) 2 (−2,−2)

(3, 4) (0, 1) 4 (−1,−1)

(3, 4) (0, 2) 1 (−1,−2)

(3, 4) (1, 0) 3 (−2, 0)

(3, 4) (1, 1) 2 (−2,−1)

(3, 4) (1, 2) 1 (−2,−2)

(4, 4) (0, 1) 6 (0,−1)

(4, 4) (0, 2) 2 (0,−2)

(4, 4) (1, 1) 4 (−1,−1)

(4, 4) (1, 2) 2 (−1,−2)

The cohomology of the sequence (2.1) twisted by OX(−h) yields

0 → H1
(
IE|X(c1 −D − h)

)
→ H2

(
OX(D − h)

)
= H0

(
OX(−D)

)
= 0.

Hence H1
(
IE|X(c1 −D− h)

)
= 0. By the cohomology of the sequence (2.2) twisted

by OX(c1 −D − 2h), we have an exact sequence

0 → H2
(
IE|X(c1 −D − 2h)

)
→ H2

(
OX(c1 −D − 2h)

)
→ 0.

Among the possible cases of c1 andD, if (c1, D) ̸=
(
(2, 3), (0, 1)

)
,
(
(3, 3), (1, 1)

)
,
(
(3, 4), (1, 2)

)
,

then H2
(
OX(c1 −D− 2h)

)
= 0. Hence in these cases, H2

(
IE|X(c1 −D− 2h)

)
= 0.

The vanishing of these cohomologies implies IE|X(c1 − D) is 0–regular in the
sense of Castelnuovo–Mumford, hence IE|X(c1−D) is globally generated, hence the
same holds for E , a contradiction.

If (c1, D) =
(
(2, 3), (0, 1)

)
,
(
(3, 3), (1, 1)

)
,
(
(3, 4), (1, 2)

)
, then IE|X(c1 − D) =

IE|X(2, 2). Since in these cases the degree of E is at most 2, IE|X(2, 2) is generated
by global sections (a zero dimensional subscheme of degree 2 in P3 is necessarily a
complete intersection of a line and a conic). By the sequence (2.1), E is also globally
generated, a contradiction.

We have seen that all the possible cases of pairs of c1 and D are excluded. Thus,
combined with Proposition 2.3.5, the proposition is proved.

2.5 Bundles with 2h− c1 ≥ 0

Let E be an indecomposable initialized ACM bundle of rank 2 on X with 2h−c1 ≥ 0.
In this case, D = 0 and E ̸= ∅ (by Lemma 2.3.3 and Proposition 2.4.1) and it follows
that c2 ≥ 1. We list all the possible cases of c1, c2 below. For each c1, we can compute
c2 by the formula (2.7). Note that c1 ≥ 0 by Proposition 2.3.4.

c1 (0, 0) (0, 1) (1, 1) (1, 2) (1, 3) (1, 4) (2, 2) (2, 3) (2, 4) (3, 3) (3, 4) (4, 4)

c2 1 1 1 1 1 1 2 3 4 5 7 10
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In the following, we investigate indecomposable initialized ACM bundles E with
such Chern classes by using Theorem 2.5.2 below.

Definition 2.5.1. Let G be a coherent sheaf on X. We say that a locally complete
intersection subscheme E ⊆ X of dimension 0 is Cayley–Bacharach (CB for short)
with respect to G if, for each E′ ⊆ E of degree deg(E) − 1, the natural morphism
H0

(
X, IE|X ⊗ G

)
→ H0

(
X, IE′|X ⊗ G

)
is an isomorphism.

The following theorem is in [28, Theorem 5.1.1], see also [13, Theorem 4.2].

Theorem 2.5.2. Let E ⊆ X be a locally complete intersection subscheme of dimen-
sion 0. Then there exists a vector bundle E of rank 2 on X with det(E) = L and
having a section s such that E = (s)0 if and only if E is CB with respect to L(−h).

2.5.1 The case c1 = (0, 0), c2 = 1

In this case, E is a point. A point is trivially CB with respect to OX(c1 − h) =
OX(−2,−2). Thus there exists a rank 2 vector bundle E and an exact sequence

0 −→ OX −→ E −→ IE|X −→ 0.

By the cohomology of the above exact sequence twisted by OX(−h), E is initialized.
By the cohomology of the above exact sequence twisted by OX(th), if t ≥ 0,

0 → H1
(
E(th)

)
→ H1

(
IE|X(th)

)
→ H2

(
OX(th)

)
= H0

(
OX(−(t+ 1)h)

)
= 0.

By the cohomology of (2.2) twisted by OX(th), if t ≥ 0, H1
(
IE|X(th)

)
= 0 because

E is a point. Therefore H1
(
E(th)

)
= 0, t ≥ 0. By Serre duality and E∨ = E ,

H1
(
E(−(t + 1)h)

)
= H1

(
E(th)

)
= 0, t ≥ 0. Hence H1

(
E(th)

)
= 0 for t ∈ Z, and E

is ACM.
If E is decomposable, we can write E ∼= OX(A) ⊕ OX(B). If we write A =

(x, y), B = (z, w), then by comparing Chern classes, x+z = 0, y+w = 0, xw+yz = 1.
Since there are no integer solutions for these equations, E is indecomposable.

Therefore, we have proved the following.

Theorem 2.5.3. There exist indecomposable initialized ACM vector bundles of rank
2 with Chern classes c1 = (0, 0), c2 = 1 on X. The zero–locus of their general section
is a point.

2.5.2 The case c1 = (0, 1), c2 = 1

In this case, E is a point. As in the previous case, a point is trivially CB with
respect to OX(c1 − h) = OX(−2,−1). Thus there exists a rank 2 vector bundle E
and an exact sequence

0 −→ OX −→ E −→ IE|X(0, 1) −→ 0.

By the cohomology of the above exact sequence twisted by OX(−h), E is initialized.
By the cohomology of the above exact sequence twisted by OX(th), if t ≥ 0,

0 → H1
(
E(th)

)
→ H1

(
IE|X(c1 + th)

)
→ H2

(
OX(th)

)
= H0

(
OX(−(t+ 1)h)

)
= 0.
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By the cohomology of (2.2) twisted by OX(th), if t ≥ 0, H1
(
IE|X(c1 + th)

)
= 0

because E is a point. Therefore H1
(
E(th)

)
= 0, t ≥ 0.

Recall the exact sequence (2.5) in this case.

0 −→ OX(−c1 + th) −→ E∨(th) −→ IE|X(th) −→ 0. (2.10)

Note that OX(−c1) is an ACM line bundle in this case. Hence, by the cohomology
of this exact sequence, If t ≥ 0,

0 → H1
(
E∨(th)

)
→ H1

(
IE|X(th)

)
→ H2

(
OX(−c1+th)

)
= H0

(
OX(c1−(t+1)h)

)
= 0

Again, because E is a point, H1
(
IE|X(th)

)
= 0 if t ≥ 0. Hence H1

(
E∨(th)

)
= 0, t ≥

0.
By Serre dualiy, we haveH1

(
E(−(t+1)h)

)
= H1

(
E∨(th)

)
= 0. HenceH1

(
E(th)

)
=

0 for t ∈ Z, and E is ACM.
If E is decomposable, we can write E ∼= OX(A) ⊕ OX(B). Since we have seen

that E is ACM, its direct summands OX(A),OX(B) are ACM line bundles. But
as in the previous subsection, by computation, we see (A,B) =

(
(0, 1), (1,−1)

)
up to permutations, and OX(1,−1) is not ACM, a contradiction. Therefore E is
indecomposable.

We have proved the following.

Theorem 2.5.4. There exist indecomposable initialized ACM vector bundles of rank
2 with Chern classes c1 = (0, 1), c2 = 1 on X. The zero–locus of their general section
is a point.

2.5.3 Uniqueness of the non-split extension

In the remaining cases, if there exists a rank 2 indecomposable initialized ACM
vector bundle E , then there is the exact sequence

0 −→ OX −→ E −→ IE|X(c1) −→ 0. (2.11)

Where c1 = (a, b), a ≥ 1, b ≥ 1 and c2 = deg(E) = ab − a − b + 2 by Formula (2.7)
and the vanishing of D.

Since E is initialized, by the cohomology of the above exact sequence twisted by
OX(−h), we have H0

(
IE|X(c1 − h)

)
= 0. By the cohomology of (2.2) twisted by

OX(c1 − h),

0 → H0
(
OX(c1 − h)

)
→ H0

(
OE

)
→ H1

(
IE|X(c1 − h)

)
→ 0.

The first space is of dimension h0
(
OX(a−2, b−2)

)
= (a−1)(b−1) = ab−a−b+1

(This is also true when a or b is 1). The second is h0
(
OE

)
= ab− a− b+ 2. There-

fore the last space is of dimension 1. This implies that dimExt1(IE|X(c1),OX) ∼=
h1

(
IE|X(c1+KX)

)
= 1. Thus E is the unique non–split extension of the above exact

sequence. This fact is used several times throughout the paper.
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2.5.4 The cases where E is decomposable

First, we consider the case c1 = (1, 1), c2 = 1. If there exists a rank 2 indecomposable
initialized ACM vector bundle E with these Chern classes, then there is the exact
sequence

0 −→ OX −→ E −→ IE|X(1, 1) −→ 0.

By the argument in the previous subsection, E is the unique non–split extension of
the above exact sequence.

On the other hand, a point E is always a complete intersection of lines L1 ∈
|OX(1, 0)|, L2 ∈ |OX(0, 1)|, and the rank 2 vector bundle OX(1, 0) ⊕ OX(0, 1) has
the same Chern classes as E .

Therefore OX(1, 0) ⊕ OX(0, 1) sits in the same exact sequence as above, hence
E ∼= OX(1, 0) ⊕ OX(0, 1) and E is decomposable. We conclude that there is no
indecomposable initialized ACM vector bundle of rank 2 with these Chern classes.

In the same way, we see that in the cases listed below, any initialized ACM vector
bundle of rank 2 with these Chern classes must be decomposable.

c1 c2 E
(1, 1) 1 OX(1, 0)⊕OX(0, 1)

(1, 2) 1 OX(0, 1)⊕OX(1, 1)

(1, 3) 1 OX(0, 1)⊕OX(1, 2)

(1, 4) 1 OX(0, 1)⊕OX(1, 3)

(2, 2) 2 OX(1, 1)⊕OX(1, 1)

(2, 3) 3 OX(1, 1)⊕OX(1, 2)

(2, 4) 4 OX(1, 2)⊕OX(1, 2)

(3, 3) 5 OX(1, 2)⊕OX(2, 1)

2.5.5 Toward the construction of vector bundles using Brill–Noether
theory

From now on, we will prove Lemma 2.5.7 to construct indecomposable initialized
ACM vector bundles of rank 2 via Theorem 2.5.2. For the proof, we use Brill–
Noether theory. A similar method appeared in [20], [19]. Let C be a smooth curve.
Recall that the Brill–Noether locus

W r
d (C) = {L ∈ Picd(C)|h0(C,L) ≥ r + 1}

has a scheme structure as a union of projective varieties.
We need two lemmas.

Lemma 2.5.5. ([2, Lemma 3.5 in Chapter IV]) Suppose g − d + r ≥ 0. Then no
component of W r

d (C) is entirely contained in W r+1
d (C).

Lemma 2.5.6. ([2, Lemma 3.3 in Chapter IV]) Suppose r ≥ d − g. Then every
component of W r

d (C) has dimension greater or equal to the Brill–Noether number

ρ(g, r, d) := g − (r + 1)(g − d+ r).

Let V be the image of the map σ : W 1
d−1(C)× C → W 1

d (C) defined by (L, p) →
L(p). The members of W 1

d (C) which have a base point are contained in V .
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Lemma 2.5.7. If d := ab − a − b + 2 ≥ 3 and C ∈ |OX(a, b)|, then the (W 1
d (C) \

W 2
d (C)) ∩ (W 1

d (C) \ V ) is open and non–empty, and its elements L ∼= OC(E) are
such that

1. E is CB with respect to OX(C − h).

2. h0
(
IE|X(C − h)

)
= 0.

Proof. In the following, let E be a divisor on a smooth curve C ∈ |OX(a, b)|, and
deg(E) := d = ab − a − b + 2 (cf. Formula (2.7)). Note that the genus of C is
g = ab− a− b+ 1, hence g = d− 1.

We have that g − d+ 1 = 0, hence by Lemma 2.5.5, no component of W 1
d (C) is

entirely contained in W 2
d (C). Thus, the subset W 1

d (C) \W 2
d (C) is non–empty, open

and dense in W 1
d (C), and its element L ∼= OC(E) satisfies h0

(
OC(E)

)
= 2.

V is the image of the map σ : W 1
d−1(C)×C → W 1

d (C) defined by (L, p) → L(p).
Since 1 = d−g, Lemma 2.5.6 implies that every component of W 1

d (C) has dimension
at least ρ(g, 1, d) = g = d− 1.

If L ∈ W 1
d−1(C), by Riemann–Roch and Serre duality, h0

(
L
)
= h0

(
L∨ ⊗ ωC

)
+

d − 1 − g + 1 = h0
(
L∨ ⊗ ωC

)
+ 1. The degree of the line bundle L∨ ⊗ ωC is equal

to −(d − 1) + 2g − 2 = d − 3. Thus W 1
d−1(C) ∼= W 0

d−3(C), and the latter is of
dimension d−3, because W 0

d−3(C)\W 1
d−3(C) is isomorphic to an open subset of the

(d− 3)-fold symmetric product of C. Therefore W 1
d−1(C)×C is of dimension d− 2,

and its image V is properly contained in every component of W 1
d (C).

Thus the intersection of the open dense subsets (W 1
d (C) \ W 2

d (C)) ∩ (W 1
d (C) \

V ) is non–empty, and its element L ∼= OC(E) is base point free which satisfies
h0

(
OC(E)

)
= 2.

We will prove that L ∼= OC(E) satisfies (1) and (2) of Lemma 2.5.7. We have
the following exact sequence

0 −→ OX(−C) −→ IE|X −→ OC(−E) −→ 0, (2.12)

because IC|X ∼= OX(−C), IE|C ∼= OC(−E). Twisting by OX(C − h), we obtain

0 −→ OX(−h) −→ IE|X(C − h) −→ OC(−E)⊗OX(C − h)|C −→ 0.

Taking cohomology, we have

h0
(
IE|X(C − h)

)
= h0

(
OC(−E)⊗OX(C − h)|C

)
= h0

(
OC(−E)⊗OX(C +KX)|C

)
= h0

(
OC(−E)⊗KC

)
(By the adjunction formula on C)

= h1
(
OC(−E)⊗KC

)
− d+ 2g − 2− g + 1 (By Riemann–Roch)

= h0
(
OC(E)

)
− d+ g − 1 (By Serre duality)

= h0
(
OC(E)

)
− 2. (g = d− 1)

If E defines a base point free complete linear system of dimension 1 on C,
then h0

(
OC(E)) = 2 and for each E′ ⊆ E of degree deg(E) − 1, h0

(
OC(E

′)
)
=

h0
(
OC(E)

)
−1. By the above equalities, we deduce h0

(
IE|X(C−h)

)
= h0

(
IE′|X(C−

h)
)
= 0 and E is CB with respect to OX(C − h). Hence (1) and (2) hold.

15



2.5.6 The case c1 = (3, 4), c2 = 7

Let E be an indecomposable initialized ACM bundle of rank 2 with c1 = (3, 4), c2 = 7.
By Proposition 2.4.1, the zero–locus E of its general section is pure of codimension
2.

We will see that h1
(
E(−2h)

)
= 0 is equivalent to h0

(
IE|X(h)

)
= 2. By Riemann–

Roch (cf. (2.9)),
χ(E(−2h)) = 16− 2(3 + 4) = 2.

Since E is initialized and by Serre duality, χ(E(−2h)) = h0
(
E∨(h)

)
− h1

(
E∨(h)

)
.

By the cohomology of the exact sequence (2.5), when t = 1,

0 → H0
(
E∨(h)

)
→ H0

(
IE|X(h)

)
→ 0.

Hence h1
(
E(−2h)

)
= h1

(
E∨(h)

)
= h0

(
E∨(h)

)
− 2 = h0

(
IE|X(h)

)
− 2, so that

h1
(
E(−2h)

)
= 0 is equivalent to h0

(
IE|X(h)

)
= 2. Hence, since E is ACM in

this case, h0
(
IE|X(h)

)
= 2 holds and E is contained in a pencil of hyperplanes.

If E is a complete intersection of curves C1 ∈ |OX(2, 1)| and C2 ∈ |OX(1, 3)|,
then OX(2, 1) ⊕ OX(1, 3) sits in the same exact sequence as (2.11). Hence E ∼=
OX(2, 1)⊕OX(1, 3), contradicting the hypothesis.

We have seen that the statement (3) of the Main Theorem holds in this case.
In what follows, we will prove the existence of indecomposable initialized ACM

vector bundles of rank 2 with these Chern classes. The result is as follows.

Theorem 2.5.8. There exist indecomposable initialized ACM vector bundles of rank
2 with Chern classes c1 = (3, 4), c2 = 7 on X. The zero–locus E of their general sec-
tion defines a base point free linear system of dimension 1 on a curve C ∈ |OX(3, 4)|
and satisfies h0

(
IE|X(2, 2)

)
= 2, h0

(
IE|X(2, 1)

)
= 0.

Proof. By Lemma 2.5.7 (1), there exists a vector bundle E and an exact sequence

0 −→ OX −→ E −→ IE|X(3, 4) −→ 0,

Where E ⊂ C ∈ |OX(3, 4)| is of degree 7. We will prove that E is initialized
ACM and indecomposable. By Lemma 2.5.7 (2) and the cohomology of the above
sequence, E is initialized.

The cohomology of the above exact sequence twisted by OX(th) gives 0 →
H1

(
E(th)

)
→ H1

(
IE|X(c1 + th)

)
→ 0, t ≥ 0. On the other hand, the cohomol-

ogy of the exact sequence (2.12) twisted by OX(c1 + th) gives, for t ≥ 0,

h1
(
IE|X(c1 + th)

)
= h1

(
OC(−E)⊗OX(c1 + th)|C

)
= h0

(
OC(E)⊗OX(−c1 − th)|C ⊗ ωC

)
.

Note that deg(E) = 7, the genus of C = 6. Thus the degree of the line bundle
in the last cohomology is 7 − 24 − 6t − 8t + 12 − 2 = −7 − 14t. For t ≥ 0, the last
formula is negative. Hence, H1

(
E(th)

)
= 0 for t ≥ 0.

Note that OX(3, 4) is an ACM line bundle. In this case, by the cohomology of
the exact sequence (2.5), We have 0 → H1

(
E∨(th)

)
→ H1

(
IE|X(th)

)
.

The cohomology of the exact sequence (2.12) twisted by OX(th) gives, for t ≥ 1,

h1
(
IE|X(th)

)
= h1

(
OC(−E)⊗OX(th)|C

)
= h0

(
OC(E)⊗OX(−th)|C ⊗ ωC

)
.
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The degree of the line bundle in the last cohomology is 7−6t−8t+12−2 = 17−14t.
The last formula is negative if t ≥ 2. Hence, H1

(
E∨(th)

)
= H1

(
E(−(t+1)h)

)
= 0

for t ≥ 2
We compute h1

(
E(−2h)

)
in what follows. By the same argument as in the

beginning of this subsection, h1
(
E(−2h)

)
= 0 if and only if h0

(
IE|X(h)

)
= 2.

Lemma 2.5.9. There exists a zero dimensional subscheme E of degree 7 on a curve
C ∈ |OX(3, 4)| such that for E the conditions (1), (2) of Lemma 2.5.7 hold and
h0

(
IE|X(2, 2)

)
= 2.

Proof. By the cohomology of the exact sequence (2.12) twisted by OX(2, 2),

0 → H0
(
IE|X(2, 2)

)
= H0

(
OC(−E)⊗OX(2, 2)|C

)
→ 0.

We write the line bundle OC(h) := OX(2, 2)|C . This is an effective divisor of degree
14 on C, hence OC(−E)⊗OC(h) is of degree 7.

By Riemann–Roch on C, if L is a line bundle of degree 7 on C, h0
(
L∨⊗OC(h)

)
≥

7−6+1 = 2. Therefore, i : L → L∨⊗OC(h) maps W 1
d (C) isomorphically onto itself.

Moreover, i is an involution. Thus i−1(W 1
7 (C) \W 2

7 (C)) is a non–empty open dense
subset. Hence the intersection (W 1

7 (C)\W 2
7 (C))∩(W 1

7 (C)\V )∩i−1(W 1
7 (C)\W 2

7 (C))
is non–empty and its element contains a divisor with the desired properties.

Proof of Theorem 2.5.8, continued. Let E be the zero dimensional subscheme on a
curve C that has the properties described in the lemma and E the corresponding
vector bundle obtained via Theorem 2.5.2 from E. We have shown h1

(
E(th)

)
= 0

for t ̸= −1.
Finally, we prove h1

(
E(−h)

)
= 0. For later use, we will show that if E is a rank

2 initialized vetor bundle with Chern classes c1 = (a, b) ≥ 0, c2 = ab− a− b+2, and
the zero–locus of its general section is pure of codimension 2, then h1

(
E(−h)

)
= 0.

By the exact sequence (2.5) in this case, we have that h2
(
E(−h)

)
= h0

(
E∨) = 0.

Since E is initialized, By Riemann–Roch (cf. (2.6)),

χ(E(−h)) = −h1
(
E(−h)

)
(2.13)

=
1

2
(c1

2 − 2c2 − c1h) + 2

= ab− a− b− c2 + 2

= 0.

Hence h1
(
E(−h)

)
= 0.

We have proved that the rank 2 vector bundle E we constructed is initialized and
ACM. We will prove that E is indecomposable. If it is decomposable, by comparing
Chern classes, the unique possibility is E ∼= OX(2, 1) ⊕OX(1, 3). In this case, E is
a complete intersection of divisors A ∈ |OX(2, 1)| and B ∈ |OX(1, 3)|.

Therefore, if we can show that E as in Lemma 2.5.9 moreover satisfiesH0
(
IE|X(2, 1)

)
=

0, then there does not exist a divisor A ∈ |OX(2, 1)| which contains E, and E can
not be a complete intersection of divisors A ∈ |OX(2, 1)| and B ∈ |OX(1, 3)|. Then
the vector bundle E obtained via Theorem 2.5.2 from E is indecomposable.

Thus we have to seek for a divisor E of degree 7 on C which satisfies the following
conditions.
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1. E is CB with respect to OX(1, 2).

2. h0
(
IE|X(1, 2)

)
= 0.

3. h0
(
IE|X(2, 2)

)
= 2.

4. h0
(
IE|X(2, 1)

)
= 0.

Notice that (1) and (2) are as in Lemma 2.5.7 and (3) comes from Lemma 2.5.9.
We start from a zero dimensional subscheme E of X which satisfies (4). Since

h0
(
OX(2, 1)

)
= 6, there exists a zero dimensional subscheme E of degree 7 which is

not contained in any divisor A ∈ |OX(2, 1)|, i.e., satisfying (4), and since h0
(
OX(3, 4)

)
=

20, there is a smooth curve C ∈ |OX(3, 4)| which contains E. By Riemann-Roch,
if a divisor E on C is of degree 7, H0

(
OC(E)

)
≥ 7 − 6 + 1 = 2. Hence OC(E) is

contained in W 1
7 (C). By the cohomology of the exact sequence (2.12) twisted by

OX(2, 1), we obtain H0
(
IE|X(2, 1)

)
= H0

(
OC(−E)⊗OX(2, 1)|C

)
, hence the latter

space is also zero.
Therefore, we have seen that there is an element L0 ∈ W 1

7 (C) which satisfies
H0

(
L∨
0 ⊗ OX(2, 1)|C

)
= 0. Since vanishing of cohomology is an open condition, it

then follows that if W is any irreducible component of W 1
7 (C) containing L0, the

divisor E ∈ |L| in the general member L of W satisfies the condition (4). Then, by
the proof of Lemma 2.5.9, since L is general, E satisfies also the conditions (1), (2),
(3). Hence this E has the desired properties.

2.5.7 The case c1 = (4, 4), c2 = 10

In this case, E is an Ulrich bundle by Proposition 2.3.5. This will be treated in the
next section.

2.6 Ulrich bundles

Ulrich bundles on del Pezzo surfaces were investigated in [14]. The classification
result is already given by a different method, but we prove it through the same
method as in the previous section.

In this section, we use the alternative characterization of Ulrich Bundles, which
is used as the standard definition of Ulrich sheaves in most papers.

Proposition 2.6.1. ([21, Proposition 2.2.]) Let E be a vector bundle of rank 2 on
X. Then the following are equivalent.

1. E is Ulrich.

2. H1
(
E(−h)

)
= H2

(
E(−2h)

)
= H1

(
E(−2h)

)
= H0

(
E(−h)

)
= 0.

By Proposition 2.3.5, if c1 = (a, b), then a + b = 8. By Lemma 2.3.3, c2 ≥ 1
is necessary. Note that c2 = ab − a − b + 2 by Formula (2.7) and the vanishing of
D. We list the possible Chern classes of a rank 2 indecomposable Ulrich bundle E
below.

c1 (1, 7) (2, 6) (3, 5) (4, 4)

c2 1 6 9 10
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Let E be an Ulrich bundle with the prescribed Chern classes. By Proposition
2.4.1, there is an exact sequence

0 −→ OX −→ E −→ IE|X(c1) −→ 0. (2.14)

By the discussion of subsection 2.5.3, E is the unique non–split extension of the
above exact sequence.

2.6.1 The case c1 = (1, 7), c2 = 1

Let E be an initialized vector bundle of rank 2 with the prescribed Chern classes and
suppose that the exact sequence as above exists. In this case, E has the same Chern
classes as OX(1, 6) ⊕ OX(0, 1). The zero dimensional subscheme E of degree 1 is
always realized as a complete intersection of a divisor in |OX(1, 6)| and a divisor in
|OX(0, 1)|. Therefore, OX(1, 6)⊕OX(0, 1) sits in the same extension as E , hence E ∼=
OX(1, 6)⊕OX(0, 1). Note that in the discussion of subsection 2.5.3, the assumption
that E is initialized is the only needed (E need not be ACM). Hence, there is no
indecomposable Ulrich vector bundle of rank 2 with these Chern classes.

2.6.2 The case c1 = (2, 6), c2 = 6

Let E be an initialized vector bundle of rank 2 with the prescribed Chern classes
and suppose that the exact sequence as above exists. As in the previous subsection,
we see E ∼= OX(1, 3) ⊕ OX(1, 3). Hence, there is no indecomposable Ulrich vector
bundle of rank 2 with these Chern classes.

2.6.3 The case c1 = (3, 5), c2 = 9

Let E be an indecomposable Ulrich bundle of rank 2 with c1 = (3, 5), c2 = 9. By
Proposition 2.4.1, the zero–locus E of its general section is pure of codimension 2.

By the cohomology of the exact sequence (2.5) for t = 1,

0 → H0
(
E∨(h)

)
→ H0

(
IE|X(h)

)
→ 0.

By Proposition 2.6.1, h0
(
E∨(h)

)
= h2

(
E(−2h)

)
= 0, so we have h0

(
IE|X(h)

)
= 0,

hence E is non–degenerate. This is the statement (4) of the Main Theorem.
In what follows, we will prove the existence of indecomposable Ulrich vector

bundles of rank 2 with these Chern classes. The result is as follows.

Theorem 2.6.2. There exist indecomposable initialized ACM vector bundles of rank
2 with Chern classes c1 = (3, 5), c2 = 9 on X, and every such vector bundle is Ulrich.
The zero–locus E of their general section defines a base point free linear system of
dimension 1 on a curve C ∈ |OX(3, 5)| and satisfies h0

(
IE|X(2, 2)

)
= 0.

Proof. By Lemma 2.5.7 (1), there is a rank 2 vector bundle E and an exact sequence

0 −→ OX −→ E −→ IE|X(3, 5) −→ 0.

We will check the vanishing of cohomologies. By Lemma 2.5.7 (2), E is initialized.
Hence h0

(
E(−h)

)
= 0.

h1
(
E(−h)

)
= 0 is also true by the computation (2.13).
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By Riemann–Roch (cf. (2.9)),

χ(E(−2h)) = −h1
(
E(−2h)

)
+ h2

(
E(−2h)

)
= 16− 2(3 + 5) = 0.

Hence h1
(
E(−2h)

)
= h2

(
E(−2h)

)
.

Finally, we will compute h2
(
E(−2h)

)
= h0

(
E∨(h)

)
= 0. By the discussion at the

beginning of this subsection, this is equivalent to h0
(
IE|X(h)

)
= 0

Thus we have to seek for a divisor E of degree 9 on C which satisfies the following
conditions.

1. E is CB with respect to OX(1, 3).

2. h0
(
IE|X(1, 3)

)
= 0.

3. h0
(
IE|X(2, 2)

)
= 0.

Notice that (1) and (2) are as in Lemma 2.5.7.
To achieve this, we need the following lemma.

Lemma 2.6.3. The curve C ∈ |OX(3, 5)| is a non–degenerate curve in P8

Proof. By the exact sequence

0 −→ IX|P8 −→ IC|P8 −→ IC|X −→ 0,

since X is non–degenerate and ACM, twisting by OX(h) and taking cohomology, we
have

h0
(
IC|P8(h)

)
= h0

(
IC|X(h)

)
= h0

(
OX(−C + h)

)
= h0

(
OX(−1,−3)

)
= 0

This implies that C is non–degenerate.

Proof of Theorem 2.6.2, continued. By the above lemma, we can take a zero dimen-
sional subscheme E ⊂ C of degree 9 which spans P8. Then, since E is not contained
in a hyperplane, H0

(
IE|X(2, 2)

)
= 0.

We now use again a little Brill-Noether theory on C. By Riemann-Roch, if a
divisor E in C is of degree 9, h0

(
OC(E)

)
≥ 9−8+1 = 2. Hence OC(E) is contained

in W 1
9 (C). By the cohomology of the exact sequence (2.12) twisted by OX(h), we

obtain H0
(
IE|X(2, 2)

)
= H0

(
OC(−E + h)

)
, hence the latter space is also zero.

Therefore, we have seen that there is an element L0 ∈ W 1
9 (C) which satisfies

H0
(
L∨
0 (h)

)
= 0. Since vanishing of cohomology is an open condition, it then follows

that if W is any irreducible component of W 1
9 (C) containing L0, then for the general

member L in W the divisor E ∈ |L| satisfies the above three conditions.
For such a divisor E and a vector bundle E obtained via Theorem 2.5.2 from E,

we thus obtain H2
(
E(−2h)

)
= 0.

Therefore we conclude that E is an Ulrich bundle by Proposition 2.6.1.
If it is decomposable, we can write E ∼= OX(A)⊕OX(B), where the line bundles

OX(A) and OX(B) are ACM. But, by comparing Chern classes, the possibilities are
(A,B) =

(
(1, 4), (2, 1)

)
,
(
(0, 3), (3, 2)

)
up to permutations. Since these line bundles

are not both ACM, this is impossible and the vector bundle E is indecomposble.
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2.6.4 The case c1 = (4, 4), c2 = 10

Let E be an indecomposable initialized ACM bundle of rank 2 with c1 = (4, 4), c2 =
10. By Proposition 2.4.1, the zero–locus E of its general section is pure of codimen-
sion 2.

By the same argument as in the beginning of the previous subsection, h0
(
IE|X(h)

)
=

0 and E is non–degenerate.
If E is a complete intersection of curves C1 ∈ |OX(1, 3)| and C2 ∈ |OX(3, 1)|,

then OX(1, 3) ⊕ OX(3, 1) sits in the same exact sequence as (2.14). Hence E ∼=
OX(1, 3) ⊕ OX(3, 1), contradicting the hypothesis. Hence the statement (5) of the
Main Theorem holds.

In what follows, we will prove the existence of indecomposable Ulrich vector
bundles of rank 2 with these Chern classes. The result is as follows.

Theorem 2.6.4. There exist indecomposable initialized ACM vector bundles of rank
2 with Chern classes c1 = (4, 4), c2 = 10 on X and every such vector bundle is Ulrich.
The the zero–locus E of their general section defines a base point free linear system
of dimension 1 on a curve C ∈ |OX(4, 4)| and satisfies h0

(
IE|X(1, 3)

)
= 0.

Proof. By Lemma 2.5.7 (1), there is a rank 2 vector bundle E and an exact sequence

0 −→ OX −→ E −→ IE|X(4, 4) −→ 0.

We will check the vanishing of cohomologies. By Lemma 2.5.7 (2), E is initialized.
Hence H0

(
E(−h)

)
= 0.

H1
(
E(−h)

)
= 0 is also true by the computation (2.13).

Since E∨ ∼= E(−2h), H2
(
E(−2h)

)
= H0

(
E(−h)

)
= 0 and H1

(
E(−2h)

)
=

H1
(
E(−h)

)
= 0. By Proposition 2.6.1, E is an Ulrich bundle.

If it is decomposable, by comparing Chern classes, the unique possibility is E ∼=
OX(1, 3) ⊕ OX(3, 1). Therefore, if E is not a complete intersection of a divisor in
|OX(1, 3)| and a divisor in |OX(3, 1)|, then E is indecomposable.

Thus we have to seek for a divisor E of degree 10 on C which satisfies the
following conditions.

1. E is CB with respect to OX(2, 2).

2. h0
(
IE|X(2, 2)

)
= 0.

3. h0
(
IE|X(1, 3)

)
= 0.

Notice that (1) and (2) are as in Lemma 2.5.7.
This is possible, and the discussion is almost the same as the one in subsection

2.5.6, hence we do not repeat it here.
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Chapter 3

Globally generated vector
bundles on a projective space
blown up along a line

3.1 Introduction

Let Pn be the n-dimensional projective space over an algebraically closed field k
of characteristic 0. Globally generated vector bundles on projective varieties are
fundamental objects in algebraic geometry. However, even in the case of Pn, their
classification for small first Chern class has only been studied fairly recently [1, 29,
36, 37]. Subsequently, Ballico, Huh and Malaspina investigated globally generated
vector bundles on projective varieties such as smooth quadric threefolds [6], complete
intersection Calabi-Yau threefolds [7], Segre threefolds [8, 9]. Moreover, Ballico
studied the case of projective space blown up at finitely many points [5].

In this article, we consider similar questions on the projective space blown up
along a line (we follow the notation of [18]). Let X be the projective space blown
up along a line, H̃ the pull-back of a hyperplane, E the exceptional divisor. Our
main result is the classification of globally generated vector bundles on X with
c1 = 2H̃ − E(= ξ + f , cf. the next section), up to trivial factor.

Main Theorem. Let π : X ∼= P(OP1(1)⊕O2
P1) → P1 be the natural projection and

let ξ and f be the classes of OP(OP1 (1)⊕O2
P1

)(1) and π∗OP1(1) respectively. Let E be

a globally generated vector bundle of rank r at least 2 on X with c1 = ξ + f and
c2 = αξ2 + βξf . If E has no trivial factor, then the possible rank r and (s;α, β) are
as follows (s is the number of connected components of associated curve to E via the
Hartshorne-Serre correspondence modulo trivial factor):

1. r = 2, (1; 1, 0);

2. r = 2, (1; 0, 1): In this case E ∼= OX(ξ)⊕OX(f);

3. r = 3, 4, (1; 1, 1);

4. r = 2, 3, (2; 0, 2);

5. 3 ≤ r ≤ 6, (1; 1, 2).
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Furthermore, there exists a globally generated vector bundle in each of these cases.

In fact, we present a description of the possible c2 as represented by the associated
curves (cf. Section 3).

Remark 3.1.1. The classification of globally generated vector bundles on Pn with
c1 = 2 is the main result of [36], and the classification of globally generated vector
bundles on P3 blown up at a point with c1 = 2H̃ − E is one of the main results of
[5] (cf. Theorem 3.2. in loc. cit).

3.2 Preliminaries

Let σ : X → P3 be the projective space blown up along a line R, and let H̃, E, ξ,
and f be as in Introduction. Thus ωX

∼= OX(−3ξ−f), and we have an isomorphism

A(X) ∼= Z[ξ, f ]/(f2, ξ3 − ξ2f),

so that ξ3 = ξ2f are the classes of a point.
Trivially π∗OP1(1) is globally generated. On the other hand, since OP1(1)⊕O2

P1

is globally generated, it follows that the same holds for OP(OP1 (1)⊕O2
P1

)(1). In fact,

by [18, Remark 4.7.], OX(aξ + bf) is globally generated if and only if a, b ≥ 0.
Moreover, OX(ξ) ∼= σ∗OP3(1) = OX(H̃).

Since the normal bundle of the blown up line R inside P3 is NR|P3
∼= OP3(1)2 ,

it follows that E = σ−1(R) ∼= P1 × P1 and σ induces an isomorphism X \ σ−1(R) ∼=
P3 \R. Let H ⊆ P3 be a plane through R. On the one hand, σ−1(H) is in the class
of ξ. On the other hand, σ−1(H) is the union of E with the strict transform of H.
Such a strict transform is in the linear system |f |, hence E is the unique element in
|ξ − f |.

Let E be a globally generated vector bundle of rank r on X with the first Chern
class c1. Then it fits into the exact sequence

0 → Or−1
X → E → IC(c1) → 0, (3.1)

where C is a smooth curve on X by [29, Section 2. G.]. The associated curve C
represents the second Chern class c2 of E .

For the construction of vector bundles as in (3.1), we use [3, Theorem 1.1.] for
L := OX(c1). Note that for a smooth curve C,

∧
C :=

∧2N⊗L∨|C ∼= ωC⊗ω∨
X⊗L∨|C .

By the discussion in the beginning of [3] (cf. also [7, Theorem 2.8.]), for the existence
of a globally generated vector bundle of rank r,

∧
C must be globally generated (and

trivial if r = 2), and an (r − 1)-dimensional vector subspace of h0(
∧

C) corresponds
to a globally generated vector bundle of rank r without trivial factor, i.e. with no
factor isomorphic to OX . Conversely if

∧
C is globally generated, we can construct

a vector bundle E by [3, Theorem 1.1.] and E is globally generated if and only if
IC(c1) is globally generated.

Proposition 3.2.1. ([34, Proposition 1]) Let E be a globally generated vector bundle
of rank r on a reduced irreducible projective variety V over k such that h0(E(−c1)) ̸=
0. Then we have

E ∼= Or−1
V ⊕OV (c1).
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By this proposition, when c1 = 0 the only globally generated vector bundle of
rank r on X is Or

X .

Proposition 3.2.2. Let E be a globally generated vector bundle of rank at least 2 on
X with c1 = aξ, a ≥ 1, σ : X → P3 the blow up map. Then there exists a globally
generated vector bundle F on P3 such that E = σ∗F .

Proof. Since E ∈ |ξ − f |, we have ξ ·E = ξ(ξ − f) = ξ2 − ξf . By [18, Remark 3.1.],
this is a class of a line, say N ∈ |OP1×P1(1, 0)|, in E ∼= P1 × P1. Moreover, since
a general plane H ⊆ P3 intersects R at a point, ξ2 − ξf is the class of a fiber of
σ|E : E ∼= P1 × P1 → P1.

Let E be a globally generated vector bundle with c1 = aξ and C be its associated
curve. Assume that C ∩ E is non-empty. Since IC∩E(aξ)|E ∼= IC∩E|P1×P1(a, 0)
is globally generated, C ∩ E is a disjoint union of lines. Hence C contains a line
N ∈ |OP1×P1(1, 0)| as a connected component.

Now, consider the line bundle ω∨
X⊗L∨|N = OX((3−a)ξ+f)|N , which has degree

1 on N . Since N is rational,
∧

N is not globally generated. This contradicts the fact
that C is the associated curve of E .

We conclude that C ∩ E = ∅. Then C ∼= σ(C). IC|X(aξ) is globally generated
if and only if Iσ(C)|P3(a) is globally generated, and

∧
C

∼= ωC ⊗ ω∨
X ⊗ L∨|C =

ωC ⊗OX(4H̃ − E)⊗OX(−aH̃)|C ∼= ωσ(C) ⊗OP3(4)⊗OP3(−a)|σ(C)
∼=

∧
σ(C).

Therefore, there exists a globally generated vector bundle F on P3 with c1 =
OP3(a), such that E ∼= σ∗F .

Proposition 3.2.3. Let E be a globally generated vector bundle of rank r at least 2
on X with c1 = bf, b ≥ 1, π : X → P1 the projective bundle map. Then there exists
a globally generated vector bundle F on P1 such that E = π∗F .

Proof. Let E be a globally generated vector bundle with c1 = bf , and F := π−1(p) ∼=
P2 be a fiber. Then the restricted bundle E|F is a globally generated vector bundle
on P2 with c1 = 0. By Proposition 3.2.1, E|F ∼= Or

P2 . The base-change theorem [32,
page 11] implies π∗E is locally free of rank r.

The natural map π∗π∗E → E is surjective since E is globally generated and,
being a surjective morphism between two vector bundles of the same rank, it is an
isomorphism. By the theorem of Grothendieck [32, Theorem 2.1.1.], π∗E is a direct
sum of line bundles and hence globally generated since its pull-back must be globally
generated.

Let E be a globally generated vector bundle with c1 = aξ + bf . If c1 = aξ,
E is a pull-back of a globally generated vector bundle on P3 by σ (Proposition
3.2.2). If c1 = bf , E is a pull-back of a globally generated vector bundle on P1 by
π (Proposition 3.2.3). Thus, in these cases, the classification of globally generated
vector bundles on X is reduced to the classification of globally generated vector
bundles on Pn.

3.3 Proof of the Main Theorem

Lemma 3.3.1. Let E be a globally generated vector bundle on X with c1 = ξ + bf ,
b ≥ 0 and π : X → P1 be the projective bundle map. Let the associated curve of E be
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C . If C has a connected component which is not in a fiber of π, then C is connected
and rational.

Proof. Let F := π−1(p) ∼= P2 be a fiber. Since IC(ξ + bf) is globally generated,
IC(ξ + bf)|F ∼= IC∩F |P2(1) is globally generated.

Let Ci be a connected component of C which is not in a fiber of π. Since
IC∩F |P2(1) is globally generated, deg(Ci∩F ) = 1. Hence π|Ci : Ci → P1 is of degree 1
and Ci is rational. If there exists another component Cj not contained in a fiber, then
there exists a fiber F such that C ∩F is 0-dimensional and deg(C ∩F ) ≥ 2. Then, a
line through two points of C ∩F is in the base locus of IC∩F |P2(1). This contradicts
the fact that IC∩F |P2(1) is globally generated. Hence at most one component is not
in a fiber of π. If there exists another component Cj contained in a fiber F , then
C ∩F contains Cj and a point of Ci ∩F not on Cj . Again, this contradicts the fact
that IC∩F |P2(1) is globally generated, and so C = Ci is connected.

Now, let E be a globally generated vector bundle of rank r at least 2 on X with
c1 = ξ + f , C =

∪s
i=1Ci its associated curve.

Remark 3.3.2. (cf. [8, Remark 2.4, 2.7.], [9, Remark 2.7.]) By assumption IC(ξ+f)
is globally generated. Let us take two general divisors M1,M2 ∈ |IC(ξ + f)|. Set
Y := M1 ∩M2. By the Bertini theorem we have Y = C ∪D with either D = ∅ or
D a reduced curve containing no component of C and smooth outside C ∩D. Each
connected component Ci of C appears with multiplicity one in Y , because affixing
points pi ∈ Ci for every i, we may find a divisor T ∈ |IC(ξ + f)| not containing the
tangent line of Ci at pi. Y is also connected since we have h0(OY ) = 1 by vanishing
of cohomologies (by [18, Proposition 4.1.]) and a Koszul complex standard exact
sequence. The adjunction formula gives ωY

∼= OY (−ξ + f) and so we have

2pa(Y )− 2 = deg(ξ + f)(ξ + f)(−ξ + f)

= deg(−ξ3 − ξ2f)

= −2

Hence pa(Y ) = 0 and Y is rational.

Lemma 3.3.3. If C has a connected component in E, then C is contained in E and
its class is ξ2 or ξf .

Proof. By assumption, IC∩E(ξ + f)|E is globally generated. By the adjunction
theorem on E, ωE = OP1×P1(−2,−2) = OX(−4H̃+2E)|E = OX(−2ξ−2f)|E . Hence
IC∩E(ξ + f)|E ∼= IC∩E(2H̃ − E)|E ∼= IC∩E,P1×P1(1, 1) and a curve in |OP1×P1(1, 1)|
has the class (ξ + f)(ξ − f) = ξ2.

Next, let us review the explicit description of X, the projective space P3 blown
up along a line R. Let x0, x1, x2, x3 be the coordinates of P3 and let the line R be
defined by the vanishing of x0, x1. Let y0, y1 be the coordinates of P1. Then, X is
the closed subscheme in P3 × P1 defined by the equation x0y1 = x1y0.

Let H ⊆ P3 be a plane. If H does not contain R, it intersects R at a point and
its strict transform (pull-back) in X intersects E in a line of class ξ2 − ξf , which is
the fiber of σ|E : E ∼= P1 × P1 → P1 at the point H ∩R.

If H contains R, we can write H as a0x0 + a1x1 = 0, where a0, a1 ∈ k, and the
class of its strict transform in X is f . SinceX is defined by the equation x0y1 = x1y0,
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the strict transform of H in X intersects E at the point (x0, x1, x2, x3; y0, y1) =
(0, 0, x2, x3;−a1, a0), which is a point on a line in the section of σ|E : E ∼= P1×P1 →
P1, with class ξf . Each strict transform of a hyperplane containing R intersects E
in each line in the linear system |OP1×P1(0, 1)|.

Let Q ⊆ P3 be an irreducible quadric cone containing R. Then the strict trans-
form of Q in X intersects E in the union of the line in |OP1×P1(1, 0)| corresponding to
the fiber of σ|E : E ∼= P1 ×P1 → P1 at the vertex of Q and the line in |OP1×P1(0, 1)|
corresponding to the tangent plane of Q along R.

Let Q ⊆ P3 be an irreducible smooth quadric surface containing R. We can write
Q as a00x

2
0 + a01x0x1 + a11x

2
1 + f(x2, x3)x0 + g(x2, x3)x1 = 0, where f(x2, x3) and

g(x2, x3) are linear polynomials in x2, x3. Hence the strict transform of Q in X inter-
sects E in the coordinates (x0, x1, x2, x3; y0, y1) = (0, 0, x2, x3;−g(x2, x3), f(x2, x3)).
Since Q is smooth, f and g are nonzero, so this intersection is a rational curve in
the linear system |OP1×P1(1, 1)|.

Suppose C contains a line N ∈ |OP1×P1(1, 0)| with class ξ2−ξf in E. The degree
of the line bundle OX(2ξ) restricted to N is zero. Then

∧
N

∼= ωN ⊗ ω∨
X ⊗ L∨|N ∼=

ωN ⊗OX(2ξ)|N is not globally generated, a contradiction.
Assume N := C ∩E ∈ |OP1×P1(0, 1)| is a line with class ξf in E. The element of

|IC(ξ+f)| is the strict transform of a union of two planes, one of them containing R,
or a quadric cone containing R. If |IC(ξ + f)| consists only of the strict transforms
of two planes, then the strict transform of the plane defined by N is in the base
locus of IC(ξ + f). We conclude that there is a quadric cone containing σ(C) ∪ R.
Assume that C ̸= N . There is a complete intersection Y containing C, whose class is
ξ2+2ξf (we may assume Y ∩E = N). The residual curve to N in Y is D = ξ2+ξf .
σ(D) is a conic or a union of lines and since Y is connected and C is smooth, the
only possibility is that C is the disjoint union of N and the strict transform of
a line disjoint from R (and the residual curve to C in Y is a line that intersects
each component of C). This is a contradiction since every line in a quadric cone
containing R must intersect R. We conclude that C = N = ξf in this case.

Assume N := C ∩E ∈ |OP1×P1(1, 1)| is a rational curve with class ξ2 in E. Since
ξ2 ·f ̸= 0, N is not contained in a fiber of π : X → P1. By Lemma 3.3.1, we conclude
that C = N = ξ2 in this case.

Proposition 3.3.4. Let E be a globally generated vector bundle of rank r on X with
c1 = ξ + f, c2 = ξ2. If the associated curve C is contained in E and E has no trivial
factor, then E exists if and only if r = 2.

Proof. |IC(ξ + f)| contains the strict transforms of the smooth quadrics defined by
equations of the form a00x

2
0+a01x0x1+a11x

2
1+f(x2, x3)x0+g(x2, x3)x1 = 0, where

a00, a01 and a11 are arbitrary and f(x2, x3) and g(x2, x3) are fixed. These equations
show that x0 = x1 = 0, hence C is cut out by global sections. Therefore, IC(ξ + f)
is globally generated. Since

∧
C

∼= ωC ⊗ OX(2ξ)|C ∼= OC and h0(OC) = 1, by
[3, Theorem 1.1.], this case gives a rank r globally generated bundle if and only if
r = 2.

Proposition 3.3.5. Let E be a globally generated vector bundle of rank r on X with
c1 = ξ+ f, c2 = ξf . If the associated curve C is contained in E and E has no trivial
factor, then E exists if and only if r = 2, E ∼= OX(ξ)⊕OX(f).
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Proof. Since
∧

C
∼= ωC ⊗ OX(2ξ)|C ∼= OC and h0(OC) = 1, this curve gives a rank

2 vector bundle E . We will prove that E ∼= OX(ξ) ⊕ OX(f). Since h0(OC(f)) =
h0(OC) = 1 and h0(OX(f)) = 2 by [18, Proposition 4.1], so h0(IC(f)) > 0. By
the exact sequence (3.1), we have h0(E(−ξ)) > 0 and so there is a non-zero map
m : OX(ξ) → E . We have h0(E(−2ξ)) = h0(E(−ξ − f)) = 0 since h0(IC(−ξ + f)) =
h0(IC) = 0, and so OX(ξ) is saturated in E . Hence the cokernel of m is torsion free,
i.e. coker(m) ∼= IT (f) with either T = ∅ or T is a locally complete intersection curve.
Since c2(OX(ξ)⊕OX(f)) = ξf = C, we have T = ∅. Since h1(OX(ξ − f)) = 0, this
implies E ∼= OX(ξ)⊕OX(f).

Proposition 3.3.6. Let E be a globally generated vector bundle of rank r on X with
c1 = ξ + f . If the associated curve C =

∪s
i=1Ci = αξ2 + βξf has no connected

component contained in E, and E has no trivial factor, then E exists if and only if
r and (s;α, β) are as in the Main theorem.

Proof. Let E be a globally generated vector bundle with c1 = ξ + f , and assume
that its associated curve C has no connected component contained in E. Since we
assume E has no trivial factor, C is non-empty. Let Y = ξ2 + 2ξf be a complete
intersection of two general divisors in |IC(ξ + f)|. Y = C ∪D with either D = ∅ or
D a reduced curve containing no component of C and smooth outside C ∩D. We
may assume Y does not have a component in E.

We have (αξ2+βξf)f = αξ2f . This implies that the line bundle OX(f) restricted
to C has degree α. Since OX(f) is globally generated, it follows that α ≥ 0. The
same argument applied to D implies that α ≤ 1. By assumption and (αξ2+βξf)(ξ−
f) = βξ2f , C ∩ E is a 0-dimensional scheme of degree β. It follows that 0 ≤ β ≤ 2.

Assume (α, β) = (1, 0). Then σ(C) is a line disjoint from R. Therefore, σ(C)∪R
is cut out by quadrics since σ(C) ∪ R is the intersection of the unions of a plane
containing σ(C) and a plane containing R. This implies Iσ(C)∪R|P3(2) is globally

generated, hence the same for its pull-back IC(2H̃ − E) = IC(ξ + f). Since C is
connected, rational and deg(ωC ⊗OX(2ξ)|C) = 0, we have

∧
C
∼= OC and h0(

∧
C) =

1. By [3, Theorem 1.1.], this case gives a rank r globally generated vector bundle if
and only if r = 2.

Assume (α, β) = (0, 1). Then σ(C) is a line intersecting R at a point. Therefore,
σ(C)∪R is a reducible conic and so Iσ(C)∪R|P3(2) is globally generated. This implies

IC(2H̃−E) is also globally generated. Since C is rational and deg(ωC⊗OX(2ξ)|C) =
0, we have

∧
C

∼= OC and h0(
∧

C) = 1. Hence this case gives a rank r globally
generated vector bundle if and only if r = 2. In this case, σ(C) is in a plane
containing R, hence C is contained in a fiber f of π. So we have h0(IC(f)) > 0 and
we can show E ∼= OX(ξ)⊕OX(f) as in the proof of Proposition 3.3.5.

Assume (α, β) = (1, 1) and s = 1. Then σ(C) is a conic intersecting R at a
point. Therefore, σ(C)∪R is cut out by quadrics since σ(C)∪R is the intersection
of the unions of a plane containing σ(C) and a plane containing R, and the quadric
cones containing σ(C) and R. This implies that Iσ(C)∪R|P3(2) is globally generated,

therefore IC(2H̃ − E) is also globally generated. Since C is rational and deg(ωC ⊗
OX(2ξ)|C) = 2, so

∧
C is globally generated, non-trivial and we have h0(

∧
C) = 3.

Hence this case gives a rank r globally generated vector bundle if and only if 3 ≤
r ≤ 4.
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Assume (α, β) = (1, 1) and s = 2. Then σ(C) is a disjoint union of two lines,
intersecting R at a point of one of its components. We write σ(C) = L1 ∪L2, where
L1, L2 are lines and L2 intersects R. Let ⟨L2, R⟩ be the plane spanned by L2 and R.
Since L1 intersects ⟨L2, R⟩ at a point in ⟨L2, R⟩ \ (L2 ∪R), every quadric vanishing
along L1∪L2∪R must vanish on ⟨L2, R⟩. Therefore ⟨L2, R⟩ is contained in the base
locus of Iσ(C)∪R|P3(2) and so its strict transform is contained in the base locus of

IC(2H̃ − E). Thus IC(2H̃ − E) is not globally generated.
Assume (α, β) = (0, 2) and s = 1. σ(C) is a conic intersecting R at two points.

The plane spanned by σ(C) also contains R, so every quadric vanishing along σ(C)∪
R must vanish on this plane. Thus, the strict transform of this plane is contained
in the base locus of IC(2H̃ − E).

Assume (α, β) = (0, 2) and s = 2. σ(C) is a disjoint union of two lines, each of
which intersects R at a point. We write σ(C) = L1 ∪ L2, where L1, L2 are the two
lines. Then σ(C)∪R is cut out by quadrics since it is the intersection of the unions
of a plane containing L1 and the plane ⟨L2, R⟩, and the unions of a plane containing
L1 and the plane ⟨L2, R⟩. This implies Iσ(C)∪R|P3(2) is globally generated, hence

IC(2H̃ − E) is also globally generated. Since C has two components and each
component is rational,

∧
C
∼= OC

∼= O2
P1 is globally generated, trivial and we have

h0(
∧

C) = 2. Hence this case gives a rank r globally generated vector bundle if and
only if 2 ≤ r ≤ 3.

Assume (α, β) = (1, 2). In this case, C = Y and σ(C) is a twisted cubic having R
as a bisecant line. C is rational and IC(2H̃−E) is globally generated. Since deg(ωC⊗
OX(2ξ)|C) = 4,

∧
C is globally generated, non-trivial and we have h0(

∧
C) = 5.

Hence this case gives a rank r globally generated vector bundle if and only if 3 ≤
r ≤ 6.

28



Bibliography
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