Zariski's cancellation problem for principal Ga-bundles over non-A1-uniruled non-affine schemes

非単線織非アフィンスキーム上の主Ga束に関するザリスキの消去問題

March, 2024

Riku KUDOU 工藤 陸

Zariski's cancellation problem for principal Ga-bundles over non-A1-uniruled non-affine schemes

非単線織非アフィンスキーム上の主Ga束に関するザリスキの消去問題

March, 2024

Waseda University Graduate School of Fundamental Science and Engineering

Department of Pure and Applied Mathematics, Research on Algebraic Geometry

> Riku KUDOU 工藤 陸

Acknowledgments

I would like to express my gratitude to my supervisor Professor Hajime Kaji for his grateful guidance for a long time. Ever since I first took his lecture on Gröbner basis, he taught me various things not limited to Algebraic Geometry. I would also like to thank Professor Yasunari Nagai and Professor Takao Fujita for their useful advices and discussions.

This paper is based on the following two papers:

- [21] R. Kudou, About counterexamples for generalized Zariski cancellation problem, Comm. Algebra, 48 (2020), 2358-2368. MR4107576
- [22] R. Kudou, Zariski's cancellation problem for principal G_a-bundles over non-A¹-uniruled quasi-affine varieties, Res. Math. 10 (2023), no. 1, Paper No. 2281061, 6. MR4672555

Contents

1	Introduction					
	1.1	Background	3			
	1.2	Main Results	5			
	1.3	Notations	7			
2	${f ZCP}$ for principal ${\Bbb G}_a$ -bundles over noetherian integral scheme					
	non	-separated over k	8			
	2.1	Construction of principal \mathbb{G}_a -bundles over $Y_+ rZ$	8			
	2.2	Affine criterion for principal \mathbb{G}_a -bundles over $Y_+ rZ$	9			
	2.3	Necessary and sufficient condition for two principal \mathbb{G}_a -bundles				
		to be nonisomorphic	12			
	2.4	Counterexamples to ZCP for principal \mathbb{G}_a -bundles over Y_+Z .	16			
3	ZCI	P for principal \mathbb{G}_a -bundles over quasi-affine varieties	18			
	3.1	Construction of principal \mathbb{G}_a -bundles over $D(f_1, f_2)$	18			
	3.2	Sufficient condition for principal				
		\mathbb{G}_a -bundles over $D(f_1, f_2)$ to be affine	19			
	3.3	Invariant of principal \mathbb{G}_a -bundles over $X = D(f_1, f_2) \dots \dots$	20			
	3.4	Sufficient condition for two principal \mathbb{G}_a -bundles to be noni-				
		somorphic	22			

Chapter 1

Introduction

1.1 Background

Zariski's cancellation problem for an affine variety V (ZCP for V) asks whether the existence of an isomorphism between $V \times_k \mathbb{A}^1$ and $W \times_k \mathbb{A}^1$ for an affine variety W implies that V and W are isomorphic. ZCP is known to hold for affine curves [1], \mathbb{A}^2 [13][23], non- \mathbb{A}^1 -uniruled affine varieties [3][18][5][6], and line bundles over non- \mathbb{A}^1 -uniruled affine varieties [6]. ZCP for \mathbb{A}^n still remains unsolved for $n \geq 3$ in characteristic zero. However, in positive characteristic, Gupta [16] proved that ZCP for \mathbb{A}^n does not hold if $n \geq 3$.

	ch(k) = 0	$\operatorname{ch}(k) > 0$
n = 1	\checkmark Abhyankar-Hainzer-Eakin'72	
n=2	\checkmark Fujita'79, Miyanishi-Sugie'80	$\checkmark {\rm Russel'81}$
$n \ge 3$???	\times Gupta'14

Table 1.1: Zariski's cancellation problem for \mathbb{A}^n

Counterexamples have also been constructed in characteristic 0 using 1stably free modules over a ring (e.g., [17] [25]) or the so-called "Danielewski's fiber product trick".

Lemma 1.1.1 (Danielewski's fiber product trick [4]). Let X be a k-scheme. If two affine k-schemes V and W are isomorphic to principal \mathbb{G}_a -bundles over X, then $V \times_k \mathbb{A}^1 \simeq_k W \times_k \mathbb{A}^1$. *Proof.* Since V (resp. W) is affine, principal \mathbb{G}_a -bundles over V (resp. W) are all trivial. Since $V \times_X W$ is a principal \mathbb{G}_a -bundle over V and W, $V \times_k \mathbb{A}^1 \simeq V \times_X W \simeq W \times_k \mathbb{A}^1$.

If V and W above are not isomorphic, then W is a counterexample to ZCP for V. On the other hand, such a counterexample can not be constructed if Xis affine, since there exists a one to one correspondence between $\mathrm{H}^1(X, \mathcal{O}_X)$ and isomorphicm classes of principal \mathbb{G}_a -bundles over a scheme X. This fact implies that if X is affine, then any principal \mathbb{G}_a -bundle over an affine scheme X is isomorphic to $X \times_k \mathbb{A}^1$. Therefore principal \mathbb{G}_a -bundles over non-affine schemes have been studied

Counterexamples to ZCP for principal \mathbb{G}_a -bundles over a noetherian integral scheme X nonseparated over \mathbb{C} were constructed in the case where X is a scheme of the following form:

Definition 1.1.2. Let Y be a variety, Z a closed subvariety of Y, and $r \in \mathbb{N}$. Let Y_0, \ldots, Y_r be r + 1 copies of Y. Then

$$Y_{+}rZ := Y \sqcup_{Y \setminus Z} \underbrace{Y \sqcup_{Y \setminus Z} \cdots \sqcup_{Y \setminus Z} Y}_{r} = Y_{0} \sqcup_{Y \setminus Z} Y_{1} \sqcup_{Y \setminus Z} \cdots \sqcup_{Y \setminus Z} Y_{r}.$$

Namely Y_+rZ is a non-separated k-scheme obtained by gluing r+1 copies of Y along $Y \setminus Z$.

If $Y = \operatorname{Spec}(R)$ is an affine variety and $Z = \bigcup Z_i$ is the union of principal hypersurfaces Z_i defined by $f_i \in R$ for each $i = 1, \ldots, n$, then a principal \mathbb{G}_a -bundle over Y_+Z is defined by an element g of R_{f_1,\ldots,f_n} , and we denote it by V_g (See section 2.1 for the construction). If $g = \prod_{i=1}^n f_i^{-m_i}$, then V_g is isomorphic to $A_{m_1,\ldots,m_n} := \operatorname{Spec}(R[s,t]/(\prod_{i=1}^n f_i^{-m_i} \cdot s - t^2 + 1))$. Danielewski [4] proved that if $Y = \mathbb{A}^1$ and $Z = \{0\}$, then A_1 is not

Danielewski [4] proved that if $Y = \mathbb{A}^1$ and $Z = \{0\}$, then A_1 is not isomorphic to A_n for n > 1. Later Fieseler [11] proved that if Y is a smooth affine curve and Z is a point, then A_m is isomorphic to A_n if and only if m = n. In higher dimension, Dubouloz [8] proved that if $Y = \mathbb{A}^l$ and Z is the union of coordinate hyperplane, then $A_{m_1,\dots,m_l} \ncong A_{n_1,\dots,n_l}$ if $\{m_1,\dots,m_l\} \neq$ $\{n_1,\dots,n_l\}$. Drylo [6][7] proved that if Y is a non- \mathbb{A}^1 -uniruled affine variety, and Z is the union of principal hypersurfaces of Y, then $A_{m_1,\dots,m_n} \ncong A_{m'_1,\dots,m'_n}$ if there exists $i \in \{1,\dots,n\}$ such that $m_i \notin \{m'_1,\dots,m'_n\}$.

In the case where the base scheme X of a principal \mathbb{G}_a -bundle is a quasiaffine variety, Counterexamples have been constructed if X is the non-zero locus $D(f_1, f_2)$ of two regular functions f_1, f_2 on an affine variety Y = Spec(R).

	Y	r	Z
Danielewski	\mathbb{A}^1	1	0
Fieseler	smooth affine curve	$r \in \mathbb{N}$	point
Dubouloz	\mathbb{A}^n	$r \in \mathbb{N}$	coordinate hyperplanes
Dryło	non-uniruled affine variety	1	principal hypersurface

Table 1.2: Counterexamples to ZCP for principal \mathbb{G}_a -bundles over $X = Y_+ rZ$

In this case, a principal \mathbb{G}_a -bundle over $D(f_1, f_2)$ is defined by an element g of $R_{f_1f_2}$, and we denote by V_g the principal \mathbb{G}_a -bundle over $D(f_1, f_2)$ defined by g (see Section 3.1 for the construction). If $g = f_1^{-m} f_2^{-n}$, then V_g is isomorphic to $A_{m,n} := \operatorname{Spec}(R[s,t]/(f_1^m s + f_2^n t - 1))$. For this problem, Finston-Maubach [12] proved that if $R = \mathbb{C}[x, y, z]/(x^a + y^b + z^c)$, where a, b, c are pairwise relatively prime positive integers satisfying 1/a + 1/b + 1/c < 1 and if $f_1 = x$, $f_2 = y$, then $A_{m,n} \simeq_{\mathbb{C}} A_{m',n'}$ for nonnegative integers m, n, m', n' if and only if (m, n) = (m', n').

Such a result does not hold for general R. For example, Dubouloz-Finston-Mehta [10] proved that if $R = \mathbb{C}[x, y]$, $f_1 = x$, and $f_2 = y$, then m + n = m' + n' implies $A_{m,n} \simeq_{\mathbb{C}} A_{m',n'}$. Moreover, Dubouloz-Finston [9] proved that even if (m, n) = (m', n'), there exists $h, h' \in R = \mathbb{C}[x, y]$ such that $V_g \ncong V_{g'}$ for $g = h \cdot f_1^{-m} f_2^{-n}$ and $g' = h' \cdot f_1^{-m'} f_2^{-n'}$. More precisely, they showed that $A(m, n, p) = R[s, t] / (x^m s + y^n t - p(x, y))$ and $A(m', n', p') = R[s, t] / (x^{m'} s + y^{n'} t - p'(x, y))$ for $p, p' \in R \setminus ((x)_R \cup (y)_R)$ satisfying $\deg_x p < m$, $\deg_y p < n$ are nonisomorphic if $\deg p = m + n - 2$ and if $\deg p' < m' + n' - 2$.

Another result related to ZCP for \mathbb{A}^n was obtained by Winkelmann [26] and Finston-Jaradat [19]. They proved that \mathbb{A}^5 is isomorphic to a principal \mathbb{G}_a -bundle over a strictly quasi-affine variety, that is a quasi-affine but nonaffine variety. If there exists an affine variety W that is isomorphic to a principal \mathbb{G}_a -bundle over such a quasi-affine variety and satisfies $W \ncong \mathbb{A}^5$, then W is a counterexample to ZCP for \mathbb{A}^5 .

1.2 Main Results

One of the important problem of ZCP for principal \mathbb{G}_a -bundles is what the condition for two principal \mathbb{G}_a -bundles to be isomorphic is. In previous re-

searches, if V_g is a principal \mathbb{G}_a -bundle over non-affine scheme X defined by $\overline{g} \in \mathrm{H}^1(X, \mathcal{O}_X)$, the number of poles of g plays an important role for this problem. In this paper We focus on this number, and we define an invariant $\mathrm{P}(\overline{g})$ of a principal \mathbb{G}_a -bundle V_g over a non-affine scheme X. $\mathrm{P}(\overline{g})$ corresponds to the number of poles, and we will prove that $P(\overline{g})$ is independent of the choice of g. (See Section 2.4 in the case of $X = Y_+Z$, and Section 3.3 in the case of $X = \mathrm{D}(f_1, f_2)$). Moreover we construct new counterexamples to ZCP for principal \mathbb{G}_a -bundles over a non- \mathbb{A}^1 -uniruled non-affine scheme X, especially, in the case where X is a non-separated scheme of the form Y_+rZ , and in the case where X is a quasi-affine variety of the form $\mathrm{D}(f_1, f_2)$).

In the case where X is a non-separated scheme of the form Y_+rZ , we give a necessary and sufficient condition for two principal \mathbb{G}_a -bundles over Y_+rZ (Proposition 2.3.2), and we proved that even if $P(\overline{g_1})$ and $P(\overline{g_2})$ coincide, it is not necessarily true that V_{g_1} and V_{g_2} are isomorphic.

Theorem 1.2.1 (Theorem 2.4.2). Let P be a closed point of $\mathbb{A}^1_* =$ Speck $[x, x^{-1}]$ defined by $f_1 = x - 1$. Let $X = \mathbb{A}^1_{*+}P$, $g_1 = (x+1) \cdot (x-1)^{-2}$, and $g_2 = (x-1)^{-2}$. Let V_{gi} be the principal \mathbb{G}_a -bundle over X defined by g_i . Then $V_{g1} \times \mathbb{A}^1 \simeq V_{g2} \times \mathbb{A}^1$ and $P(\overline{g_1}) = P(\overline{g_2}) = 2$, but $V_{g1} \ncong V_{g2}$.

In the case where X is a non- \mathbb{A}^1 -uniruled quasi-affine variety of the form $D(f_1, f_2)$, we give a sufficient condition for two principal \mathbb{G}_a -bundles over X to be non-isomorphic.

Theorem 1.2.2 (Theorem 3.4.3). Let $\operatorname{Spec}(R)$ be a non- \mathbb{A}^1 -uniruled affine variety. Let (f_1, f_2) be an *R*-regular sequence, where f_1 and f_2 are prime elements such that the ideal $(f_1, f_2)_R$ is prime. Let V_g (resp. $V_{g'}$) be the principal \mathbb{G}_a -bundle over $D(f_1, f_2)$ that is defined by $g = v \cdot f_1^{-m} f_2^{-n}$ (resp. $g' = w \cdot f_1^{-m'} f_2^{-n'}$) with $\operatorname{P}(\overline{g'}) = (m', n')$. Then $V_g \ncong V_{g'}$ if (1) or (2) holds.

- (1) m' > m + n 1 or n' > m + n 1
- (2) $m', n' \leq m + n 1$ and $v' \notin (f_1, f_2)^{m' + n' m n + \delta(v)}$, where

$$\delta(v) = \begin{cases} 0 & \text{if } v \notin (f_1, f_2) \\ 1 & \text{if } v \in (f_1, f_2). \end{cases}$$

By using this theorem, we give a counterexample to ZCP.

Corollary 1.2.3 (Corollary 3.4.4). Let $\operatorname{Spec}(R)$ be a non- \mathbb{A}^1 -uniruled affine variety. Let (f_1, f_2) be an *R*-regular sequence, where f_1 and f_2 are prime elements such that the ideal $(f_1, f_2)_R$ is prime. Let m, n, m', n' be integers. Then $V_{f_1^{-m}f_2^{-n}} \times \mathbb{A}^1 \simeq V_{f_1^{-m'}f_2^{-n'}} \times \mathbb{A}^1$ but $V_{f_1^{-m}f_2^{-n}} \ncong V_{f_1^{-m'}f_2^{-n'}}$ if $m + n \neq m' + n'$.

In addition, we show that even if the numbers of poles (m, n) and (m', n') coincide, there exists $h, h' \in R$ such that $V_g \not\cong V_{g'}$, where $g = h \cdot f_1^{-m} f_2^{-n}$ and $g' = h' \cdot f_1^{-m'} f_2^{-n'}$ in the case where $\operatorname{Spec}(R)$ is not \mathbb{A}^1 -uniruled.

Corollary 1.2.4 (Corollary 3.4.5). Let Spec(R) be a non-A¹-uniruled affine variety. Let (f_1, f_2) be an R-regular sequence, where f_1 and f_2 are prime elements such that the ideal $(f_1, f_2)_R$ is prime. Let m, n be integers larger than 1. Let $\phi(X, Y)$ be an element of $(X, Y) \setminus ((X) \cup (Y)) \subset k[X, Y]$ satisfying $\deg_X \phi < m, \deg_Y \phi < n$. Then $V_{f_1^{-m} f_2^{-n}} \times \mathbb{A}^1 \simeq V_{\phi(f_1, f_2) \cdot f_1^{-m} f_2^{-n}} \times \mathbb{A}^1$ and $P\left(\overline{f_1^{-m} f_2^{-n}}\right) = P\left(\overline{\phi(f_1, f_2) \cdot f_1^{-m} f_2^{-n}}\right)$, but $V_{f_1^{-m} f_2^{-n}} \ncong V_{\phi(f_1, f_2) \cdot f_1^{-m} f_2^{-n}}$.

1.3 Notations

In this paper we work over an algebraically closed field k of characteristic zero. For an ideal I of a ring R and for an integer n, I^n denotes the ideal generated by the products of n elements of I. If $n \leq 0$, $I^n := R$. For a scheme X and for $f \in \Gamma(X, \mathcal{O}_X)$, X_f and D(f) denote the nonzero locus of f. For $f_1, \ldots, f_n \in \Gamma(X, \mathcal{O}_X)$, $D(f_1, \ldots, f_n)$ denotes the nonzero locus of (f_1, \ldots, f_n) . For a ring homomorphism $\psi : R \to S$, $\operatorname{Spec}(\psi)$ denotes the morphism of schemes $\operatorname{Spec}(S) \to \operatorname{Spec}(R)$ associated to ψ . For a morphism of schemes $\phi : X \to Y$ and subschemes $X' \subseteq X$ and $Y' \subseteq Y$, if $\phi(X') \subseteq Y'$, we denote by $\phi|_{X'} : X' \to Y'$ the restriction of ϕ from X' to Y'. \mathbb{G}_a denotes the additive group variety $(\mathbb{A}^1_k, +)$ over k. For a k-scheme X and for an Xscheme V with a \mathbb{G}_a -action on V, V is called a **principal** \mathbb{G}_a -**bundle over** X in the Zariski topology if there is a covering $(U_i \to X)$ for the Zariski topology on X such that $V \times_X U_i$ is isomorphic with its $\mathbb{G}_a \times_k U_i$ -action to $\mathbb{G}_a \times_k U_i$ over U_i . A variety X is \mathbb{A}^1 -**uniruled** if for general closed point x of X, there exists a nonconstant morphism $f_x : \mathbb{A}^1 \to X$ such that $x \in f_x(\mathbb{A}^1)$.

Let \leq be a partial order on $\mathbb{Z}_{\geq 0}^{\oplus n}$ defined as follows: For $(m_i), (m'_i) \in \mathbb{Z}_{\geq 0}^{\oplus n}$ $(m_i) \leq (m'_i)$ if and only if $m_i \leq m'_i$ for each *i*. Write $(m_i) \prec (m'_i)$ if $(m_i) \leq (m'_i)$ and $(m_i) \neq (m'_i)$.

Chapter 2

ZCP for principal \mathbb{G}_a -bundles over noetherian integral scheme non-separated over k

In this chapter, let Y be an affine variety, Z the union of principal hypersurfaces Z_i defined by a prime element $f_i \in R$ for each i = 1, ..., n, and r a non-negative integer.

2.1 Construction of principal \mathbb{G}_a -bundles over Y_+rZ

First we describe how the one-to-one correspondence between isomorphism classes of principal \mathbb{G}_a -bundles over $X = Y_+ rZ$ and the elements of $\mathrm{H}^1(X, \mathcal{O}_X)$ is obtained.

Since $Y_i = Y$ and $Y_i \setminus Z \simeq \operatorname{Spec}(R_{f_1 \cdots f_n})$ are affine, we can compute $\operatorname{H}^1(X, \mathcal{O}_X)$ by Čech cohomology:

$$\begin{aligned} \mathrm{H}^{1}(X,\mathcal{O}_{X}) &\simeq & \check{\mathrm{H}}^{1}(\{Y_{0},\ldots,Y_{r}\},\mathcal{O}_{X}) \\ &= & \mathrm{Coker}\left(\phi:\bigoplus_{i=0}^{r}R\to\mathrm{Z}_{1}:(a_{i})\mapsto(a_{i}-a_{j})\right), \end{aligned}$$

where

$$\mathbf{Z}_1 := \operatorname{Ker} \left(\bigoplus_{0 \leq i < j \leq r} R_{f_1 \cdots f_n} \to \bigoplus_{0 \leq i < j < k \leq r} R_{f_1 \cdots f_n} : (a_{ij}) \mapsto (a_{ij} - a_{ik} + a_{jk}) \right).$$

For an element $g = (g_{ij}) \in \mathbb{Z}_1$, \overline{g} denotes the image of g by the natural map $\mathbb{Z}_i \to \operatorname{Coker} \phi$. The principal \mathbb{G}_a -bundle V_g over X defined by g is, as a total space, an \mathbb{A}^1 -bundle over X obtained by gluing $Y_i \times \mathbb{A}^1$ and $Y_j \times \mathbb{A}^1$ along the following isomorphism between open subschemes $Y \setminus Z \times \mathbb{A}^1$ of $Y_i \times \mathbb{A}^1$ and $Y \setminus Z \times \mathbb{A}^1$ of $Y_j \times \mathbb{A}^1$:

$$G_{q_{ij}}: Y \setminus Z \times \mathbb{A}^1 \to Y \setminus Z \times \mathbb{A}^1 : (x,t) \mapsto (x,t+g_{ij}).$$

The \mathbb{G}_a -action on V_g is obtained by gluing equivariantly trivial \mathbb{G}_a -actions on $Y_i \times \mathbb{A}^1$ for $i = 0, \ldots, r$, that acts trivially on Y_i and by addition on \mathbb{A}^1 . The image of ϕ gives the isomorphism class as principal \mathbb{G}_a -bundles of V_g , and we denote it by $V_{\overline{g}}$.

2.2 Affine criterion for principal \mathbb{G}_a -bundles over Y_+rZ

Lemma 2.2.1 ([14]). Let X be a scheme, Y an affine scheme, and $\mathcal{U} = \{U_{\lambda}\}_{\lambda \in \Lambda}$ an open affine covering of X. Then for any morphism $f: X \to Y$, f is separated if and only if

- (1) $U_{\mu} \cap U_{\lambda}$ is affine for any $\mu, \lambda \in \Lambda$;
- (2) $\Gamma(U_{\mu} \cap U_{\lambda}, \mathcal{O}_X)$ is generated by $\Gamma(U_{\mu}, \mathcal{O}_X)$ and $\Gamma(U_{\lambda}, \mathcal{O}_X)$.

The following proposition gives a necessary and sufficient condition for principal \mathbb{G}_a -bundles over Y_+rZ to be affine.

Proposition 2.2.2. Let $Y = \operatorname{Spec} R$ be an affine variety. Let Z_i be the hypersurface of Y defined by a prime element $f_i \in R$ for each $i = 1, \ldots, n$. Let $Z := \bigcup Z_j$. Let $p : V \to Y_+rZ$ be a principal \mathbb{G}_a -bundle over Y_+rZ defined by $[\{g_{ij}\}] \in \check{H}^1(\{Y_0, \ldots, Y_r\}, \mathcal{O}_{X_+rZ}) \simeq H^1(Y_+rZ, \mathcal{O}_{Y_+rZ})$, where $g_{ij} = h_{ij} \cdot f_1^{-k_{ij,1}} \cdots f_m^{-k_{ij,m}} \in R_{f_1 \cdots f_m}$, $k_{ij,l} \in \mathbb{Z}_{\geq 0}$, and $h_{ij} \in R$ such that h_{ij} can not be divided by f_l if $k_{ij,l} > 0$.

If (a) r = 1 or (b) $r \ge 2$ and $\emptyset \ne Z_{l_1} \cap Z_{l_2} \not\subset \bigcup_{l \ne l_1, l_2} Z_l$ for any $l_1, l_2 = 1, \ldots, m$, then the following conditions are equivalent.

- (1) $k_{ij,l} \ge 1$ and $(h_{ij}, f_1 \cdots f_m) = A$ for any $i, j = 0, \dots, r$ and $l = 1, \dots, m$.
- (2) V is separated.
- (3) V is affine.

Proof. $(3) \Rightarrow (2)$ is obvious. It is enough to show that $(1) \Leftrightarrow (2)$ and $(1) \Rightarrow (3)$.

Let us denote $(k_{ij,1},\ldots,k_{ij,m}) \in \mathbb{Z}^m$ by $[k_{ij}], (1,\ldots,1) \in \mathbb{Z}^m$ by $\mathbf{1}$, and $f_1^{k_{ij,1}}\cdots f_m^{k_{ij,m}}$ by $\underline{\mathbf{f}}^{[k_{ij}]}$.

First we give a necessaly and sufficient condition for V to be separated. Let $V_j := p^{-1}(Y_j) (\simeq Y_j \times \mathbb{A}^1)$. Let $\mathcal{Y} := \{Y_0, \ldots, Y_r\}$ be an open covering of Y_+rZ . An open subvariety $Y_i \cap Y_j$ is isomorphic to $Y \setminus Z$ for any $i, j = 0, \ldots r$. Then $V_i \cap V_j = p^{-1}(Y_i \cap Y_j)$ is isomorphic to $(Y_i \cap Y_j) \times \mathbb{A}^1$. Therefore V is separated if and only if $\Gamma(V_i \cap V_j, \mathcal{O}_V)$ is generated by the image of $\Gamma(V_i, \mathcal{O}_V)$ and $\Gamma(V_j, \mathcal{O}_V)$ for any $i, j = 0, \ldots r$ by Lemma 2.2.1. This condition is equivalent to $R_{f_1 \cdots f_m}[t] = R[g_{ij}][t]$ for any $i, j = 0, \ldots, r$ with $i \neq j$, where t is an indeterminate. Therefore V is separated if and only if $R_{\underline{f}^1} = R[g_{ij}]$ for any $i, j = 0, \ldots, r$ with $i \neq j$.

 $(1) \Rightarrow (2)$ Suppose the condition (1). Then there exist elements $a, b \in R$ such that $1 = ah_{ij} + b\underline{f}$ and $k_{ij,l} - 1 \ge 0$. Therefore $\underline{f}^{-1} = a\underline{f}^{[k_{ij}]-1}g_{ij} + b$ and $R_{\underline{f}} = R[g_{ij}]$.

 $(2) \Rightarrow (1)$ Suppose the condition (2). Then there exist $n \in \mathbb{N}$ and $a_0, \ldots a_n \in \mathbb{R}$ such that

$$\underline{\mathbf{f}}^{-1} = a_0 + a_1 g_{ij} + a_2 g_{ij}^2 + \dots + a_n g_{ij}^n.$$

If n = 0, then f_1, \ldots, f_m are units in R, a contradiction. Therefore n > 0. Multiplying both sides of the above equation by $\underline{f}^{n[k_{ij}]}$, we obtain the following equation:

$$\underline{\mathbf{f}}^{n[k_{ij}]-\mathbf{1}} = a_0 \underline{\mathbf{f}}^{n[k_{ij}]} + h_{ij} s,$$

where $s = a_1 \underline{\mathbf{f}}^{(n-1)[k_{ij}]} + \cdots + a_{n-1} h_{ij}^{n-2} \underline{\mathbf{f}}^{[k_{ij}]} + a_n h_{ij}^{n-1} \in \mathbb{R}$. Since $h_{ij} \notin (f_l)$ for any $l = 1, \ldots, m$, s can be divided by $\underline{\mathbf{f}}^{n[k_{ij}]-1}$. Therefore there exists an element $s' \in A$ such that $1 = a_0 \underline{\mathbf{f}} + h_{ij} s$.

 $(1) \Rightarrow (3)$ Suppose the condition (1). We first observe that if $r \neq 2$, there exists an index $j' \in \{1, \ldots, r\}$ such that $k_{0j',l} = \max_j\{k_{0j,l}\}$ for all $l = 1, \ldots, m$. Assume that there exist indices $j_1, j_2 \in \{1, \ldots, r\}$ and l_1 , $l_2 \in \{1, \ldots, m\}$ such that $j_1 \neq j_2, l_1 \neq l_2, k_{0j_1,l_1} > k_{0j_2,l_1}$, and $k_{0j_1,l_2} < k_{0j_2,l_2}$ for contradiction. Let $\mu_l := \max\{k_{0j_1,l}, k_{0j_2,l}\}$ for each $l \in \{1, \ldots, m\}$ and $[\mu] := (\mu_1, \ldots, \mu_m) \in \mathbb{Z}_{\geq 0}^m$. Then It follows from the cocycle condition $g_{j_1j_2} = g_{0j_2} - g_{0j_1}$ that

$$\underline{\mathbf{f}}^{[\mu]-[k_{j_1j_2}]}h_{j_1j_2} = \underline{\mathbf{f}}^{[\mu]-[k_{0j_2}]}h_{0j_2} - \underline{\mathbf{f}}^{[\mu]-[k_{0j_1}]}h_{0j_1}$$

The right hand side of this equation is in $(f_{l_1}, f_{l_2}) \setminus ((f_{l_1}) \cup (f_{l_2})$. Therefore $\mu_{l_1} = k_{j_1 j_2, l_1}$ and $\mu_{l_2} = k_{j_1 j_2, l_2}$. Moreover, $\underline{f}^{[\mu] - [k_{j_1 j_2}]} h_{j_1 j_2} \in (f_{l_1}, f_{l_2})$ implies $\underline{f}^{[\mu] - [k_{j_1 j_2}]} \in (f_{l_1}, f_{l_2})$ because $h_{j_1 j_2}$ is a nonzero function on Z and $Z_{l_1} \cap Z_{l_2} \neq \emptyset$. This contradicts to the assumption $Z_{l_1} \cap Z_{l_2} \not\subset \bigcup_{l \neq l_1, l_2} Z_l$. Therefore we can choose an index $j' \in \{1, \ldots, r\}$ such that $k_{0j',l} = \max_j \{k_{0j,l}\}$ for all $l = 1, \ldots, m$.

Next, we show that there exists an affine morphism $\psi: V \to \mathbb{A}^1$ by induction on r. If r = 0 (i.e. $Y_{+}rZ = Y$), then V is isomorphic to $Y \times_{k} \mathbb{A}^{1}$. Then the second projection of $Y \times_k \mathbb{A}^1$ is an affine morphism. Suppose the statement holds for r-1. By the assumption, there exists $s_{ij} \in R$ such that $\overline{h_{ij}s_{ij}} = 1$ in $R/(f_1 \cdots f_m)$. Define morphisms $\phi_j \colon Y_j \to \mathbb{A}^1$ to be $\phi_j(x,t) = s_{0j}(\underline{f}^{[k_{0j'}]}t + \underline{f}^{[k_{0j'}]-[k_{0j}]}h_{0j})$ for each $j \in \{0, \dots, r\}$ and define morphisms $\psi_j := \phi \circ g_j^{-1} \colon V_j \simeq Y \times_k \mathbb{A}^1 \to \mathbb{A}^1$ for each $j \in \{0, \ldots r\}$. By the cocycle condition, morphisms $\{\psi_j\}_{j=0,\dots,r}$ glue to a morphism $\psi: V \to \mathbb{A}^1$. Define $H_j := g_j(Z \times_k \mathbb{A}^1) \subset V_j$. Then $\psi(H_0) = \phi_0 g_0^{-1} g_0(Z \times_k \mathbb{A}^1) = \{0\}$ and $\psi(H_{j'}) = \phi_{j'} g_{j'}^{-1} g_{j'}(Z \times_k \mathbb{A}^1) = \{1\}.$ Therefore $\psi^{-1}(\mathbb{A}^1 \setminus \{0\}) \subseteq V \setminus H_0$ and $\psi^{-1}(\mathbb{A}^1 \setminus \{1\}) \subseteq V \setminus H_{j'}$. Moreover, $V \setminus H_0$ is the principal \mathbb{G}_a -bundle defined by the cocycle $\{g_{ij}\}_{i,j\neq 0}$, and $V \setminus H_{j'}$ is the principal \mathbb{G}_a -bundle defined by the cocycle $\{g_{ij}\}_{i,j\neq j'}$. Therefore $V \setminus H_0$ and $V \setminus H_{j'}$ are affine by the induction hypothesis. Therefore the restriction maps $\psi|_{V\setminus H_0}: V \setminus H_0 \to \mathbb{A}^1$ and $\psi|_{V\setminus H_{j'}}: V\setminus H_{j'}\to \mathbb{A}^1$ are affine morphisms, and hence $\psi^{-1}(\mathbb{A}^1\setminus\{0\})$ and $\psi^{-1}(\mathbb{A}^1 \setminus \{1\})$ are affine. Therefore ψ is affine.

Remark 2.2.3. Fieseler [11] proved this proposition in the case where Y is an affine curve, and Dubouloz [8] proved this proposition in the case where $Y = \mathbb{A}^n$ and Z is the union of coordinate hyperplanes of \mathbb{A}^n .

2.3 Necessary and sufficient condition for two principal \mathbb{G}_a -bundles to be nonisomorphic

Lemma 2.3.1. Let Y be a non- \mathbb{A}^1 -uniruled affine variety and let X be a k-scheme equiped with a dominant morphism $X \to Y$ such that there exists a covering $(X_i \to X)$, where X_i is a variety of dimension dim(Y) for each i. Let $p: V \to X$ and $q: W \to X$ be Zariski locally trivial \mathbb{A}^n -bundles over X. Then an isomorphism $\Phi: V \to W$ descends to an automorphism $\phi: X \to X$ such that $\phi \circ p = q \circ \Phi$.

Proof. We can take a covering $(X_i \to X)_{i \in I}$ of X so that p and q are trivial over X_i for each i. Since Y is not \mathbb{A}^1 -uniruled, Dryło's lemma [6, Lemma 2] implies that the fibers of p are contracted by the morphism $q \circ \Phi \colon V \to X$. Therefore the composition of any section $s_i \colon X_i \to p^{-1}X_i$ and $q \circ \Phi$ is independent of the choice of s_i for each i. The compositions $q \circ \Phi \circ s_i$ and $q \circ \Phi \circ s_j$ coincide on $X_i \cap X_j$ for the same reason. Therefore $\phi \colon X \to X$ exists. The inverse of ϕ can be constructed in the same way.

Proposition 2.3.2. Let $Y = \operatorname{Spec}(R)$ be a non- \mathbb{A}^1 -uniruled affine variety. Let Z_i be the hypersurface of Y defined by $f_i \in R$ for each $i = 1, \ldots, m$. Let $Z := \bigcup Z_j$. For k = 1, 2, let V_k be a principal \mathbb{G}_a -bundle over $X = Y_+rZ$ defined by $g_k \in \operatorname{H}^1(X, \mathcal{O}_X)$. Then V_1 and V_2 are isomorphic if and only if g_1 and g_2 are in the same orbit of the action by $\operatorname{Aut}(Y_+rZ) \times \Gamma(Y, \mathcal{O}_Y^{\times})$.

Proof. The computation of this proof in the case of r = 1 is almost the same as the proof of the sufficient condition for two principal \mathbb{G}_a -bundles to be nonisomorphic by R. Drylo [7]. Suppose that $\Phi: V_1 \to V_2$ is an isomorphism. By Lemma 2.3.1, there exists a unique automorphism $\phi: Y_+rZ \to Y_+rZ$ satisfies $\phi \circ p_1 = p_2 \circ \Phi$, where $p_k: V_k \to Y_+rZ$ is the canonical projection of principal \mathbb{G}_a -bundles for k = 1, 2. Let $Y'_i := \phi(Y_i)$ and $\mathcal{Y}' := \{Y'_0, \ldots, Y'_r\}$, which is an open covering of Y_+rZ . Suppose that V_1 is defined by $\{g_{ij}\} \in Z^1(\mathcal{Y}, \mathcal{O}_{Y_+rZ})$ and V_2 is defined by $\{g'_{ij}\} \in Z^1(\mathcal{Y}', \mathcal{O}_{Y_+rZ})$. Then the following diagram is commutative for each $i, j = 0, \ldots, r$ $(i \neq j)$;

where $\alpha_{ij}(x,t) = (x,t+g_{ij}(x)), \ \alpha'_{ij}(x',t) = (x',t+g'_{ij}(x'))$. For an isomorphism $f: A[t] \to B[t]$ of domains such that $f|_A: A \to B$ is an isomorphism, f(t) should be equals to at+b, where $a \in B^{\times}$ and $b \in B$ by the computation of the degree of f(t). Therefore the commutativity of this diagram implies that there exists $a_i \in \Gamma(Y_i, \mathcal{O}_{Y_+rZ}) = R^{\times}$ and $b_i \in \Gamma(Y_i, \mathcal{O}_{Y_+rZ})$ for each $i = 0, \ldots, r$ such that $g'_i \circ \Phi \circ g_i(x, t) = (\phi(x), a_i t + b_i), g'_j \circ \Phi \circ g_j(x, t) = (\phi(x), a_j t + b_j)$. Therefore

$$a_i(x)t + b_i(x) + g'_{ij}(\phi(x)) = a_j(x)(t + g_{ij}(x)) + b_j(x).$$

Therefore we can glue $\{a_i\}$. Let *a* be an element of $\Gamma(Y_+rZ, \mathcal{O}_{Y_+rZ}^{\times}) \simeq \Gamma(Y, \mathcal{O}_Y^{\times})$ such that $a|_{X_i} = a_i$. Then

$$g'_{ij}(\phi(x)) - g_{ij}(x)a = b_j(x) - b_i(x),$$

Therefore cocyles $\{g'_{ij}(\phi(x))\}\$ and $\{g_{ij}(x)a\}\$ define principal \mathbb{G}_a -bundles isomorphic to each other.

Next we study the automorphisms group of Y_+rZ . Let Y be a variety, Z a closed subset of Y, and r an integer. We will use the following notations for the proof of Proposition 2.3.5

- \mathfrak{S}_{r+1} : the symmetric group of degree r+1.
- N_Z : the number of connected components of Z
- Z_1, \ldots, Z_{N_Z} : the connected components of Z
- Y_0, \ldots, Y_r : open subsets of $Y_+ rZ$ defined in Definition 1.1.2.
- $u_i: Y_i \hookrightarrow Y_+ rZ$: the inclusion morphism for each $i \in \{0, \ldots, r\}$

- $e_i: Y \simeq Y_i$: the natural isomorphism for each $i \in \{0, \ldots, r\}$.
- $h: Y_+ rZ \to Y$: the morphism obtained by gluing $\{e_i^{-1}\}_{i \in \{0, \dots, r\}}$.
- $Z_{i} := e_i(Z)$ for each $i \in \{0, ..., r\}$.
- $Z_{k,i} := e_i(Z_k)$ for each $i \in \{0, \ldots, r\}$ and for each $k \in \{1, \ldots, N_Z\}$.
- $(r+1)Z := \bigcup_{i \in \{0,\dots,r\}} Z_{,i} \ (\subset Y_+ rZ).$
- $Y_{\backslash Z} := Y_+ r Z \setminus (r+1)Z \ (\simeq Y \setminus Z)$
- $\operatorname{End}(Y) :=$ the monoid of endomorphisms of Y
- $\operatorname{Aut}(Y) :=$ the group of automorphisms of Y
- $\operatorname{End}_Z(Y) := \{ \Phi \in \operatorname{End}(Y) | \Phi(Z) \subseteq Z \}$
- $\operatorname{Aut}_Z(Y) := \{ \Phi \in \operatorname{Aut}(Y) | \Phi(Z) = Z \}.$

The following two lemmas by J. Ax [2] and S. Kaliman [20] show that an injective endomorphism of an algebraic variety is an isomorphism.

Lemma 2.3.3 ([2]). Let X be a scheme of finite type over a scheme Y. Let $\phi: X \to X$ be a Y-morphism. If ϕ is injective then ϕ is surjective.

Lemma 2.3.4 ([20]). Let $\phi : X \to X$ be a surjective endomorphism of a variety X over a field k of characteristic zero. Then ϕ is an automorphism.

Proposition 2.3.5. The following sequence of non-abelian groups is a right split exact sequence.

 $1 \longrightarrow \mathfrak{S}_{r+1}^{\oplus N_Z} \xrightarrow{S} \operatorname{Aut}(Y_+ rZ) \xrightarrow{T} \operatorname{Aut}_Z(Y) \longrightarrow 1$

In other words, for any automorphism Φ of Y_+rZ , there exist the unique element $\sigma \in \mathfrak{S}_{r+1}^{\oplus N_Z}$ and the unique automorphism $\phi \in \operatorname{Aut}_Z(Y)$ such that $\Phi = R(\phi) \circ S(\sigma)$, where R is a group homomorphism from $\operatorname{Aut}_Z(Y)$ to $\operatorname{Aut}(Y_+rZ)$ such that T is a section of R. Proof. Let Φ be an automorphism of $Y_{+}rZ$. First we show that for each $i \in \{0, \ldots, r\}$, the image of $Z_{k,i}$ by Φ is equal to $Z_{k',i'}$ for some $k' \in \{1, \ldots, N_Z\}$ and for some $i' \in \{0, \ldots, r\}$, where k' is independent of the choice of i. Let $\phi_i := h \circ \Phi \circ e_i : Y \to Y$ for each i. Then ϕ_1, \ldots, ϕ_r are endomorphisms of Y coincide on the open subset $Y \setminus Z$ with each others. Since Y is separated, $\phi_i = \phi_j$ as a morphism of varieties for any $i, j \in \{0, \ldots, r\}$. Therefore the images of $Z_{k,i}$ and $Z_{k,j}$ by $h \circ \Phi : Y_+ rZ \to Y$ coincide for any $i, j \in \{0, \ldots, r\}$. Therefore the assertion holds.

Next we construct a map $T : \operatorname{Aut}(Y_+ rZ) \to \operatorname{Aut}_Z(Y)$. Let

$$T' : \operatorname{Aut}(Y_{+}rZ) \to \operatorname{End}(Y) : \Phi \mapsto h \circ \Phi \circ u_0 \circ e_0.$$

Then the image of T' is in $\operatorname{End}_Z(Y)$. Since $T'(\Phi)$ is an injective endomorphism, Lemma 2.3.3 and Lemma 2.3.4 imply that $T'(\Phi)$ is an automorphism. Therefore we can restrict the codomain of T' to $\operatorname{Aut}_Z(Y)$. Let $T : \operatorname{Aut}(Y_+rZ) \to \operatorname{Aut}_Z(Y) : \Phi \mapsto T'(\Phi)$. The map T is a group homomorphism because for any $\Phi_1, \Phi_2 \in \operatorname{Aut}(Y_+rZ), T(\Phi_1) \circ T(\Phi_2)$ and $T(\Phi_1 \circ \Phi_2)$ coincide on $Y \setminus Z$, and therefore coincide on Y. The group homomorphism T is surjective because for $\phi \in \operatorname{Aut}_Z(Y)$, we can glue $\{u_i \circ e_i \circ \phi \circ e_i^{-1} : Y_i \to Y_+rZ\}$ to an isomorphism $R(\phi) : Y_+rZ \to Y_+rZ$, which satisfies $T(R(\phi)) = \phi$ by the construction.

Next we construct a map $S: \mathfrak{S}_{r+1}^{\oplus N_Z} \to \operatorname{Aut}(Y_+rZ)$. For $\sigma = (\sigma_1, \ldots, \sigma_{N_Z}) \in \mathfrak{S}_{r+1}^{\oplus N_Z}$, let $Y_{i,\sigma} := Y_{\setminus Z} \cup \bigcup_{i \in \{0,\ldots,r\}} Z_{k,\sigma_k(i)}$ and let $e_{i,\sigma} : Y_i \to Y_{i,\sigma}$ be the canonical isomorphism, which is an identity on $X_{\setminus Z}$. then we can glue $\{e_{i,\sigma}\}$ to a endomorphism $S(\sigma)$ of X_+rZ , which is an isomorphism by construction. In this way, we can construct a map S from $\mathfrak{S}_{r+1}^{\oplus N_Z}$ to $\operatorname{Aut}(Y_+rZ)$. The map S is also an injective group homomorphism because $S(\sigma)$ corresponds to the permutation of $Z_{0,i}, \ldots, Z_{r,i}$ by σ for each i.

Finally we show that the above sequence is exact. Since the automorphism $S(\sigma)$ of Y_+rZ is an identity map on $Y_{\backslash Z}$, the automorphism $T(S(\sigma))$ is the identity map on Y. Therefore $\operatorname{Im}(S) \subseteq \operatorname{Ker}(T)$. Conversely, suppose that for $\Phi \in \operatorname{Aut}(Y_+rZ)$, $T(\Phi)$ equals to id_Y . Then $h \circ \Phi \circ e_i = \operatorname{id}_Y$ for each i and $\Phi(Z_{k,i}) = Z_{k',i'(k,i)}$. Let $\sigma_k : \{0, \ldots, r\} \to \{0, \ldots, r\} : i \mapsto i'(k,i)$ for each $k \in \{1, \ldots, N_Z\}$. Since Φ is an automorphism of Y_+rZ , $\sigma_k \in \mathfrak{S}_{r+1}$. Let $\sigma = (\sigma_1, \ldots, \sigma_{N_Z})$. Then $S(\sigma) = \Phi$ by the construction.

2.4 Counterexamples to ZCP for principal \mathbb{G}_a bundles over Y_+Z

Lemma 2.4.1. Let $Y = \operatorname{Spec}(R)$ be an affine variety. Let Z be the union of principal hypersurfaces Z_i defined by a prime element f_i for each $i = 1, \ldots, n$ such that (f_1, \ldots, f_n) is an R-regular sequence. Let $X = Y_+Z$. Let $g = h \cdot f_1^{-m_1} \cdots f_n^{-m_n} \in R_{f_1 \cdots f_n}$, where $h \in R$ such that $f_i \nmid h$ if $m_i > 0$. Then (m_1, \ldots, m_n) is the minimum element of the following set for the order \preceq :

$$S_{\overline{g}} := \left\{ (m'_1, \dots, m'_n) \in \mathbb{Z}_{\geq 0}^{\bigoplus n} | \overline{h' \cdot f_1^{-m'_1} \cdots f_n^{-m'_n}} = \overline{g} \text{ in } \mathrm{H}^1(X, \mathcal{O}_X) \right\}.$$

Proof. For any $g' \in R_{f_1 \cdots f_n}$ such that $\overline{g'} = \overline{g}$, there exists $b \in R$ such that $g' = (h + b \cdot f_1^{m_1} \cdots f_n^{m_n}) \cdot f_1^{-m_1} \cdots f_n^{-m_n}$. Then $f_i \nmid (h + b \cdot f_1^{m_1} \cdots f_n^{m_n})$ if $m_i > 0$, and therefore (m_1, \ldots, m_n) is the minimum element of the above set.

Now we denote by $P(\overline{g})$ the minimum element of $S_{\overline{g}}$ for the order \preceq . The above lemma implies that $P(\overline{g})$ is an invariant of principal \mathbb{G}_a -bundles over $X = Y_+Z$.

Theorem 2.4.2. Let P be a closed point of $\mathbb{A}^1_* = \operatorname{Spec}(k[x, x^{-1}])$ defined by $f_1 = x - 1$. Let $X = \mathbb{A}^1_{*+}P$, $g_1 = (x + 1) \cdot (x - 1)^{-2}$, and $g_2 = (x - 1)^{-2}$. Let V_{gi} be the principal \mathbb{G}_a -bundle over X defined by g_i . Then $V_{g1} \times \mathbb{A}^1 \simeq V_{g2} \times \mathbb{A}^1$ and $P(\overline{g_1}) = P(\overline{g_2}) = 2$, but $V_{g1} \ncong V_{g2}$.

Proof. The group of automorphisms of Y_+P can be expressed by using an element of $\mathfrak{S}_2 \simeq \mathbb{Z}/2\mathbb{Z} = \{\overline{0}, \overline{1}\}$ and an element of $\operatorname{Aut}_P(Y)$. An automorphism of $Y = \mathbb{A}^{1*}$ which fixes $P = \{x - 1 = 0\}$ should be an automorphism of Y which sends x to x (denoted by ϕ_1) or which sends x to x^{-1} (denoted by ϕ_{-1}). The automorphism $S(\overline{0})$ is an identity of Y_+P and $S(\overline{1})$ is an automorphism of Y_+P which is an identity on $Y_{\backslash}P$ but replace $P_0 \in Y_0$ and $P_1 \in Y_1$.

By proposition 2.2.2, V_{g1} and V_{g2} are affine. Suppose that V is isomorphic to W for contradiction. By Proposition 2.3.2, there exist a unit $u' \in k[x, x^{-1}]$ and an automorphism Φ of Y_+P such that $g_2 = u' \cdot g_1(\Phi)$. The automorphism Φ is a composition of $S(\bar{i})$ and $R(\phi_j)$ for some $i \in \{0, 1\}$ and for some $j \in \{1, -1\}$. Since the automorphism S(1) corresponds to replace open sets Y_0 and $Y_1, g_1(S(\bar{i})) = (-1)^i g_1$. Therefore $g_1(R(\phi_{-1})) = \left[\frac{2+(x^{-1}-1)}{(x^{-1}-1)^2}\right] = \left[\frac{2+3(x-1)}{(x-1)^2}\right]$. Therefore

$$g_1(\Phi) = [(-1)^i \frac{2+k(x-1)}{(x-1)^2}]$$

for some $k \in \{1, 3\}$. Since u and u' are units of $k[x, x^{-1}]$, there exist $c, c' \in k^*$ and $m, m' \in \mathbb{Z}$ such that $u = c \cdot x^m$ and $u' = c' \cdot x^{m'}$. We may assume that $m, m' \geq 0$ since for any unit $a \in k[x, x^{-1}], g_2 = u' \cdot g_1(\Phi)$ if and only if $ag_2 = au' \cdot g_1(\Phi)$. If $n \neq 2$, then $g_2 - u' \cdot g_1(\Phi)$ can not vanish. Therefore we may assume that n = 2. Then

$$g_{2} - u' \cdot g_{1}(\Phi)$$

$$= \left[\frac{1}{(x-1)^{2}}\left\{(-1)^{i}(2+k(x-1))(c+cm(x-1)) - c' - c'm'(x-1)\right\}\right]$$

$$= \left[\frac{1}{(x-1)^{2}}\left\{(-1)^{i}2c - c' + ((-1)^{i}kc + (-1)^{i}2cm - a'm')(x-1)\right\}\right].$$
(2.1)

Therefore $g_2 = u' \cdot g_1(\Phi)$ if and only if

$$\begin{cases} (-1)^{i}2c - c' = 0, \\ (-1)^{i}kc + (-1)^{i}2cm - a'm' = 0. \end{cases}$$

This condition implies k + 2m - 2m' = 0, but this contradicts to k = 1 or 3.

r				
-	-	-	-	

Chapter 3

ZCP for principal \mathbb{G}_a -bundles over quasi-affine varieties

3.1 Construction of principal \mathbb{G}_a -bundles over $D(f_1, f_2)$

First we describe how the one-to-one correspondence between isomorphism classes of principal \mathbb{G}_a -bundles over X and the elements of $\mathrm{H}^1(X, \mathcal{O}_X)$ is obtained. Since $\mathrm{D}(f_1)$, $\mathrm{D}(f_2)$, and $\mathrm{D}(f_1f_2)$ are affine, we can compute $\mathrm{H}^1(X, \mathcal{O}_X)$ by Čech cohomology;

$$\begin{aligned} \mathrm{H}^{1}(X, \mathcal{O}_{X}) &\simeq & \mathrm{\check{H}}^{1}(\{\mathrm{D}(f_{1}), \mathrm{D}(f_{2})\}, \mathcal{O}_{X}) \\ &= & \mathrm{Coker}\left(\phi : R_{f_{1}} \bigoplus R_{f_{2}} \to R_{f_{1}f_{2}} : (a, b) \mapsto a - b\right) \\ &= & R_{f_{1}f_{2}}/(R_{f_{1}} + R_{f_{2}}). \end{aligned}$$

For an element $g \in R_{f_1f_2}$, \overline{g} denotes the image of g by the natural map $R_{f_1f_2} \to \operatorname{Coker}\phi$. The principal \mathbb{G}_a -bundle V_g over X defined by g is, as a total space, an \mathbb{A}^1 -bundle over X obtained by gluing $D(f_1) \times \mathbb{A}^1$ and $D(f_2) \times \mathbb{A}^1$ along the following isomorphism between open subschemes $D(f_1f_2) \times \mathbb{A}^1$ of $D(f_1) \times \mathbb{A}^1$ and $D(f_1f_2) \times \mathbb{A}^1$ of $D(f_2) \times \mathbb{A}^1$:

$$G_g: D(f_1f_2) \times \mathbb{A}^1 \to D(f_1f_2) \times \mathbb{A}^1: (x,t) \mapsto (x,t+g).$$

The \mathbb{G}_a -action on V_g is obtained by gluing equivariantly trivial \mathbb{G}_a -actions on $D(f_i) \times \mathbb{A}^1$ for i = 1, 2, that acts trivially on $D(f_i)$ and by addition on \mathbb{A}^1 . The image of ϕ gives the isomorphism class as principal \mathbb{G}_a -bundles of V_q , and we denote it by $V_{\overline{q}}$.

3.2 Sufficient condition for principal \mathbb{G}_a -bundles over $D(f_1, f_2)$ to be affine

Dubouloz-Finston-Mehta [10, Section 2] showed that nontrivial principal \mathbb{G}_{a} bundles over \mathbb{A}^2_* are affine, where \mathbb{A}^2_* is a complement of a one point in \mathbb{A}^2 . In general, a nontrivial principal \mathbb{G}_a -bundle over a quasi-affine variety is not necessarily affine, but their result suggest that there exist many nontrivial affine principal \mathbb{G}_a -bundles over $D(f_1, f_2)$. In this section, we extend their result to principal \mathbb{G}_a -bundles over $D(f_1, f_2)$.

Lemma 3.2.1 ([24][15, Theorem 5.2.1]). A scheme X is affine if and only if there is a finite set of elements $f_1, \dots, f_n \in \Gamma(X, \mathcal{O}_X)$ such that X_{f_i} are affine, and f_1, \dots, f_n generates the unit ideal in $\Gamma(X, \mathcal{O}_X)$.

Lemma 3.2.2. Let X be a quasi-affine variety. Then the principal \mathbb{G}_a -bundle V over X defined by $g \in \mathrm{H}^1(X, \mathcal{O}_X)$ is affine if there exists $b \in \Gamma(X, \mathcal{O}_X)$ such that the principal \mathbb{G}_a -bundle V' defined by $b \cdot g \in \mathrm{H}^1(X, \mathcal{O}_X)$ is affine.

Proof. Let $f_1, \ldots, f_n \in \Gamma(X, \mathcal{O}_X)$ such that $\mathcal{U} = \{X_{f_i}\}_{i \in I}$ $(I = \{1, \ldots, n\})$ is an affine open covering of X. We may suppose that V and W are defined by Čech 1-cocycles $\{g_{ij}\}_{i,j \in I}$ and $\{b \cdot g_{ij}\}_{i,j \in I}$ of \mathcal{O}_X relative to the open covering \mathcal{U} . Then $\Gamma(V, \mathcal{O}_V)$ and $\Gamma(W, \mathcal{O}_W)$ can be represented as follows:

$$\Gamma(V, \mathcal{O}_V) = \{ \{ \phi_i(t) \}_{i \in I} | \phi_i(t) \in \Gamma(X_{f_i}, \mathcal{O}_X)[t], \phi_i(t + g_{ij}) = \phi_j(t) \}$$

$$\Gamma(W, \mathcal{O}_W) = \{ \{ \phi_i(t) \}_{i \in I} | \phi_i(t) \in \Gamma(X_{f_i}, \mathcal{O}_X)[t], \phi_i(t + b \cdot g_{ij}) = \phi_j(t) \}$$

Suppose that W is affine. By lemma 3.2.1, there exists $\{\phi_{i,k}(t)\}_{i,k\in I} \in \Gamma(W, \mathcal{O}_W)$ such that

$$\{f_1 \cdot \phi_{i,1}(t) + \dots + f_n \cdot \phi_{i,n}(t)\}_{i \in I} = \{1\}_{i \in I} = 1.$$

Let $\psi_{i,k}(t) = \phi_{i,k}(b \cdot t)$ for each *i* and *k*. Then $\{\psi_{i,k}(t)\}_{i \in I} \in \Gamma(V, \mathcal{O}_V)$ for each *k* and

$$\{f_1 \cdot \psi_{i,1}(t) + \dots + f_n \cdot \psi_{i,n}(t)\}_{i \in I} = \{f_1 \cdot \phi_{i,1}(b \cdot t) + \dots + f_n \cdot \phi_{i,n}(b \cdot t)\}_{i \in I} = 1.$$

For a polynomial $\phi(x, y) = \sum_{i,j} a_{ij} \cdot x^i y^j$ in R[x, y], let $\operatorname{Supp}(\phi)$ be the subset of $\mathbb{Z}_{\geq 0}^{\oplus 2}$ consisting of elements (i, j) with $a_{ij} \neq 0$. Let $\operatorname{Min}(\phi)$ be the set consisting of minimal elements of $\operatorname{Supp}(\phi)$ for the order \preceq .

Proposition 3.2.3. Let R be an integral domain and (f_1, f_2) an R-regular sequence, where f_1 and f_2 are prime elements. Let m, n be nonnegative integers. For $v \in R$, $g = v \cdot f_1^{-m} f_2^{-n}$. Then V_g is affine if there is $\phi(x, y) \in R[x, y]$ such that $v = \phi(f_1, f_2)$ and there is $(I, J) \in Min(\phi)$ such that $(I, J) \prec (m, n)$, and $a_{IJ} \in R^*$.

Proof. By the assumption, the following equation holds:

$$f_1^{m-I-1} \cdot f_2^{n-J-1} \cdot g = a_{IJ} \cdot f_1^{-1} \cdot f_2^{-1} + \sum_{(i,j) \neq (I,J)} a_{ij} \cdot f_1^{i-I-1} \cdot f_2^{j-J-1}.$$

The right-hand side of this equation is equal to $a_{IJ} \cdot f_1^{-1} \cdot f_2^{-1}$ in $\check{H}^1(\{D(f_1), D(f_2)\}, \mathcal{O}_{D(f_1, f_2)})$. Since the principal \mathbb{G}_a -bundle over $D(f_1, f_2)$ defined by $a_{IJ} \cdot f_1^{-1} \cdot f_2^{-1}$ is isomorphic to $\operatorname{Spec}(R[s, t]/(f_1s + f_2t - a_{IJ}))$, Lemma 3.2.2 implies that V_g is affine.

3.3 Invariant of principal \mathbb{G}_a -bundles over $X = D(f_1, f_2)$

Lemma 3.3.1. Let R be an integral domain, (f_1, f_2) be an R-regular sequence, where f_1 and f_2 are prime elements, and $\overline{g} \in H^1(X, \mathcal{O}_X)$. Then the set $S_{\overline{g}} := \{(m, n) \in \mathbb{Z}_{\geq 0}^{\oplus 2} | \exists h \in R, \overline{h \cdot f_1^{-m} f_2^{-n}} = \overline{g}\}$ has a minimum element for the order \preceq .

Proof. Since there exist only finite elements smaller than (m, n) in $\mathbb{Z}_{\geq 0}^{\oplus 2}$, it is sufficient to show that for $(m, n), (m'n') \in S_{\overline{g}}$ with m > m' and n < n', there exists $(M, N) \in S_{\overline{g}}$ such that $(M, N) \preceq (m, n), (m', n')$. Let $h, h' \in R$ such that $\overline{g} = \overline{h \cdot f_1^{-m} \cdot f_2^{-m}} = \overline{h' \cdot f_1^{-m'} f_2^{-n'}}$ in $\mathrm{H}^1(\mathrm{D}(f_1, f_2), \mathcal{O}_{\mathrm{D}(f_1, f_2)})$. We may suppose that $f_1, f_2 \nmid h, h'$. Then there exist $c_1, c_2 \in R$ and $o_1, o_2 \in \mathbb{Z}_{\geq 0}$ such that

$$h \cdot f_1^{-m} f_2^{-n} - c_1 \cdot f_1^{-o_1} = h' \cdot f_1^{-m'} f_2^{-n'} + c_2 \cdot f_2^{-o_2},$$

and $f_i \nmid c_i$ if $o_i > 0$. Since $f_1 \nmid (h \cdot f_1^{o_1 - m} + c_1 \cdot f_2^n)$, the above equation implies $o_1 \leq m$, and $o_2 \leq n'$ holds. Therefore, there exists $(M, N) \in S_{\overline{g}}$ such that $(M, N) \preceq (m, n), (m', n')$.

Now we denote by $P(\overline{g})$ the minimum element of $S_{\overline{g}}$ for $\overline{g} \in H^1(D(f_1, f_2), \mathcal{O}_{D(f_1, f_2)})$.

Lemma 3.3.2. Let R be an integral domain and (f_1, f_2) an R-regular sequence, where f_1 and f_2 are prime elements. Let m, n be nonnegative integers. For $h \in R$, let $g = h \cdot f_1^{-m} f_2^{-n}$. Then $P(\overline{g}) = (m, n)$ if and only if $h \notin (f_1^m, f_2) \cup (f_1, f_2^n)$.

Proof. It is enough to show that $P(\overline{g}) \leq (m-1, n)$ if and only if $h \in (f_1, f_2^n)$, and $P(\overline{g}) \leq (m, n-1)$ if and only if $h \in (f_1^m, f_2)$.

Suppose $h \in (f_1, f_2^n)$, i.e. there exist $a, b \in R$ such that $h = af_1 + bf_2^n$. Then $g - bf_1^{-m} = a \cdot f_1^{-m+1}f_2^{-n}$. Therefore $P(\overline{g}) \preceq (m-1, n)$. Conversely, suppose $P(\overline{g}) \preceq (m-1, n)$. Then there exists $a, b \in R$ and integers $i \geq m, j \geq n$ such that

$$\overline{g} = \overline{(hf_1^{i-m}f_2^{j-n} - af_2^i - bf_1^j) \cdot f_1^{-i}f_2^{-j}},$$

 $f_1 \nmid a$ (resp. $f_2 \nmid b$) if i > m (resp. j > n), and $hf_1^{i-m}f_2^{j-n} - af_2^i - bf_1^j \in (f_1)^{i-m+1}, (f_2)^{j-n}$. If i > m, then $af_2^j \in (f_1)^{i-m+1}$, and this is a contradiction. If j > n, then $bf_1^i \in (f_2)^{j-n}$, and this is a contradiction. Therefore i = m and j = n. In this case, $h - af_2^n - bf_1^m \in (f_1)$. Therefore $h \in (f_1, f_2^n)$. In the same way, we can show that $P(\overline{g}) \preceq (m, n-1)$ if and only if $h \in (f_1^m, f_2)$. \Box

Lemma 3.3.3. Let R be an integral domain and (f_1, f_2) an R-regular sequence, where f_1 and f_2 are prime elements. Let m, n be nonnegative integers. Let $\phi(X,Y) = \sum_{i,j} a_{ij} X^i Y^j = \sum_j b_j(X) Y^j = \sum_i c_i(Y) X^i \in R[X,Y]$ such that $X, Y \nmid \phi(X,Y)$. If $\phi(X,Y)$ satisfies the following two conditions:

- (1) $0 \leq \exists J \leq n-1 \text{ s.t. } a_{0J} \notin (f_1, f_2), X \nmid b_J(X), and \forall j < J, (X|b_j(X) or f_2|a_{0j});$
- (2) $0 \leq \exists I \leq m-1 \text{ s.t. } a_{I0} \notin (f_1, f_2), Y \nmid c_I(Y), and \forall i < I, (Y \mid c_i(Y) \text{ or } f_1 \mid a_{i0});$

then $P\left(\overline{\phi(f_1, f_2) \cdot f_1^{-m} f_2^{-n}}\right) = (m, n).$

Proof. Suppose that

$$(m',n') := \mathbf{P}\left(\overline{\phi\left(f_1,f_2\right) \cdot f_1^{-m} f_2^{-n}}\right) \prec (m,n)$$

for contradiction. We assume that m' < m. Then there exists $c_1 \in R$ such that $f_1|\phi(f_1, f_2) + c_1 \cdot f_2^n$, and there exists $c \in R$ such that

$$c \cdot f_{1} - b_{0}(f_{1}) - b_{1}(f_{1}) \cdot f_{2}^{1} - \dots - b_{I-1}(f_{1}) \cdot f_{2}^{I-1}$$

= $f_{2}^{I} \cdot \{a_{I0} + (b_{I}(f_{1}) - a_{I0}) + b_{I+1}(f_{1}) \cdot f_{2} + \dots + b_{n}(f_{1}) \cdot f_{2}^{n-I}\}$

Then $a_{I0} \in (f_1, f_2)$ since $b_I(f_1) - a_{I0}$ can be divided by f_1 , and this is a contradiction.

Proposition 3.3.4. Let R be an integral domain and (f_1, f_2) an R-regular sequence, where f_1 and f_2 are prime elements. Let m and n be nonnegative integers. Suppose $\phi(X, Y) = \sum_{i,j} a_{ij} X^i Y^j \in k[X, Y] \setminus ((X) \cup (Y))$ satisfies $\deg_X \phi < m, \deg_Y \phi < n$. Then $P\left(\overline{\phi(f_1, f_2) \cdot f_1^{-m} f_2^{-n}}\right) = (m, n)$.

Proof. It is enough to show the existence of $(I', J') \in \mathbb{Z}_{\geq 0}^{\oplus 2}$ satisfying conditions (1) and (2) of Lemma 3.3.3. Since $\phi(X, Y) \in k[\overline{X}, Y]$, $a_{ij} \notin (f_1, f_2)$ if $a_{ij} \neq 0$ for any (i, j). An integer j satisfying $X \nmid b_j(X)$ also exists since $f_1 \nmid \phi(f_1, f_2)$. Let J' be the minimum integer of j. Then J' satisfies the condition (1). An integer I' that satisfies (2) also exists for the same reason.

3.4 Sufficient condition for two principal \mathbb{G}_a bundles to be nonisomorphic

Lemma 3.4.1. Let Spec(R) be an affine variety. Let (f_1, f_2) be an R-regular sequence, where f_1 and f_2 are prime elements. Let V_g (resp. $V_{g'}$) be the principal \mathbb{G}_a -bundle defined by $g = v \cdot f_1^{-m} f_2^{-n}$ (resp. $g' = w \cdot f_1^{-m'} f_2^{-n'}$) over $X = D(f_1, f_2)$, where $v, w \in R$. Then $V_g \simeq_X V_{g'}$ if and only if there exists $a \in R^*$ such that $\overline{a \cdot g} = \overline{g'}$ in $\mathrm{H}^1(X, \mathcal{O}_X)$.

Proof. Suppose that an isomorphism $\Phi: V_g \simeq_X V_{g'}$ exists. Then there exists $\phi_i \in \operatorname{Aut}(R_{f_i}[t])$ for each i such that $G_{g'} \circ \phi_1 = \phi_2 \circ G_g$, i.e., there exists $a_i \in R_{f_i}^*$ and $b_i \in R_{f_i}$ for each i such that $a_1t + b_1 + g' = a_2(t+g) + b_2$. This equation implies that $a_1 = a_2 \in R^*$ and $g' - a_2g = b_2 - b_1$. Conversely, $\overline{a \cdot g} = \overline{g'}$ implies the existence of $a \in R^*$ and $b_i \in R_{f_i}$, which satisfies the above condition. Therefore, $V_g \simeq_X V_{g'}$.

Lemma 3.4.2. Let $\operatorname{Spec}(R)$ be an affine variety and f_1, f_2 elements in $R \setminus \{0\}$. Let V_g be a principal \mathbb{G}_a -bundle over $X = D(f_1, f_2)$ defined by $g = v \cdot f_1^{-m} f_2^{-n}$. Let ψ be an automorphism of R such that $\psi(f_1, f_2)_R = (f_1, f_2)_R$. Then there exists $h \in (f_1, f_2)_R^{m+n-2} \setminus \{0\}$ such that the pushforward of V_g by $\phi := \operatorname{Spec}(\psi)|_X : X \to X$ is the principal \mathbb{G}_a -bundle over X defined by $g_\phi := \psi^{-1}(v) \cdot h \cdot f_1^{-m-n+1} f_2^{-m-n+1}$.

Proof. Let $f'_i := \psi^{-1}(f_i)$ for short. Let $\mathcal{U}' = \{Y_{f'_1}, Y_{f'_2}\}$, which is an open affine covering of X. Then the pushforward of V_g by ϕ is defined by $\overline{g'} = \overline{\psi^{-1}(v) \cdot f'_1} \cdot f'_2 \in \check{\mathrm{H}}^1(\mathcal{U}', \mathcal{O}_X)$. Let

$$\begin{array}{rcl} \alpha_1 & := & \sum_{i=0}^{n-1} {}_{m+n-1} \mathbf{C}_i \cdot (a \cdot f'_1)^{n-1-i} \cdot (b \cdot f'_2)^i, \\ \alpha_2 & := & \sum_{i=n}^{m+n-1} {}_{m+n-1} \mathbf{C}_i \cdot (a \cdot f'_1)^{m+n-1-i} \cdot (b \cdot f'_2)^{i-n}, \\ \beta_1 & := & \sum_{i=0}^{n-1} {}_{m+n-1} \mathbf{C}_i \cdot (c \cdot f'_1)^{n-1-i} \cdot (d \cdot f'_2)^i, \\ \beta_2 & := & \sum_{i=n}^{m+n-1} {}_{m+n-1} \mathbf{C}_i \cdot (c \cdot f'_1)^{m+n-1-i} \cdot (d \cdot f'_2)^{i-n}, \end{array}$$

and $h := \alpha_1 \beta_2 - \alpha_2 \beta_1$. Then $f_1^{m+n-1} = f_1'^m \cdot \alpha_1 + f_2'^n \cdot \alpha_2$ and $f_2^{m+n-1} = f_1'^m \cdot \beta_1 + f_2'^n \cdot \beta_2$. Therefore,

$$\psi^{-1}(v) \cdot f_1'^{-m} \cdot f_2'^{-n} = \psi^{-1}(v) \cdot \alpha_1 \cdot f_2'^{-n} \cdot f_1^{-m-n+1} + \psi^{-1}(v) \cdot \alpha_2 \cdot f_1'^{-m} \cdot f_1^{-m-n+1} \text{ on } Y_{f_1},$$

$$\psi^{-1}(v) \cdot f_1'^{-m} \cdot f_2'^{-n} = \psi^{-1}(v) \cdot \beta_1 \cdot f_2'^{-n} \cdot f_2^{-m-n+1} + \psi^{-1}(v) \cdot \beta_2 \cdot f_1'^{-m} \cdot f_2^{-m-n+1} \text{ on } Y_{f_2}.$$

Hence, the principal \mathbb{C} bundle $V_1 \times \mathbb{C}$ for ever Y_{T_1} is defined by

Hence, the principal \mathbb{G}_a -bundle $V_{g'} \times_X Y_{f'_1}$ over $Y_{f'_1}$ is defined by

$$\psi^{-1}(v) \cdot \beta_2 \cdot f_1'^{-m} \cdot f_2^{-m-n+1} - \psi^{-1}(v) \cdot \alpha_2 \cdot f_1'^{-m} \cdot f_1^{-m-n+1} \\ = \psi^{-1}(v) \cdot h \cdot f_1^{-m-n+1} f_2^{-m-n+1}.$$

In the same way, $V_{g'} \times_X Y_{f'_2}$ over $Y_{f'_2}$ is defined by the above element. \Box

Theorem 3.4.3. Let $\operatorname{Spec}(R)$ be a non- \mathbb{A}^1 -uniruled affine variety. Let (f_1, f_2) be an R-regular sequence, where f_1 and f_2 are prime elements such that the ideal $(f_1, f_2)_R$ is prime. Let V_g (resp. $V_{g'}$) be the principal \mathbb{G}_a -bundle over $X = D(f_1, f_2)$ defined by $g = v \cdot f_1^{-m} f_2^{-n}$ (resp. $g' = w \cdot f_1^{-m'} f_2^{-n'}$), where $\operatorname{P}(\overline{g'}) = (m', n')$. Then $V_g \ncong V_{g'}$ if (1) or (2) holds.

(1) m' > m + n - 1 or n' > m + n - 1

(2) $m', n' \leq m + n - 1$ and $v' \notin (f_1, f_2)^{m' + n' - m - n + \delta(v)}$, where

$$\delta(v) = \begin{cases} 0 & \text{if } v \notin (f_1, f_2) \\ 1 & \text{if } v \in (f_1, f_2). \end{cases}$$

Proof. Let $p: V_g \to X$ (resp. $p': V_{g'} \to X$) be the structure morphism of the principal \mathbb{G}_a -bundle V_g over X (resp. $V_{g'}$ over X). Suppose that there exists an isomorphism $\Phi: V_g \simeq V_{g'}$ for contradiction. By Lemma 2.3.1, there exists an automorphism ϕ of X such that $\phi \circ p = p' \circ \Phi$. Since (f_1, f_2) is R-regular, there exists an automorphism ψ of R such that $\phi = \operatorname{Spec}(\psi)|_X : X \to X$. Then $\psi^{-1}(f_1, f_2)_R = (f_1, f_2)_R$ since $(f_1, f_2)_R$ is a prime ideal in R. By Lemma 3.4.2, the pushforward of the principal \mathbb{G}_a -bundle V_g by Φ is defined by g_{ϕ} . Then $V_{g_{\phi}}$ is isomorphic to $V_{g'}$ as a scheme over X. Therefore, there exists a unit a in R such that $\overline{a \cdot g'} = \overline{g_{\phi}}$ in $\mathrm{H}^1(X, \mathcal{O}_X)$ by Lemma 3.4.1.

If m' > m + n - 1 or n > m + n - 1, then $P(\overline{g'}) \prec (m', n')$, which is a contradiction. Therefore $V_g \ncong V_{g'}$.

If $m', n' \leq m+n-1$ and $v' \notin (f_1, f_2)^{m'+n'-m-n+\delta(v)}$, then we can take $c_1, c_2 \in R$ that satisfy $g' = g_{\phi} + c_1 \cdot f_1^{-m-n+1} + c_2 \cdot f_2^{-m-n+1}$. Then,

$$a \cdot v' \cdot f_1^{m+n-m'-1} f_2^{m+n-n'-1} = \psi^{-1}(v) \cdot h + c_1 \cdot f_2^{m+n-1} + c_2 \cdot f_1^{m+n-1}$$

for some $h \in (f_1, f_2)^{m+n-2}$. Since $\psi^{-1}(v) \in (f_1, f_2)^{\delta(v)}$ and $h \in (f_1, f_2)^{m+n-2}$, the right-hand side of the above equation is in $(f_1, f_2)^{m+n-2+\delta(v)}$. Then $a \cdot v' \in (f_1, f_2)^{m'+n'-m-n+\delta(v)}$ since (f_1, f_2) is an *R*-regular sequence, which is a contradiction. Therefore, $V_g \ncong V_{g'}$.

Corollary 3.4.4. Let Spec(R) be a non- \mathbb{A}^1 -uniruled affine variety. Let (f_1, f_2) be an R-regular sequence, where f_1 and f_2 are prime elements such that the ideal $(f_1, f_2)_R$ is prime. Let m, n, m', n' be integers. Then $V_{f_1^{-m}f_2^{-n}} \times \mathbb{A}^1 \simeq V_{f_1^{-m'}f_2^{-n'}} \times \mathbb{A}^1$ but $V_{f_1^{-m}f_2^{-n}} \ncong V_{f_1^{-m'}f_2^{-n'}}$ if $m + n \neq m' + n'$.

Proof. Since $V_{f_1^{-m}f_2^{-n}}$ and $V_{f_1^{-m'}f_2^{-n'}}$ are affine, Danielewski's fiber product trick implies $V_{f_1^{-m}f_2^{-n}} \times \mathbb{A}^1 \simeq V_{f_1^{-m'}f_2^{-n'}} \times \mathbb{A}^1$. Suppose that m' + n' > m + n. In the case where m' > m + n - 1 or n' > m + n - 1, Theorem 3.4.3 implies that $V_{f_1^{-m}f_2^{-n}} \ncong V_{f_1^{-m'}f_2^{-n'}}$. In the case where $m', n' \leq m + n - 1$, then $1 \notin (f_1, f_2)^{m' + n' - m - n}$. Therefore, Theorem 3.4.3 implies that $V_{f_1^{-m}f_2^{-n}} \ncong V_{f_1^{-m'}f_2^{-n'}}$.

Corollary 3.4.5. Let Spec(R) be a non-A¹-uniruled affine variety. Let (f_1, f_2) be an R-regular sequence, where f_1 and f_2 are prime elements such that the ideal $(f_1, f_2)_R$ is prime. Let m, n be integers larger than 1. Let $\phi(X, Y)$ be an element of $(X, Y) \setminus ((X) \cup (Y)) \subset k[X, Y]$ satisfying $\deg_X \phi < m$, $\deg_Y \phi < n$. Then $V_{f_1^{-m} f_2^{-n}} \times \mathbb{A}^1 \simeq V_{\phi(f_1, f_2) \cdot f_1^{-m} f_2^{-n}} \times \mathbb{A}^1$ and $\mathbb{P}\left(\overline{f_1^{-m} f_2^{-n}}\right) = \mathbb{P}\left(\overline{\phi(f_1, f_2) \cdot f_1^{-m} f_2^{-n}}\right)$, but $V_{f_1^{-m} f_2^{-n}} \ncong V_{\phi(f_1, f_2) \cdot f_1^{-m} f_2^{-n}}$.

Proof. Let $\phi'(X, Y) := 1 \in k[X, Y]$. Then ϕ and ϕ' satisfy the condition of Proposition 3.2.3 and Proposition 3.3.4. Therefore $V_{f_1^{-m}f_2^{-n}}$ and $V_{\phi(f_1, f_2) \cdot f_1^{-m}f_2^{-n}}$ are affine, Danielewski's fiber product trick implies $V_{f_1^{-m}f_2^{-n}} \times \mathbb{A}^1 \simeq V_{\phi(f_1, f_2) \cdot f_1^{-m}f_2^{-n}} \times \mathbb{A}^1$, and

$$P\left(\overline{f_1^{-m}f_2^{-n}}\right) = P\left(\overline{\phi\left(f_1, f_2\right) \cdot f_1^{-m}f_2^{-n}}\right) = (m, n).$$

Since (f_1, f_2) is an *R*-regular sequence, $1 \notin (f_1, f_2) = (f_1, f_2)^{m+n-m-n+1}$. Therefore, $f_1^{-m} f_2^{-n}$ and $\phi(f_1, f_2) \cdot f_1^{-m} f_2^{-n}$ satisfy condition (2) of Theorem 3.4.3. Therefore $V_{f_1^{-m} f_2^{-n}} \ncong V_{\phi(f_1, f_2) \cdot f_1^{-m} f_2^{-n}}$.

Bibliography

- S. S. Abhyankar, W. Heinzer, and P. Eakin, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310–342.
- [2] J. Ax, Injective endomorphisms of varieties and schemes., Pacific J. Math. 31 (1969), no. 1, 1–7.
- [3] T. Bandman and L. Makar-Limanov, Nonstability of the AK invariant, Michigan Math. J. 53 (2005), no. 2, 263–281.
- [4] W. Danielewski, On a cancellation problem and automorphism groups of affine algebraic varieties, preprint, Warsaw (1989).
- [5] R. Dryło, Non-uniruledness and the cancellation problem, Annales Polonici Mathematici 87 (2005), no. 1, 93–98 (eng).
- [6] _____, Non-uniruledness and the cancellation problem. II, Ann. Polon. Math. 92 (2007), no. 1, 41–48. MR2318509
- [7] _____, A note on noncancellable varieties, Comm. Algebra 37 (2009), no. 9, 3337– 3341.
- [8] A. Dubouloz, Additive group actions on Danielewski varieties and the cancellation problem, Math. Z. 255 (2007), no. 1, 77–93.
- [9] A. Dubouloz and D. R. Finston, On exotic affine 3-spheres, J. Algebraic Geom. 23 (2014), no. 3, 445–469. MR3205588
- [10] A. Dubouloz, D. R. Finston, and P. D. Mehta, Factorial threefolds with G_a-actions (2009), available at arXiv:0902.3873.
- [11] K. H. Fieseler, On complex affine surfaces with C⁺-action, Comment. Math. Helv. 69 (1994), no. 1, 5–27.
- [12] D. Finston and S. Maubach, The automorphism group of certain factorial threefolds and a cancellation problem, Israel J. Math. 163 (2008), 369–381. MR2391136
- [13] T. Fujita, On Zariski problem, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 3, 106–110.
- [14] A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960).

- [15] _____, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167. MR217085
- [16] N. Gupta, On Zariski's cancellation problem in positive characteristic, Adv. Math. 264 (2014), 296–307. MR3250286
- [17] M. Hochster, Nonuniqueness of coefficient rings in a polynomial ring, Proc. Amer. Math. Soc. 34 (1972), 81–82. MR294325
- [18] S. Iitaka and T. Fujita, Cancellation theorem for algebraic varieties, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, 123–127.
- [19] I. Jaradat and D. Finston, Locally trivial \mathbb{G}_a -actions on \mathbb{C}^5 with singular algebraic quotients, Comm. Algebra **45** (2017), no. 11, 4992–5001.
- [20] S. Kaliman, On a theorem of Ax, Proc. Amer. Math. Soc. 133 (2005), no. 4.
- [21] R. Kudou, About counterexamples for generalized Zariski cancellation problem, Comm. Algebra 48 (2020), no. 6, 2358–2368. MR4107576
- [22] _____, Zariski's cancellation problem for principal \mathbb{G}_a -bundles over non- \mathbb{A}^1 -uniruled quasi-affine varieties, Res. Math. **10** (2023), no. 1, Paper No. 2281061, 6. MR4672555
- [23] M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), no. 1, 11–42.
- [24] J-P. Serre, Sur la cohomologie des variétés algébriques, J. Math. Pures Appl. (9) 36 (1957), 1–16. MR83813
- [25] A. van den Essen and P. van Rossum, A class of counterexamples to the cancellation problem for arbitrary rings, 2001, pp. 89–93. Polynomial automorphisms and related topics (Kraków, 1999). MR1839862
- [26] J. Winkelmann, On free holomorphic C-actions on Cⁿ and homogeneous Stein manifolds, Math. Ann. 286 (1990), no. 1-3, 593–612.