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Chapter 1

Introduction

1.1 Background

Zariski’s cancellation problem for an affine variety V (ZCP for V) asks
whether the existence of an isomorphism between V x; Al and W x,A! for an
affine variety W implies that V' and W are isomorphic. ZCP is known to hold
for affine curves [1], A? [13][23], non-A'-uniruled affine varieties [3][18][5][6],
and line bundles over non-A'-uniruled affine varieties [6]. ZCP for A" still
remains unsolved for n 2 3 in characteristic zero. However, in positive char-
acteristic, Gupta [16] proved that ZCP for A™ does not hold if n = 3.

ch(k) =0 | ch(k) >0
n =1 | v’ Abhyankar-Hainzer-Eakin’72

n = 2 | v'Fujita’79, Miyanishi-Sugie’80 | v'Russel’81
n >3 777 x Gupta’'l4

Table 1.1: Zariski’s cancellation problem for A™

Counterexamples have also been constructed in characteristic 0 using 1-
stably free modules over a ring (e.g., [17] [25]) or the so-called “Danielewski’s
fiber product trick”.

Lemma 1.1.1 (Danielewski’s fiber product trick [4]). Let X be a k-scheme.
If two affine k-schemes V' and W are isomorphic to principal G,-bundles over
X, then V XkAl >~ %74 Xk Al.



Proof. Since V' (resp. W) is affine, principal G,-bundles over V (resp. W) are
all trivial. Since V x x W is a principal G,-bundle over V and W, V x; Al ~
% Xx W ~W Xk Al. ]

If V and W above are not isomorphic, then W is a counterexample to ZCP
for V. On the other hand, such a counterexample can not be constructed if X
is affine, since there exists a one to one correspondence between H' (X, Ox)
and isomorphicm classes of principal G,-bundles over a scheme X. This fact
implies that if X is affine, then any principal G,-bundle over an affine scheme
X is isomorphic to X xj Al. Therefore principal G,-bundles over non-affine
schemes have been studied

Counterexamples to ZCP for principal G,-bundles over a noetherian in-
tegral scheme X nonseparated over C were constructed in the case where X
is a scheme of the following form:

Definition 1.1.2. Let Y be a variety, Z a closed subvariety of Y, and r» € N.
Let Yp,...,Y,. be r + 1 copies of Y. Then

YirZ =Y Uyz }/ Lz Uz Y/ =YoUyzYilyz - -Uyz Y.

~
T

Namely Y, rZ is a non-separated k-scheme obtained by gluing » + 1 copies
of Y along Y \ Z.

If Y = Spec(R) is an affine variety and Z = J Z; is the union of principal
hypersurfaces Z; defined by f; € R for each ¢ = 1,...,n, then a principal
Gg-bundle over Y, Z is defined by an element g of Ry,....r,, and we denote
it by V, (See section 2.1 for the construction). If g = [T, f; ™, then Vj is
isomorphic to Ay, .. m, = Spec(R[s, t]/(IT—, fi ™ s —t*+1)).

Danielewski [4] proved that if Y = A! and Z = {0}, then A; is not
isomorphic to A, for n > 1. Later Fieseler [11] proved that if Y is a smooth
affine curve and Z is a point, then A,, is isomorphic to A, if and only if
m = n. In higher dimension, Dubouloz [8] proved that if Y = Al and Z is the
union of coordinate hyperplane, then A,,, ., & Any o, if {mq,...,m} #
{n1,...,n}. Drylo [6][7] proved that if Y is a non-A'-uniruled affine variety,
and Z is the union of principal hypersurfaces of Y, then A,,, ... ;n,,, 2 Am’l ol
if there exists i € {1,...,n} such that m; ¢ {mf,--- ,m,}.

In the case where the base scheme X of a principal G,-bundle is a quasi-
affine variety, Counterexamples have been constructed if X is the non-zero lo-
cus D(f1, f2) of two regular functions fi, f> on an affine variety Y = Spec(R).
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Y T A
Danielewski Al 1 O
Fieseler smooth affine curve reN point
Dubouloz A" r € N | coordinate hyperplanes
Dryto non-uniruled affine variety 1 principal hypersurface

Table 1.2: Counterexamples to ZCP for principal G,-bundles over X =Y, rZ

In this case, a principal G,-bundle over D(f1, f2) is defined by an element g of
Ry, g,, and we denote by V; the principal G,-bundle over D(f1, f2) defined by
g (see Section 3.1 for the construction). If g = f;™ f; ", then Vj, is isomorphic
to A = Spec(R[s, t]/(fi*s+ f3t—1)). For this problem, Finston-Maubach
[12] proved that if R = Clx,y, 2]/(z* 4+ y® + 2¢), where a, b, ¢ are pairwise rel-
atively prime positive integers satisfying 1/a + 1/b+ 1/c < 1 and if f; = z,
fo =y, then A,,,, ~c A, for nonnegative integers m,n, m’,n’ if and only
if (m,n) = (m/,n’).

Such a result does not hold for general R. For example, Dubouloz-
Finston-Mehta [10] proved that if R = Clz,y|, fi = x, and f, = y, then
m +n = m' + n' implies A,,,, ~¢ An . Moreover, Dubouloz-Finston
9] proved that even if (m,n) = (m/,n’), there exists h,h’ € R = Clz,y]
such that V, 2 Vy for ¢ = h- fi™f;™ and ¢ = I’ - 7™ f;™. More
precisely, they showed that A (m,n,p) = Rls,t]/ (z™s+ y"t — p(z,y)) and
A(m/,n',p) = R[s,t] / (z™s+y"t —p (z,y)) for p,p’ € R\ ((z)zU (¥)p)
satisfying deg,p < m,deg,p < n are nonisomorphic if deg p = m+n —2 and
if deg p’ <m’ +n’ — 2.

Another result related to ZCP for A" was obtained by Winkelmann [26]
and Finston-Jaradat [19]. They proved that A® is isomorphic to a principal
Gg-bundle over a strictly quasi-affine variety, that is a quasi-affine but non-
affine variety. If there exists an affine variety W that is isomorphic to a
principal G,-bundle over such a quasi-affine variety and satisfies W 2 A,
then W is a counterexample to ZCP for A®.

1.2 Main Results

One of the important problem of ZCP for principal G,-bundles is what the
condition for two principal G,-bundles to be isomorphic is. In previous re-



searches, if V; is a principal G,-bundle over non-affine scheme X defined by
g € HY(X,Ox), the number of poles of g plays an important role for this
problem. In this paper We focus on this number, and we define an invariant
P(g) of a principal G,-bundle V, over a non-affine scheme X. P(g) corre-
sponds to the number of poles, and we will prove that P(g) is independent of
the choice of g. (See Section 2.4 in the case of X =Y, Z, and Section 3.3 in
the case of X = D(f1, f2)). Moreover we construct new counterexamples to
ZCP for principal G,-bundles over a non-A!-uniruled non-affine scheme X,
especially, in the case where X is a non-separated scheme of the form Y, rZ,
and in the case where X is a quasi-affine variety of the form D(f1, f2).

In the case where X is a non-separated scheme of the form Y, rZ, we give
a necessary and sufficient condition for two principal G,-bundles over Y, rZ
(Proposition 2.3.2), and we proved that even if P(g7) and P(gz) coincide, it
is not necessarily true that V,; and V, are isomorphic.

Theorem 1.2.1 (Theorem 2.4.2). Let P be a closed point of Al =
Speck[z,z7'] defined by fr =x—1. Let X = A, P, gy = (x+1)- (x— 1),
and g = (x — 1)72. Let V,; be the principal G,-bundle over X defined by g;.
Then Vg x A ~ Vo x A and P(g1) = P(g2) = 2, but V3 2 Vje.

In the case where X is a non-A'-uniruled quasi-affine variety of the form
D(f1, f2), we give a sufficient condition for two principal G,-bundles over X
to be non-isomorphic.

Theorem 1.2.2 (Theorem 3.4.3). Let Spec(R) be a non-A'-uniruled affine
variety. Let (f1, f2) be an R-regular sequence, where fi and fy are prime
elements such that the ideal (fi1, fo)r is prime. Let V, (resp. V) be the
principal G,-bundle over D(f1, fo) that is defined by g = v - f{ ™ f3 " (resp.
g =w-f{™ ;") with P (¢') = (m',n'). Then V, 2 Vy if (1) or (2) holds.

() m">m+n—1orn >m+n—1

(2) m',n' Sm+n—1andv' ¢ (fr, fo)™ 7m0 where

_Jo v d (i f)
5(”)_{1 ifve (fi, fa).

By using this theorem, we give a counterexample to ZCP.



Corollary 1.2.3 (Corollary 3.4.4). Let Spec(R) be a non-A'-uniruled affine

variety. Let (f1, f2) be an R-regular sequence, where f; and fo are prime

elements such that the ideal (f1, fo)r is prime. Let m,n,m’,n’ be integers.

Then Vi-m—n X A o~ Vit pnt X A but Vimpn £V ot et Gf MU R
1 2 1 2 1 2 1 2

m' +n'.
In addition, we show that even if the numbers of poles (m,n) and (m', n’)

coincide, there exists h, h' € R such that V, 2 V,,, where g = h- f{ ™ f; " and
g =h - f7™ f;™ in the case where Spec(R) is not Al-uniruled.

Corollary 1.2.4 (Corollary 3.4.5). Let Spec(R) be a non-A'-uniruled affine
variety. Let (fi1, fa) be an R-reqular sequence, where fi and fy are prime
elements such that the ideal (f1, f2)r is prime. Let m,n be integers larger
than 1. Let (X, Y) be an element of (X, Y)\((X)U(Y)) C k[X, Y] satisfying
degx¢ < m,degy¢ < n. Then Vim;—n X Al ~ Vitrugo) gompsn X Al and

P (ffmf5"> =P (cb (f1. f2) - ffmfg_"), but Ve pon 2 Vo) s s

1.3 Notations

In this paper we work over an algebraically closed field k of characteristic
zero. For an ideal I of a ring R and for an integer n, I™ denotes the ideal
generated by the products of n elements of I. If n < 0, I" := R. For a
scheme X and for f € I'(X,Ox), Xy and D(f) denote the nonzero locus
of f. For fi,...,fn € I'(X,0x), D(f1,..., fn) denotes the nonzero locus of
(fi,---, fn). For a ring homomorphism ¢ : R — S, Spec(¢)) denotes the
morphism of schemes Spec(S) — Spec(R) associated to ¥. For a morphism
of schemes ¢ : X — Y and subschemes X' C X and Y/ C Y, if ¢(X') C Y,
we denote by ¢|x: : X’ — Y’ the restriction of ¢ from X’ to Y'. G, denotes
the additive group variety (A}, +) over k. For a k-scheme X and for an X-
scheme V' with a G,-action on V', V is called a principal G,-bundle over
X in the Zariski topology if there is a covering (U; — X) for the Zariski
topology on X such that V' xx U; is isomorphic with its G, xj U;-action to
G, X1 U; over U;. A variety X is Al-uniruled if for general closed point z of
X, there exists a nonconstant morphism f, : A — X such that z € f,(A!).

Let < be a partial order on ZZ] defined as follows: For (m;), (m}) € ZZ}
(m;) =< (m}) if and only if m; < m) for each i. Write (m;) < (m}) if
(my) = (m!) and (m;) # ().

)



Chapter 2

Z.CP for principal G,-bundles
over noetherian integral scheme
non-separated over k

In this chapter, let Y be an affine variety, Z the union of principal hyper-
surfaces Z; defined by a prime element f; € R for eacht=1,...,n, and r a
non-negative integer.

2.1 Construction of principal G,-bundles over
Y+TZ

First we describe how the one-to-one correspondence between isomorphism
classes of principal G,-bundles over X = Y, rZ and the elements of H' (X, Ox)
is obtained.

Since V; = Y and Y; \ Z ~ Spec(Ry,...s,) are affine, we can compute
H'(X, Ox) by Cech cohomology:

H'(X,0x) =~ H'({Y,...,Y},0x)

= Coker (gzﬁ : é;R — 71 : (a;) — (a; — aj)> ,
i=0

where



71 := Ker @ Ry,..p, — @ Rpy.p, t (i) = (@i — ai + agy)

0<i<j<r 0Si<j<k<r

For an element g = (g,;) € Z1, g denotes the image of ¢ by the natural
map Z; — Coker¢. The principal G,-bundle V, over X defined by g is, as
a total space, an A'-bundle over X obtained by gluing ¥; x A and Y; x Al

along the following isomorphism between open subschemes Y \ Z x Al of
Vix Atand Y\ Z x Al of Y; x AL

Goy Y\ Zx A" 5 Y\ Z x Al (z,t) = (z,t + gij).

The G,-action on Vj is obtained by gluing equivariantly trivial G,-actions
onY; x Al for i = 0,...,r, that acts trivially on Y; and by addition on A'.
The image of ¢ gives the isomorphism class as principal G,-bundles of V,
and we denote it by V3.

2.2 Affine criterion for principal G,-bundles
over Y.rZ

Lemma 2.2.1 ([14]). Let X be a scheme, Y an affine scheme, and U =
{Ux}ren an open affine covering of X. Then for any morphism f: X =Y,
f 1s separated if and only if

(1) U,NU, is affine for any p, A € A;
(2) T'(U,N Uy, Ox) is generated by I'(U,, Ox) and I'(Uy, Ox).

The following proposition gives a necessary and sufficient condition for
principal G,-bundles over Y, rZ to be affine.

Proposition 2.2.2. Let Y = SpecR be an affine variety. Let Z; be the
hypersurface of Y defined by a prime element f; € R for each it = 1,...,n.
Let Z == \JZ;. Letp:V — YirZ be a principal G,-bundle over Y.rZ
defined by [{gi;}] € H' ({Y,...,Y,}, Ox . rz) ~H' (YirZ, Oy, ,z), where g;; =
hij - fl_k“’1 e fﬁ;kij’m € Ryfy.gyns kiji € Zso, and hij € R such that hy; can not
be divided by f; if kij; > 0.

If (@) r=10r(b)r>2and 0 # Zi, N Zi, & Uy, 4, 21 for any by, 1y =
1,...,m, then the following conditions are equivalent.
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(1) kiyjy > 1 and (hij, fr---fm) = A for any i, j = 0,...,r and | =
1,....m.

(2) V' is separated.
(3) V is affine.

Proof. (3) = (2) is obvious. It is enough to show that (1) < (2) and
(1) = (3).

Let us denote (kij1, ..., kijm) € Z™ by [kiy], (1,...,1) € Z™ by 1, and
ffij’l . ffnij’m by f[kij}'

First we give a necessaly and sufficient condition for V' to be separated.
Let V; :=p }(Y;) (= Y; x Al). Let Y := {Y;,...,Y,} be an open covering of
YirZ. An open subvariety Y;NY] is isomorphic to Y\ Z for any i,7 = 0,...7.
Then V; NV, = p~!(Y; N'Y;) is isomorphic to (Y; NY;) x Al. Therefore V is
separated if and only if I'(V; NV}, Oy) is generated by the image of I'(V;, Oy)
and I'(V;,Oy) for any 4,j = 0,...r by Lemma 2.2.1. This condition is
equivalent to Ry, ..., [t] = Rlg;j][t] for any i,j = 0,...,r with i # j, where ¢
is an indeterminate. Therefore V' is separated if and only if Ry = R|g;;] for
any i,7 =0,...,r with i # j. .

(1) = (2) Suppose the condition (1). Then there exist elements a,b € R
such that 1 = ah;; + bf and k;;; — 1 > 0. Therefore 1= af[k”]_lgij + b and
Ry = Rlgq;].

(2) = (1) Suppose the condition (2). Then there exist n € N and
agp, . ..a, € R such that

' =ap + arg;; + a2gi2j + o+ ang

If n =0, then fi,..., f,, are units in R, a contradiction. Therefore n > 0.
Multiplying both sides of the above equation by " kis] we obtain the following
equation:

fﬂ[’fu}*l — aofn[’%] + hyjs,

where s = q,f" Dkl 404 an_lh?j”f[k”] + anh?jfl € R. Since h;; ¢ (fi)
for any [ =1,...,m, s can be divided by %4171 Therefore there exists an
element s’ € A such that 1 = aof + hyjs.

(1) = (3) Suppose the condition (1). We first observe that if r # 2,
there exists an index j° € {1,...,r} such that ko, = max;{ko;;} for all

I = 1,...,m. Assume that there exist indices ji, jo» € {1,...7} and [,
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ly € {1,...,m} such that j; # jo, Iy # lo, koj1n > kojoys and kojy 1, < Kojo iy
for contradiction. Let py; = max{koj, s, koj,;} for each I € {1,...m} and
(1] := (pa, . - pim) € ZZ,. Then It follows from the cocycle condition g;,;, =

9oj, — Joj, that

f[u]_[kjlm}hj1j2 — f[ﬂ]_[k0j2]h0j2 _ f[u]_[kOjl]hOjl’

The right hand side of this equation is in (f,, fi,) \ ((fi,) U (fi,). Therefore
gy, = kjujpay and g, = kjyj 1, Moreover, {47 Wizln; e (f,,, f,) implies
fl=tnsl € (£, fi,) because hy,;, is a nonzero function on Z and Z;,NZ;, # 0.
This contradicts to the assumption Z;, N Z;, ¢ Ul;ﬁhl2 Z;. Therefore we
can choose an index j € {1,...,r} such that ko;; = max;{ke;;} for all
l=1,...,m.

Next, we show that there exists an affine morphism ¢: V' — A! by in-
duction on r. If r =0 (i.e. Y,rZ =Y), then V is isomorphic to Y x; Al.
Then the second projection of Y x; Al is an affine morphism. Suppose
the statement holds for » — 1. By the assumption, there exists s;; € R
such that hijs;; = 1in R/(fi -+ fm). Define morphisms ¢;: Y; — A® to be
d;(x,t) = sq;(tFoirlt 4 flhorI=koilp ) for each j € {0,...,r} and define mor-
phisms ¢; := ¢ og;': V; Y x; A — Al for each j € {0,...7}. By the
Define H; := g;(Z x;, A') C V;. Then ¥)(Hp) = ¢ogy "go(Z % A') = {0} and
Y(Hj) = gbj/gj_,lgj/(Z X A') = {1}. Therefore ¢y 1(A'\ {0}) C V' \ Hy and
Y1 A\ {1}) C V\ Hj. Moreover, V'\ Hy is the principal G,-bundle defined
by the cocycle {gi;}ijz0, and V' \ H; is the principal G,-bundle defined by
the cocycle {gi;}ij2y. Therefore V'\ Hy and V' \ H; are affine by the induc-
tion hypothesis. Therefore the restriction maps ¢|y\g, : V' \ Hp — A! and
Ulna,  V\ Hp — Al are affine morphisms, and hence ¢»~'(A! \ {0}) and
YA\ {1}) are affine. Therefore 1 is affine. O

Remark 2.2.3. Fieseler [11] proved this proposition in the case where Y is
an affine curve, and Dubouloz [8] proved this proposition in the case where
Y = A" and Z is the union of coordinate hyperplanes of A”.
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2.3 Necessary and sufficient condition for two
principal G,-bundles to be nonisomorphic

Lemma 2.3.1. Let Y be a non-Al-uniruled affine variety and let X be a
k-scheme equiped with a dominant morphism X — Y such that there exists
a covering (X; — X)), where X; is a variety of dimension dim(Y") for each i.
Letp: V. — X and q: W — X be Zariski locally trivial A™-bundles over X.
Then an isomorphism ®: V — W descends to an automorphism ¢: X — X
such that pop=qo®.

Proof. We can take a covering (X; — X);e; of X so that p and ¢ are trivial
over X; for each i. Since Y is not Al-uniruled, Dryto’s lemma [6, Lemma
2] implies that the fibers of p are contracted by the morphism qo ®: V —
X. Therefore the composition of any section s;: X; — p~ !X, and go ® is
independent of the choice of s; for each i. The compositions ¢ o ® o s; and
qo ® o s; coincide on X; N X, for the same reason. Therefore ¢: X — X
exists. The inverse of ¢ can be constructed in the same way. O]

Proposition 2.3.2. Let Y = Spec(R) be a non-A'-uniruled affine variety.
Let Z; be the hypersurface of Y defined by f; € R for each i =1,... m. Let
Z =Z;. Fork =1,2, let Vi be a principal G,-bundle over X = Y.rZ
defined by g, € H (X, Ox).Then Vy and Vy are isomorphic if and only if g
and gy are in the same orbit of the action by Aut(YyrZ) x I'(Y, Oy).

Proof. The computation of this proof in the case of r = 1 is almost the same
as the proof of the sufficient condition for two principal G,-bundles to be non-
isomorphic by R. Dryto [7]. Suppose that ®: V; — V5 is an isomorphism. By
Lemma 2.3.1, there exists a unique automorphism ¢: Y, rZ — Y, rZ satisfies
pop; = pao®, where py : Vi, — Y, rZ is the canonical projection of principal
Gg-bundles for k = 1,2. Let Y/ := ¢(Y;) and V' := {Y{,..., Y.}, which is an
open covering of Y, rZ. Suppose that V] is defined by {g;;} € Z"(V, Oy,.z)
and V5 is defined by {g;;} € Z'(Y', Oy, 7). Then the following diagram is
commutative for each ¢, j =0,...,7 (i # j);

12



(Y; NY;) xp AN 2 pr (v, N Y) 2 py (Y N Y)) (Y’ﬂY’) g, Al

Qi id id a;
/—1

9;

(YiNY)) xp Al 2 pr (YN YY) —2=py (V) NY)) = (Y N Y]) %) Al

p1 p2
pry l pry

}/i/m}/j/

where a;j(z,t) = (7,t + gij(7)), aj;(2',t) = (2',t + gj;(2’)). For an isomor-
phism f : A[t] — BJt] of domains such that f|4 : A — B is an isomorphism,
f(t) should be equals to at + b, where a € B* and b € B by the computation

of the degree of f(t). Therefore the commutativity of this diagram implies
that there exists a; € F(K,O§+TZ) = R* and b, € I'(Y;,Oy,,z) for each

1=0,. rsuchthatg ofbogz(xt) (p(x), ait +b;), /loq)og](l’t):
(o(x), ajt+b) Therefore

ai()t 4 bi(w) + gi;(o()) = a;(x)(t + gij(x)) + bj(x).

Therefore we can glue {a;}. Let a be an element of I'(Y,rZ, Oy, , ;)
I'(Y, Oy) such that a|x, = a;. Then

9i5(0(x)) = gij(w)a = bj(x) — bi(x),

Therefore cocyles {g;;(¢(x))} and {gi;(z)a} define principal G,-bundles iso-
morphic to each other. [

12

Next we study the automorphisms group of Y, rZ. Let Y be a variety, Z
a closed subset of Y, and r an integer. We will use the following notations
for the proof of Proposition 2.3.5

e G, 1: the symmetric group of degree r + 1.
e Ny: the number of connected components of Z

® Zy,...,Zn,: the connected components of Z

e Yy, ..., Y, open subsets of Y, rZ defined in Definition 1.1.2.

w; » Y; <= YyrZ : the inclusion morphism for each ¢ € {0,...,7}

13



e ¢;: Y ~ Y the natural isomorphism for each i € {0,...,r}.

o Z,;:=¢;(Z) foreach i€ {0,...,7}.

o 7y :=e;(Z) for each i € {0,...,r} and for each k € {1,..., Nz}
o (r+1)Z:=Uicq,. r Zi (CYyrZ).

o Y, =Y rZ\(r+1)Z (=Y \ Z)

e End(Y) := the monoid of endomorphisms of Y’

e Aut(Y) := the group of automorphisms of Y’

e Endz(Y) :={® € End(Y)| ®(Z) C Z}

o Autz(YV) :={® e Awt(Y)| ®(2) = Z}.

The following two lemmas by J. Ax [2] and S. Kaliman [20] show that an
injective endomorphism of an algebraic variety is an isomorphism.

Lemma 2.3.3 ([2]). Let X be a scheme of finite type over a scheme Y. Let
¢: X — X be aY-morphism. If ¢ is injective then ¢ is surjective.

Lemma 2.3.4 ([20]). Let ¢ : X — X be a surjective endomorphism of a
variety X over a field k of characteristic zero. Then ¢ is an automorphism.

Proposition 2.3.5. The following sequence of non-abelian groups is a right
split exact sequence.

1 — 6,17 % Aut(YVirZ) L= Auty(Y) — 1

In other words, for any automorphism ® of Y.rZ, there exist the unique
element ¢ € &,,1%V7 and the unique automorphism ¢ € Autz(Y) such
that ® = R(¢) o S(0), where R is a group homomorphism from Autz(Y') to
Aut(YyrZ) such that T is a section of R.
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Proof. Let ® be an automorphism of Y,rZ. First we show that for each
i €{0,...,r}, theimage of Z; ; by @ is equal to Zj  for some k' € {1,... N}
and for some @' € {0,...,r}, where k' is independent of the choice of i. Let
¢ > =ho®oe; : Y — Y for each 7. Then ¢,..., ¢, are endomorphisms of
Y coincide on the open subset Y\ Z with each others. Since Y is separated,
¢i = ¢; as a morphism of varieties for any 4, j € {0,...,r}. Therefore the
images of Zj; and Z, j by ho® : Y. rZ — Y coincide for any i, j € {0,...,r}.
Therefore the assertion holds.
Next we construct a map 7" : Aut(Y,rZ) — Autz(Y). Let

T Aut(Y,rZ) — End(Y) : @ — h o ® oy o e.

Then the image of 7" is in Endz(Y). Since 7"(®) is an injective endo-
morphism, Lemma 2.3.3 and Lemma 2.3.4 imply that 77(®) is an auto-
morphism. Therefore we can restrict the codomain of 77 to Autz(Y). Let
T:Aut(YirZ) — Autz(Y) : @ — T'(®). The map T is a group homomor-
phism because for any @, 3 € Aut(YirZ), T'(P1)oT(Py) and T'(P0P,) co-
incide on Y\ Z, and therefore coincide on Y. The group homomorphism 7" is
surjective because for ¢ € Autz(Y'), we can glue {u;oe;0poe; ' : Y, — Y, rZ}
to an isomorphism R(¢) : YirZ — Y,rZ, which satisfies T(R(¢)) = ¢ by
the construction.

Next we construct a \ map S: 6,17 — Aut(Y,rZ). For o =
(01,...,0n,) € 6,17 Nz et Yie = Yz U Uze{o ..... " Zk oy and let e; , :
Y, — Y, be the canomcal isomorphism, which is an identity on X\z. then
we can glue {e; , } to a endomorphism S(o) of X, rZ, which is an isomorphism
by construction. In this way, we can construct a map S from &,,;%" to
Aut(Y,rZ). The map S is also an injective group homomorphism because
S(o) corresponds to the permutation of Zy,, ..., Z,; by o for each i.

Finally we show that the above sequence is exact. Since the automor-
phism S(o) of Y, rZ is an identity map on Y\, the automorphism 7'(S(0))
is the identity map on Y. Therefore Im(S) C Ker(7"). Conversely, suppose
that for & € Aut(Y,rZ), T(®) equals to idy. Then ho ® oe; = idy for each

i and ®(Zr;) = Zw ki) Let o {0,...,r} = {0,...,r} i (ki) for
each k € {1,..., NZ} Smce ® is an automorphism of Y+7’Z, o € 6r+1. Let
o= (01,...,0n,). Then S(c) = ® by the construction. O
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2.4 Counterexamples to ZCP for principal G-
bundles over Y, 7

Lemma 2.4.1. Let Y = Spec(R) be an affine variety. Let Z be the union of
principal hypersurfaces Z; defined by a prime element f; for eachi=1,...,n
such that (fi,..., fa) is an R-regular sequence. Let X = Y,Z. Let g =
h-fi™ - f,™ € Ry,.p,,, where h € R such that f; t h if m; > 0. Then

(my,...,my) is the minimum element of the following set for the order < :

Sy 1= {(m;,...,m;) € Zg”m’-ffmll---ﬁ% =7 in Hl(X,OX)}.

Proof. For any ¢’ € Ry,..;, such that ¢ = g, there exists b € R such that
g’ = (h"‘b'flml"'fgl")'ffml"'fn_m”- Then fi+(h+b.f{711...fgln) if
m; > 0, and therefore (mq,...,m,) is the minimum element of the above
set. O

Now we denote by P(g) the minimum element of S; for the order <.
The above lemma implies that P(g) is an invariant of principal G,-bundles
over X =Y, Z.

Theorem 2.4.2. Let P be a closed point of Al = Spec(k[z,z71]) defined by
fi=z—1. Let X =A, P, g1 =(x+1)-(x—1)"2, and g, = (x —1)72. Let
Vgi be the principal G,-bundle over X defined by g;. Then Vg x Al ~ V2 x Al
and P(gr) = P(q2) = 2, but V1 2 V.

Proof. The group of automorphisms of Y, P can be expressed by using an
element of &, ~ Z/27Z = {0,1} and an element of Autp(Y). An automor-
phism of Y = A which fixes P = {z — 1 = 0} should be an automorphism
of Y which sends x to x (denoted by ¢;) or which sends z to z7! (denoted
by ¢_1). The automorphism S(0) is an identity of Y, P and S(1) is an au-
tomorphism of Y, P which is an identity on Y\ P but replace Py € Y, and
P ey.

By proposition 2.2.2, V; and Vi, are affine. Suppose that V' is isomorphic
to W for contradiction. By Proposition 2.3.2, there exist a unit v’ € k[z, z™!]
and an automorphism ® of Y, P such that go = u’-¢1(®). The automorphism
® is a composition of S(i) and R(¢;) for some i € {0,1} and for some j €
{1,—1}. Since the automorphism S(1) corresponds to replace open sets Yj
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and Y3, g1(S(i)) = (—1)igr. Therefore g(R(¢_1)) = [ZE—) = [22e1),

Therefore 2+ k(z— 1) et
91(®) = [(—1)Zw]

for some k € {1,3}. Since u and v’ are units of k[z, z7!], there exist ¢, ¢’ € k*
and m,m’ € Z such that v = ¢- 2™ and v/ = ¢ - ™. We may assume that
m,m’ > 0 since for any unit a € k[z,z7], go = ' - g1(®) if and only if
age = au’ - g1(P). If n # 2, then go — v’ - g1(P) can not vanish. Therefore we
may assume that n = 2. Then

g —u' - g1(P) (2.1)

$_12{ )2+ k(z —1))(c+em(z—1)) = —m/(z — 1) }]

D) 2{ )2¢ — ¢ 4+ ((—1)'kc + (=1)"2em — a'm’) (z — 1) }].

Therefore g, = u' - g1(®) if and only if

(—=1)2c— ¢ =0,
(—=1)'kc+ (=1)2em — a'm’ = 0.

This condition implies k + 2m — 2m’ = 0, but this contradicts to k = 1

or 3.
O
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Chapter 3

Z.CP for principal G,-bundles
over quasi-affine varieties

3.1 Construction of principal G,-bundles over
D(f17 f2)

First we describe how the one-to-one correspondence between isomorphism
classes of principal G,-bundles over X and the elements of H' (X, Ox) is ob-
tained. Since D(f1), D(f2), and D(f; fo) are affine, we can compute H' (X, Ox)
by Cech cohomology;

H'(X, Ox)

12

Hl({D(fl)vD(f2)}>OX)
— Coker (¢ Ry, @Ry, = Rygy : (a,b) v a - b)
= Rpp/(Rp+ Rp,).

For an element g € Ry, ,, g denotes the image of g by the natural map
Ry, ¢, — Cokerg. The principal G,-bundle V, over X defined by g is, as a total
space, an A'-bundle over X obtained by gluing D(f;) x A! and D(f) x A!
along the following isomorphism between open subschemes D(f fo) x Al of
D(f1) x Al and D(ff2) x Al of D(fy) x Al:

Gy: D(fifa) x At = D(fifa) x Al (z,t) = (2,1 + g).
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The G,-action on Vj is obtained by gluing equivariantly trivial G,-actions
on D(f;) x Al for i = 1,2, that acts trivially on D(f;) and by addition on
Al. The image of ¢ gives the isomorphism class as principal G,-bundles of
Vy, and we denote it by V.

3.2 Sufficient condition for principal
G.-bundles over D(fi, fo) to be affine

Dubouloz-Finston-Mehta [10, Section 2] showed that nontrivial principal G,-
bundles over A? are affine, where A? is a complement of a one point in A2
In general, a nontrivial principal G,-bundle over a quasi-affine variety is not
necessarily affine, but their result suggest that there exist many nontrivial
affine principal G,-bundles over D(f1, f2). In this section, we extend their
result to principal G,-bundles over D(f1, f2).

Lemma 3.2.1 ([24][15, Theorem 5.2.1]). A scheme X is affine if and only
if there is a finite set of elements fi,---, fn € I'(X,Ox) such that Xy, are
affine, and f1, -+, fn generates the unit ideal in T'(X, Ox).

Lemma 3.2.2. Let X be a quasi-affine variety. Then the principal G,-bundle
V over X defined by g € HY(X, Ox) is affine if there exists b € T'(X, Ox)
such that the principal G,-bundle V' defined by b- g € HY(X, Ox) is affine.

Proof. Let fi,..., fn € I'(X,Ox) such that U = { Xy, }ier (I ={1,...,n})is
an affine open covering of X. We may suppose that V and W are defined by
Cech 1-cocycles {9ij}ijer and {b- gi; }i jer of Ox relative to the open covering
U. Then I'(V, Oy) and I'(W, Oy ) can be represented as follows:

L(V,0v) = {{¢i(t)}ier| 9i(t) € T'(Xy,, Ox)[t], ¢i(t + gi5) = &;(t)}
LW, 0w) = {{¢i(t)}ics 0i(t) € D(Xy, Ox)[t], ot + b gij) = ¢5(t)}

Suppose that W is affine. By lemma 3.2.1, there exists {¢;x(t)}iker €
(W, Ow ) such that

{fi-@in(t) + -+ fr- Gin(t) tier = {1}ier = 1.

Let ¢;x(t) = ¢ix(b-t) for each ¢ and k. Then {¢; x(t)}ier € I'(V,Oy) for
each k and

{fi-din@) 4+ fu-tin@ticr = {f1-Gia(b- 1)+ + fr- Din(b- 1) bier = 1.
[l
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For a polynomial ¢(z,y) = >, ; a;; - 'y in R[x,y], let Supp(¢) be the
subset of Zgg consisting of elements (4, j) with a;; # 0. Let Min(¢) be the

set consisting of minimal elements of Supp(¢) for the order <.

Proposition 3.2.3. Let R be an integral domain and (f1, f2) an R-reqular
sequence, where fi and fa are prime elements. Let m,n be nonnegative inte-
gers. Forve R, g=wv-f{"f,". ThenV, is affine if there is ¢(z,y) € R[z,y]
such that v = ¢(f1, f2) and there is (I, J) € Min(¢) such that (I,.J) < (m,n),
and ary € R*.

Proof. By the assumption, the following equation holds:

O e B S Z ay - [N L
(6,5)#(1,J)

The right-hand side of this equation is equal to ar; - f;'- f; ' in
HY({D(f1), D(f2)}, Op(s1.p»))- Since the principal G,-bundle over D(fi, fa)
defined by ayy - fi' - fy ' is isomorphic to Spec(R[s,t]/(fis + fot — ars)),
Lemma 3.2.2 implies that V} is affine. Il

3.3 Invariant of principal G,-bundles over X =

D(f1, f2)

Lemma 3.3.1. Let R be an integral domain, (fi, f2) be an R-regular se-
quence, where f1 and fo are prime elements, and g € H'(X,Ox). Then the
set Sy := {(m,n) € ZE|3h € R, h- f{™f;™ = G} has a minimum element
for the order <. -

Proof. Since there exist only finite elements smaller than (m,n) in Zgg, it is
sufficient to show that for (m,n), (m'n’) € Sz with m > m’ and n < n’, there
exists (M, N) € Sy such that (M, N) < (m,n),(m/,n’). Let h,’ € R such
that § = h-f; ™ f, " = W - [, f; " in HY(D(fi, f2), Op(szay). We may
suppose that fi, fo 1 h,h'. Then there exist ¢;,co € R and 01,09 € Z>q such
that

he fim = i =h T e £

and f; { ¢; if o, > 0. Since fi 1 (h- f{*7" 4c¢1- f3), the above equation implies
01 = m, and 0o < 1’ holds. Therefore, there exists (M, N) € Sz such that
(M,N) =< (m,n),(m’,n). O
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Now we denote by P(g) the minimum element of S; for g €
HI(D(fb f2), OD(foz))'

Lemma 3.3.2. Let R be an integral domain and (f1, f2) an R-reqular se-
quence, where f1 and fy are prime elements. Let m,n be nonnegative inte-
gers. For h € R, let g = h- f{™f;". Then P(g) = (m,n) if and only if
hé (fi", f2) U (fi, 13)

Proof. 1t is enough to show that P(g) < (m—1,n) if and only if h € (f1, f),
and P(g) < (m,n — 1) if and only if h € (f{", f2).

Suppose h € (f1, f3), i.e. there exist a,b € R such that h = af; + bf2.
Then g — bf;™ = a- f; ™ f;". Therefore P(g) < (m — 1,n). Conversely,
suppose P(g) < (m — 1,n). Then there exists a,b € R and integers ¢ >
m,j > n such that

G=(hf™ " —afs —bf) - f 7,

fita (resp. fotb)ifi>m (resp. j > n), and hfi ™fi " —afi —bf] €
(f1) =™+ (fy)9~". Ifi > m, then af] € (f1)""™"', and this is a contradiction.
If j > n, then bf] € (f2)’~", and this is a contradiction. Therefore i = m
and j = n. In this case, h —afy —bf{" € (f1). Therefore h € (f1, f3). In the
same way, we can show that P(g) < (m,n—1) ifand only if h € (fi", f2). O

Lemma 3.3.3. Let R be an integral domain and (f1, f2) an R-regular se-
quence, where f1 and fy are prime elements. Let m,n be nonnegative inte-

gers. Let 9(X,Y) = 37, - ay XY =3 bj(X)Y7 =37 ¢;(Y)X" € R[X,Y]
such that X, Y + o(X,Y). If ¢(X,Y) satisfies the following two conditions:

(1) 0 g 3J é n—1 s.t. QoJ ¢ (f17f2)7 X)be<X>7 and v.] < J7 (X’bJ(X>
or falao;);

(2) 03I =m—1st ap ¢ (fi,f2), Yter(Y), and Vi < I, (Y|e;(Y) or
filaio);

then P (6 (fi, f2) - 175" ) = (min).

Proof. Suppose that

(') =P (6 (i ) i f ™) < ()
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for contradiction. We assume that m’ < m. Then there exists ¢; € R such
that f1|o(f1, f2) + c1 - f3, and there exists ¢ € R such that

C'fl_bo(fl)_bl(fl)'le_"'_blfl(fl)' 21_1
= f3 - {ar+ (br (f1) —ar) + brar (f1) - fo+ -+ bu (f1) - f57 '}

Then ayg € (f1, f2) since br(f1) — ajo can be divided by fi, and this is a
contradiction. O

Proposition 3.3.4. Let R be an integral domain and (fi, f2) an R-regular
sequence, where f1 and fy are prime elements. Let m and n be nonnegative
integers. Suppose ¢(X,Y) = 37, -a;; X'Y7 € k[X, Y]\ ((X) U (Y)) satisfies

degx < m,degyé < n. Then P (6(/1, o) Ji "5 ") = (m,m).

Proof. Tt is enough to show the existence of (I',.J') € ZZ2 satisfying condi-
tions (1) and (2) of Lemma 3.3.3. Since ¢(X,Y) € k[X,Y], a;; & (f1, f2)
if a;; # 0 for any (¢,7). An integer j satisfying X t b;(X) also exists since
fi 1 o(f1, f2). Let J' be the minimum integer of j. Then J' satisfies the
condition (1). An integer I’ that satisfies (2) also exists for the same reason.

O

3.4 Sufficient condition for two principal G,-
bundles to be nonisomorphic

Lemma 3.4.1. Let Spec(R) be an affine variety. Let (f1, f2) be an R-regular
sequence, where fi and fy are prime elements. Let V, (resp. V) be the
principal Gq-bundle defined by g = v- fT™f;™ (resp. ¢ = w- f7™ f7™ ) over
X = D(fy, f2), where v,w € R. Then V, ~x V, if and only if there exists
a € R* such thata-g = ¢ in H(X, Ox).

Proof. Suppose that an isomorphism @ : V, ~x V,/ exists. Then there exists
¢i € Aut(Ry,[t]) for each i such that Gy o ¢1 = ¢9 0 G, i.e., there exists
a; € R}i and b, € Ry, for each i such that ai;t + by + ¢ = as(t + g) + ba.
This equation implies that a; = a; € R* and ¢’ — asg = by — by. Conversely,
@-g = ¢ implies the existence of a € R* and b; € Ry,, which satisfies the
above condition. Therefore, V, ~x V. O
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Lemma 3.4.2. Let Spec(R) be an affine variety and fi, fo elements in R\
{0}. Let Vj, be a principal G,-bundle over X = D(f1, f2) defined by g =
v fy™fe " Let ¢ be an automorphism of R such that (f1, f2)r = (f1, f2)r-
Then there exists h € (fi, f2)5" %\ {0} such that the pushforward of V,
by ¢ := Spec(¥)|x : X — X is the principal G,-bundle over X defined by

g¢ = ’g[)fl(’l}) - h - fl—m—n+1f2—m—n+1‘

Proof. Let f] := ¢~'(f;) for short. Let U’ = {Y};, Yy}, which is an open
affine covering of X. Then the pushforward of V, by ¢ is defined by ¢’ =
Y7 v) - T fy e HH(U, O).

Let
ar = Yy manaCie (@ )0 f)
Qg = E?:v;ln_ m+n71Ci ’ (a ' f{)mfn_l_l ’ (b : fé)z_na
b= X0 mfn—lCi e )T d )
By = ST G (e fym T (d - fy)

and h := a1 — apBy. Then f"™" 1 = fim.q; + fi" - ay and f3"t" ! =
B+ e Ba.
Therefore,

¢—1(v),f{—m_ é—n — '@D_I(U)‘Oél’ é_n'fl_m_n+1+77/}_1(U)'OQ'f{_m'fl_m_rH_l on va17
V)T = T W) Bae fy e fy T T () Bar f1T T on Y,
Hence, the principal G,-bundle Viy X x Yy over Yy, is defined by
W) By S g ) g S AT
— wfl(v) - h- flfmfn+1f2fmfn+1.
In the same way, Vi X x Yy, over Yy, is defined by the above element. [J

Theorem 3.4.3. Let Spec(R) be a non-A'-uniruled affine variety. Let (fy, f2)
be an R-reqular sequence, where fi and fy are prime elements such that the
ideal (f1, f2)r is prime. Let V, (resp. V) be the principal G,-bundle over

X = D(f1, f2) defined by g = v - f7™f;" (resp. g = w- f7™ f;"), where
P(g) = (m',n’). Then Vy; 2V if (1) or (2) holds.

() mM>m+n—-1orn >m+n—1

23



(2) m',n' Sm+n—1andv' & (fi, fo)™ "m0 where

5(v) = 0 Z:fU ¢ (f1, f2)
1 Zf’U S (fl,fg).
Proof. Letp:V, = X (resp. p': V;y — X) be the structure morphism of the
principal G,-bundle V;, over X (resp. V, over X). Suppose that there exists
an isomorphism @ : V,, ~ V, for contradiction. By Lemma 2.3.1, there exists
an automorphism ¢ of X such that ¢op = p' o ®. Since (f1, f2) is R-regular,
there exists an automorphism ¢ of R such that ¢ = Spec(¢))|x : X — X.
Then = (f1, f2)r = (f1, f2)r since (f1, f2) g is a prime ideal in R. By Lemma
3.4.2, the pushforward of the principal G,-bundle V, by ® is defined by g,.
Then V,, is isomorphic to V,, as a scheme over X. Therefore, there exists a
unit a in R such that a - ¢’ = g3 in H(X, Ox) by Lemma 3.4.1.
Ifm'">m+n—1orn>m+n—1, then P(g?) < (m/,n'), which is a
contradiction. Therefore V,, 22 V,,.
Ifm/,n' <m+n—1and v ¢ (fi, fo)™ "™ ") then we can take
c1,¢o € R that satisfy ¢ = gy +c1 - f;7 ™ " + ey - f3 ™" Then,

a- U/ . flrn+nfm/71f2m+nfn’71 — ¢71<U) -h + cp - f2m+n71 4 o - flernfl

for some h € (f1, fo)™ 2. Since ¥~ (v) € (f1, f2)°®) and h €
(f1, f2)™ "2, the right-hand side of the above equation is in ( fy, fo)™ " =20),
Then a - v € (fy, fo)™ ™"+ gince (f1, f2) is an R-regular sequence,
which is a contradiction. Therefore, V, 22 V. O

Corollary 3.4.4. Let Spec(R) be a non-A'-uniruled affine variety. Let
(f1, f2) be an R-regular sequence, where fi and fo are prime elements such
that the ideal (f1, fo)r is prime. Let m,n,m’,n’ be integers. Then Vimm pon X

~ 1 ;
Al V m o X AT but Vim pn %V;m/f;n/ ifm+n#m +n.

Proof. Since Vf-m 5 and V —m' —ns are affine; Danielewski’s fiber product
trick implies Vf1 mp=n X Al ~ V . X Al Suppose that m/ +n' > m +n.

In the case where m’ > m +n — 1 o2r n' > m+n — 1, Theorem 3.4.3 implies
that Vi—m,—n 2 V, = In the case where m/,n’ < m + n — 1, then
L ¢ (fi, fo)™+ - ". Therefore, Theorem 3.4.3 implies that Vi-m-n 2

[

fom’ f;n’
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Corollary 3.4.5. Let Spec(R) be a non-A'-uniruled affine variety. Let
(f1, f2) be an R-regular sequence, where fi and fo are prime elements such
that the ideal (f1, fo)r is prime. Let m,n be integers larger than 1. Let
o(X,Y) be an element of (X, Y)\ (X)U(Y)) C k[X,Y] satisfying degx¢ <
m,degy ¢ < n. Then Vfl—mf{n x Al ~ V¢(fl7f2)'fl—m‘f2—n x Al and P (ffmf;”> =

P (¢ (fi,f2) - fi™fy ”) but Viem pn E Vs gy prm g

Proof. Let ¢/(X,Y) := 1 € k[X,Y]. Then ¢ and ¢ satisfy the condi-
tion of Prop081t10n 3.2.3 and Proposition 3.3.4.  Therefore V; —m and
Vairi.fa): frmyn are affine, Danielewski’s fiber product trick 1mphes Vf m p=n X

Al _V fl»f2)'f1 m g x A', and

P(FLT) =P (06U fo) - fih") = (mom).

Since (f1, f2) is an R-regular sequence, 1 ¢ (fi, f2) = (f1, f2)™ """+
Therefore, f; ™ f;" and &(f1, f2) - f1 ™[5 " satisfy condition (2) of Theorem
3.4.3. Therefore Vfl—me—n % V¢(f1,f2)~f1_mf2_”' []
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