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Chapter 1

Introduction

In this thesis, we investigate structures of special smooth complex projective man-
ifolds by using deformation theory of rational curves on manifolds. This thesis
consists of two main parts.

In Chapter 2, we consider embedded manifolds swept out by hypersurfaces, where
a hypersurface means an embedded manifold which has codimension one in some
linear subspace. Structure theorems for them have been obtained by several authors.
E. Sato showed that n-folds swept out by linear subspaces of dimension m ≥ [n2 ] + 1
are scrolls ([28]). M. C. Beltrametti and P. Ionescu proved that n-folds swept out by
hyperquadrics of dimension m ≥ [n

2 ] + 2 are either scrolls or hyperquadric fibrations
([2]). K. Watanabe got that n-folds swept out by smooth cubic hypersurfaces of
dimension m ≥ [n

2 ] + 3 are either scrolls or cubic fibrations ([30]). These results
motivate us to consider the case where d is large, and the following statement is
naturally conjectured:

Conjecture 1.0.1. Let X ⊂ PN be a smooth complex projective manifold of dimen-
sion n ≥ 2d − 1. Assume that X is swept out by smooth hypersurfaces of degree d
and dimension m ≥ [n

2 ] + d. Then either X is a scroll, or X admits a morphism
X → Y whose general fibers are hypersurfaces of degree d.

We will prove Conjecture 1.0.1 for d = 4:

Theorem 1.0.2. Let X ⊂ PN be a smooth complex projective manifold of dimension
n ≥ 7. Assume that X is swept out by smooth quartic hypersurfaces of dimension
m ≥ [n2 ] + 4. Then either X is a scroll, or X admits a morphism X → Y whose
general fibers are quartic hypersurfaces.

Furthermore, we will provide an affirmative answer to Conjecture 1.0.1 under
the stronger assumption m ≥ 2n−1

3 + d and also assuming Hartshorne’s conjecture
on complete intersections:

Theorem 1.0.3. Let X ⊂ PN be a smooth complex projective manifold of dimension
n ≥ 3d − 1. Assume that X is swept out by smooth hypersurfaces of degree d and
dimension m ≥ 2n−1

3 + d, and also assume Hartshorne’s conjecture: If a manifold
X ( PN has dimension n > 2N

3 , then it is a complete intersection. Then either X
is a scroll, or X admits a morphism X → Y whose general fibers are hypersurfaces
of degree d.
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Chapter 3 deals with rationally connected manifolds, which are manifolds which
contain a rational curve passing through two general points. A pair (X,H) consisting
of a manifold X and an ample line bundle H on X is called a polarized manifold,
and it is said to be line connected, conic connected, and rationally cubic connected if
two general points of X can be joined by a rational curve of H-degree one, two, and
three, respectively. It is easy to see that projective spaces (Pn,O(1)) are the only line
connected manifolds. P. Ionescu, F. Russo, and V. Paterno studied conic connected
manifolds, and proved that they have Picard number ρX ≤ 2. G. Occhetta and V.
Paterno considered rationally cubic connected manifolds. They showed that there
is no upper bound on the Picard number, and got sufficient conditions for ρX ≤ 3.

In this chapter, we discuss rationally quartic connected manifolds, namely, po-
larized manifolds (X,H) whose two general points can be joined by a rational curve
of H-degree four. We will prove ρX ≤ 4 under some assumptions:

Theorem 1.0.4. Let X be a smooth complex projective manifold of dimension n ≥ 2
with a fixed ample line bundle H, and assume that X is rationally connected with
respect to a family F which satisfies (H.F ) = 4 and (−KX .F ) ≥ n + 3. Then we
obtain at least one of the following:

(a) ρX ≤ 4 and X is covered by lines;

(b) X is rationally cubic connected;

(c) X is 2-connected by conics which are numerically proportional to F , namely,
for two general points x, y ∈ X there exist two conics C1 and C2 such that
[C1] = [C2] = 1

2 [F ], x ∈ C1, y ∈ C2, and C1 ∩ C2 6= ∅.
Moreover, we will provide a classification of rationally quartic connected surfaces:

Theorem 1.0.5. Let X be a smooth complex projective surface with a fixed ample
line bundle H, and assume that X is rationally connected with respect to a family
F with (H.F ) = 4.

(1) If X is covered by lines, then (X, H) is isomorphic to one of the following:

(i) (P2,O(1)),

(ii) (P1 × P1, O(1, 3)), (iii) (P1 × P1,O(1, 2)), (iv) (P1 × P1,O(1, 1)),

(v) (F1, C0 + 4f), (vi) (F1, C0 + 3f), (vii) (F1, C0 + 2f),

(viii) (F2, C0 + 4f), (ix) (F2, C0 + 3f),

(x) (F3, C0 + 4f),

where we denote by C0 a minimal section and by f a fiber on Fe = PP1(O(−e)⊕
O).

(2) If X is not covered by lines and F is not generically unsplit (see Definition
3.2.4), then (X,H) is isomorphic to one of the following:

(xi) (P2,O(2)),
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(xii) (P1 × P1, O(2, 2)),

(xiii) (Sk,−KSk
) for some 2 ≤ k ≤ 8,

where Sk means a blow-up of P2 at k general points.

(3) If X is not covered by lines and F is generically unsplit, then (X, H) is iso-
morphic to one of the following:

(xiv) (P2,O(4)),

(xv) (Tk, 4L−E1 − · · · − Ek) for some 1 ≤ k ≤ 15,

(xvi) (Tk, 4L− 2E1 − E2 − · · · −Ek) for some 1 ≤ k ≤ 12,

(xvii) (T̃k, 4L̃− 3Ẽ − 2Ẽ1 − Ẽ2 − · · · − Ẽk) for some 1 ≤ k ≤ 11,

where Tk is a blow-up of P2 at k (possibly not general) points, and we denote
by L the pullback of O(1) and by Ei the exceptional curve, and furthermore,
T̃k is a blow-up of Tk at a point in E1, and we denote by L̃ the pullback of L,
by Ẽ the exceptional curve, and by Ẽi the strict transform of Ei.
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Chapter 2

On manifolds swept out by high
dimensional hypersurfaces

2.1 Introduction

In this chapter, we investigate structures of embedded smooth complex projective
manifolds swept out by high dimensional hypersurfaces of degree d, where a hyper-
surface means an embedded projective manifold which has codimension one in some
linear subspace. They have been studied in several ways for small values of d. In
case d = 1, E. Sato showed that projective manifolds of dimension n swept out by
linear subspaces of dimension m ≥ [n2 ] + 1 are scrolls ([28]). In case d = 2, M. C.
Beltrametti and P. Ionescu proved that projective manifolds of dimension n ≥ 3
swept out by hyperquadrics of dimension m ≥ [n2 ] + 2 are either scrolls or hyper-
quadric fibrations ([2]). Remark that other results for d = 2 have also been obtained
by Y. Kachi and E. Sato ([15]) and by B. Fu ([5]). In case d = 3, K. Watanabe
showed that projective manifolds of dimension n ≥ 5 swept out by smooth cubic
hypersurfaces of dimension m ≥ [n

2 ] + 3 are either scrolls or cubic fibrations ([30]).
These results motivate us to consider the case where d is large, and the following
statement is naturally conjectured:

Conjecture 2.1.1. Let X ⊂ PN be a smooth complex projective manifold of dimen-
sion n ≥ 2d − 1. Assume that X is swept out by smooth hypersurfaces of degree d
and dimension m ≥ [n

2 ] + d. Then either X is a scroll, or X admits a morphism
X → Y whose general fibers are hypersurfaces of degree d.

We will prove Conjecture 2.1.1 for d = 4 (Theorem 2.3.5) by employing the
classifications of Fano manifolds with high index. On the other hand, in case d ≥ 5,
this conjecture is an open problem.

However, we provide an affirmative answer to Conjecture 2.1.1 under the stronger
assumption m ≥ 2n−1

3 + d and also assuming Hartshorne’s conjecture. Here the
statement of Hartshorne’s conjecture is the following:

Conjecture 2.1.2 (R. Hartshorne). Let X ( PN be a smooth projective manifold
of dimension n ≥ 3. If n > 2N

3 , then X is a complete intersection.
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In fact, we only need to assume the following conjecture which is a weaker version
of Conjecture 2.1.2:

Conjecture 2.1.3. Let X ( PN be a smooth projective manifold of dimension
n ≥ 5. Let L be a covering family of lines on X, and let x ∈ X be a general
point. If dimLx > 2(n−1)

3 (= 2
3dimP(TxX∗)), then Lx ( P(TxX∗) is a complete

intersection.

We will prove the following theorem:

Theorem 2.1.4. Let X ⊂ PN be a smooth complex projective manifold of dimension
n ≥ 3d−1. Assume that there exists a smooth hypersurface of degree d and dimension
m ≥ 2n−1

3 + d passing through a general point of X. Furthermore, assume that
Conjecture 2.1.3 is true. Then X admits a morphism ϕ : X → Y such that

• ϕ is a contraction of an extremal ray;

• the relative dimension of ϕ is at least m;

• either ϕ is a scroll, or general fibers of ϕ are hypersurfaces of degree d.

In our proof, in order to obtain a contraction ϕ, we need the theory of families of
lines. In addition, in order to determine fibers of ϕ, we use Hartshorne’s conjecture
and the theory of second fundamental forms, which were employed in [5] and [13].

2.2 Preliminaries

Throughout this chapter, we consider X ⊂ PN an n-dimensional smooth complex
projective manifold. A morphism ϕ : X → Y is called a scroll when it is a projective
space bundle P(E ) → Y for some vector bundle E on Y and its fibers are embedded
linearly in PN .

We denote by F 1(X) the Hilbert scheme of lines on X. For a point x ∈ X,
we also denote by F 1

x (X) the Hilbert scheme of lines on X passing through x. An
irreducible component of F 1(X) is called a family of lines on X. For a family of
lines L , an L -line means a line which is a member of L . Let Univ(X) be the
universal family of Hilb(X), and let p : Univ(X) → Hilb(X) and q : Univ(X) → X
be the associated morphisms. For a subset V ⊂ Hilb(X), q(p−1(V )) is denoted by
Locus(V ). A family of lines L is said to be covering if Locus(L ) = X. For a
covering family of lines L and for a general point x ∈ X, we denote by Lx the
scheme of L -lines passing through x, which is called the variety of minimal rational
tangents (at x w.r.t. L ).

Proposition 2.2.1 ([10, Theorem 1.5, Theorem 2.5]). Suppose that X ⊂ PN is
covered by lines. Let L be a covering family of lines, and x a general point of X.
Assume that Pic(X) ∼= Z〈OX(1)〉, where OX(1) is the restriction of the tautolog-
ical line bundle OPN (1) to X. If dimLx ≥ n−1

2 , then Lx ⊂ P(TxX∗) is smooth,
irreducible, and non-degenerate.
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Proposition 2.2.2 ([30, Proposition 2.2]). Suppose that X ⊂ PN is covered by
lines, and let x be a general point of X. Assume that F 1

x (X) is irreducible. Then
there exists a unique covering family of lines L . In particular, Lx = F 1

x (X).

We denote by ρX the Picard number of X. Suppose that X is Fano, namely,
the anticanonical divisor −KX is ample. We denote by i(X) the greatest positive
integer i such that −KX = iH for some ample divisor H, which is called the index
of X. We also denote by l(X) the minimum of intersection numbers of −KX with
rational curves on X, which is called the pseudo-index of X.

Proposition 2.2.3 ([31]). Suppose that X is Fano. If l(X) ≥ n+3
2 , then ρX = 1.

Proposition 2.2.4 ([17]). Let X be a Fano manifold. Then i(X) ≤ n+1. Further-
more,

(1) if i(X) = n + 1, then X is isomorphic to Pn;

(2) if i(X) = n, then X is isomorphic to a quadric hypersurface.

Proposition 2.2.5 ([6], [7]). Let X be a Fano manifold with index i(X) = n − 1
whose Picard group is generated by a very ample divisor. Then X is isomorphic to
one of the following:

(1) a cubic hypersurface,

(2) a complete intersection of two quadric hypersurfaces,

(3) a linear section of the Grassmann variety G(2,C5) ⊂ P9.

Proposition 2.2.6 ([22]). Let X be a Fano manifold with index i(X) = n−2 whose
Picard group is generated by a very ample divisor. Then X is isomorphic to one of
the following:

(1) a quartic hypersurface,

(2) a complete intersection of a quadric hypersurface and a cubic hypersurface,

(3) a complete intersection of three quadric hypersurfaces,

(4) a linear section of a quadric section of the cone C ⊂ P10 over the Grassmann
variety G(2,C5) ⊂ P9,

(5) a linear section of the spinor variety S4 which is an irreducible component of
the Fano variety of 4-planes in Q8,

(6) a linear section of the Grassmann variety G(2,C6) ⊂ P14,

(7) a linear section of the symplectic Grassmann variety SG(3,C6) ⊂ P13,

(8) the G2-variety which is the variety of isotropic 5-planes for a non-degenerate
skew-symmetric 4-linear form on C7.
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Let NE(X) be the cone of effective 1-cycles on X. For a family of lines L ,
we denote by [L ] the numerical class of an L -line, and denote by (D.L ) the
intersection number of a divisor D and an L -line.

Proposition 2.2.7 ([23, Theorem 3.3]). Suppose that X ⊂ PN is covered by lines,
and let L be a covering family of lines. Assume that (−KX .L ) ≥ n+1

2 . Then
R≥0[L ] is an extremal ray of NE(X).

Let S(X) ⊂ PN be the secant variety of X, which is the closure of the union
of secant lines. The secant defect of X is defined as the number δ(X) := 2n + 1 −
dimS(X). Clearly δ(X) ≥ 0.

Proposition 2.2.8 ([11, Theorem 3.14]). Suppose that X ⊂ PN is a Fano manifold
with Pic(X) ∼= Z〈OX(1)〉. If i(X) > 2n

3 , then δ(X) > 0.

Suppose that X ( PN is non-degenerate and n ≥ 2, and let x ∈ X be a general
point. We will define the second fundamental form |IIx,X | as in [14, Remark 3.2.11]
and [27, Definition 1.5]. Consider the projection πx : X 99K PN−n−1 from TxX onto a
disjoint linear subspace PN−n−1 ⊂ PN . The map πx is associated to the linear system
of hyperplane sections cut out by hyperplanes containing TxX, or equivalently, by
the hyperplane sections singular at x. Let φ : Blx(X) → X be the blow-up of X
at x, E := P(TxX∗) ⊂ Blx(X) the exceptional divisor, and H a hyperplane section
of X ( PN . The restriction of the induced rational map π̃x : Blx(X) 99K PN−n−1

to E is given by a linear system in |φ∗(H) − 2E||E ⊂ | − 2E|E | = |OP(TxX∗)(2)| =
P(S2(TxX)).

Definition 2.2.9. The second fundamental form |IIx,X | ⊂ P(S2(TxX)) is the non-
empty linear system of quadric hypersurfaces in P(TxX∗) defining the restriction of
π̃x to E.

Clearly dim |IIx,X | ≤ N −n−1. The base locus on E of the second fundamental
form |IIx,X | consists of asymptotic directions, namely, of directions associated to
lines having a contact of order at least three with X at x.

Proposition 2.2.10 ([27, Theorem 2.3(1)], see also [13, Proposition 1.2]). Suppose
that X ( PN is non-degenerate and n ≥ 2. If δ(X) > 0, then dim |IIx,X | = N−n−1
for a general point x ∈ X.

We will use the following proposition several times:

Proposition 2.2.11 ([32, I Proposition 2.16]). Let X ⊂ PN be a non-degenerate
smooth projective manifold. Let Z be a closed subvariety of X such that dimZ >
[N−1

2 ]. Then codimPN (X) ≤ codim〈Z〉(Z), where 〈Z〉 means the linear span of Z.

2.3 Main results

Notation 2.3.1. Let S be a smooth hypersurface of degree d and dimension m > d.
Then, for a general point x ∈ S, F 1

x (S) ⊂ P(TxS∗) is a smooth complete intersection
of degrees (d, d− 1, d− 2, . . . , 2) by [10, 1.4.2]. In particular, it is irreducible. Thus,
there exists a unique covering family of lines on S by Proposition 2.2.2. We denote
it by L S .
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From now on, we consider the case where d ≥ 2. First, under the weaker as-
sumption that m ≥ [n

2 ] + d, we prove the following two assertions.

Lemma 2.3.2. Let X ⊂ PN be a smooth complex projective manifold of dimension
n ≥ 2d − 1. Assume that there exists a smooth hypersurface of degree d ≥ 2 and
dimension m ≥ [n2 ] + d passing through a general point of X. Then there exists a
covering family of lines L , and for a general point x ∈ X, there exists a smooth
hypersurface Sx ⊂ X of degree d and dimension m passing through x such that
L Sx ⊂ L (see Notation 2.3.1) and F 1

x (Sx) ⊂ Lx.

Proof. First, we remark that the inequalities m ≥ [n2 ]+d and n ≥ m yield m ≥ 2d−1.
Since d ≥ 2, in particular, we have m > d. We denote by Fm,d(X) the Hilbert scheme
of hypersurfaces of degree d and dimension m which are contained in X. Let S be
the open subscheme of Fm,d(X) parametrizing smooth subvarieties. Let {L i}i be
the irreducible components of F 1(X), and set S i := {[S] ∈ S |L S ⊂ L i}. Since
each L S is irreducible, S is equal to the union of {S i}i. By assumption, we know
that Locus(S ) = X. This implies that Locus(S i) = X for some i. Now, the
uniqueness of L S gives an open dense subset US ⊂ S such that L S

x = F 1
x (S) for

any point x ∈ US . Then we have
⋃

[S]∈S i US = X. Therefore, for a general point
x ∈ X, there exists a member [Sx] ∈ S i such that x ∈ USx . Then L Sx ⊂ L i and
F 1

x (Sx) = L Sx
x ⊂ L i

x, as desired.

Proposition 2.3.3. Let X ⊂ PN be a smooth complex projective manifold of di-
mension n ≥ 2d−1. Assume that there exists a smooth hypersurface of degree d ≥ 2
and dimension m ≥ [n2 ] + d passing through a general point of X. Then X admits
a contraction of an extremal ray ϕ : X → Y whose general fiber F satisfies the
following conditions:

(i) F is a Fano manifold with index i(F ) ≥ dimF − d + 2;

(ii) Pic(F ) ∼= Z〈OF (1)〉;
(iii) F is also swept out by smooth hypersurfaces of degree d and dimension m;

(iv) there exists a covering family F of lines on F such that for a general point
x ∈ F Fx ⊂ P(TxF ∗) is smooth, irreducible, and non-degenerate.

Furthermore,

(a) if F is a linear space, then ϕ is a scroll;

(b) if F is a hypersurface, then deg F = d.

Proof. According to Lemma 2.3.2, we get a covering family of lines L , and for a gen-
eral point x ∈ X, we have a smooth hypersurface Sx ⊂ X of degree d and dimension
m passing through x such that L Sx ⊂ L (see Notation 2.3.1) and F 1

x (Sx) ⊂ Lx.
From deformation theory ([29, Theorem 4.3.5(i)]), we see that dimF 1

x (Sx) ≥
m− d and dimLx = (−KX .L )− 2. Thus the intersection number r := (−KX .L )
satisfies

r = dimLx + 2 ≥ dimF 1
x (Sx) + 2 ≥ m− d + 2 ≥ [

n

2
] + 2 >

n + 1
2

.
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Hence R≥0[L ] is a KX -negative extremal ray of NE(X) by Proposition 2.2.7. By
the contraction theorem, we obtain the extremal contraction ϕ : X → Y associated
to R≥0[L ].

Let F be a general fiber of ϕ, and set f := dimF . Let H be a hyperplane section
of X ⊂ PN . Then, since KX + rH is the pullback of a divisor by ϕ, we see that
−KF = −KX |F = rH. Thus the pseudo-index l(F ) satisfies

l(F ) ≥ r ≥ [
n

2
] + 2 ≥ f + 3

2
.

According to Proposition 2.2.3, we conclude that ρ(F ) = 1 and Pic(F ) ∼= Z〈OF (1)〉.
On the other hand, we see that Sx ⊂ F for a general point x ∈ F . Indeed, for

any point y ∈ Sx, x and y can be connected by a chain of L Sx-lines {li}i. Since
L Sx ⊂ L , each line li is contracted to a point by ϕ, and hence y ∈ F . So F is
also swept out by smooth hypersurfaces of degree d and dimension m. By applying
Lemma 2.3.2 again, we get a covering family F of lines on F , and for a general
point x ∈ F , we have a smooth hypersurface S′x ⊂ F of degree d and dimension m
passing through x such that F 1

x (S′x) ⊂ Fx. Then

dimFx ≥ dimF 1
x (S′x) ≥ m− d ≥ [

n

2
] ≥ f − 1

2
.

From Proposition 2.2.1, it follows that Fx ⊂ P(TxF ∗) is smooth, irreducible, and
non-degenerate.

We also know that

dimF 1
x (S′x) ≥ [

n

2
] > [

(f − 1)− 1
2

].

So, by applying Proposition 2.2.11 to F 1
x (S′x) ⊂ Fx, we obtain

f − i(F ) + 1 = codimP(TxF ∗)(Fx) ≤ codimP(TxS′x
∗)(F

1
x (S′x)) ≤ d− 1.

Thus we conclude that i(F ) ≥ f − d + 2.
(a): Next, we assume that F is a linear space. Note that the inequality f ≥ m ≥

[n
2 ] + d yields

dimX − 2dimY = n− 2(n− f) > 0.

So ϕ is a scroll by [4, Theorem 1.7].
(b): Finally, we assume that F is a hypersurface. Then i(F ) ≥ f − d + 2 implies

deg F ≤ d. On the other hand, for a hypersurface S ⊂ F of degree d and dimension
m, we see that 〈S〉 6⊂ F . Indeed, if 〈S〉 ⊂ F , then

dim 〈S〉 = m + 1 ≥ [
f

2
] + d + 1 > [

(f + 1)− 1
2

].

It follows that 1 = codim〈F 〉(F ) ≤ codim〈S〉(〈S〉) = 0 from Proposition 2.2.11,
which is a contradiction. Hence 〈S〉 ∩ F (which contains S) is an m-dimensional
hypersurface whose degree is equal to deg F (≤ d). Thus we conclude that F is a
hypersurface of degree d.

9



Now we prove Theorem 2.1.4.

Proof of Theorem 2.1.4. Let X ⊂ PN be a smooth complex projective manifold of
dimension n ≥ 3d − 1 which is swept out by smooth hypersurfaces of degree d and
dimension m ≥ 2n−1

3 + d. Furthermore, assume that Conjecture 2.1.3 is true.
When d = 1, the result follows from [28], so we assume that d ≥ 2. Then

Proposition 2.3.3 gives a contraction of an extremal ray ϕ : X → Y whose general
fiber F satisfies (i), (ii), (iii), and (iv) in Proposition 2.3.3. Set f := dimF and
M := dim 〈F 〉, and let x be a general point of F . We show that F is either a linear
space or a hypersurface. So we assume that F is not a linear space. Then Fx 6=
P(TxF ∗), and we can define the second fundamental form |IIx,F | ⊂ |OP(TxF ∗)(2)|.

Now we notice that the inequalities m ≥ 2n−1
3 + d and n ≥ m yield f ≥ m ≥

3d− 1(≥ 5). Thus d ≤ f+1
3 . It follows that

dimFx = i(F )− 2 ≥ f − d ≥ 2f − 1
3

>
2(f − 1)

3
(> 2).

Hence we can apply Conjecture 2.1.3, so Fx ( P(TxF ∗) is a complete intersection.
Moreover, the index i(F ) satisfies

i(F ) ≥ 2f + 5
3

>
2f

3
.

According to Proposition 2.2.8, this implies that δ(F ) > 0. Therefore, the dimension
of |IIx,F | is equal to M − f − 1 by Proposition 2.2.10. Since Fx ( P(TxF ∗) is
contained in the base locus of |IIx,F |, we can apply the following lemma:

Lemma 2.3.4. Let X ( PN be a non-degenerate complete intersection. Assume
that X is contained in a variety W which is an intersection of k linearly independent
hyperquadrics in PN . Then codimPN (X) ≥ k.

Proof. Suppose that X is defined by polynomials p1, . . . , pc, where c := codimPN (X),
and W is defined by quadratic polynomials q1, . . . , qk. We may assume that deg p1 =
· · · = deg pe = 2 < deg pe+1 ≤ · · · ≤ deg pc. Now each qi is contained in the ideal
generated by p1, . . . , pc, hence it is contained in the C-vector space spanned by
p1, . . . , pe. Since q1, . . . qk are linearly independent, we conclude that k ≤ e ≤ c.

By Lemma 2.3.4, we have

(f − 1)− 2f − 1
3

≥ codimP(TxF ∗)(Fx) ≥ M − f.

Hence f ≥ 3M+2
4 , and this yields that

m ≥ 2f − 1
3

+ d ≥ M

2
+ d > [

M − 1
2

].

Now we know that F contains a hypersurface S of degree d and dimension m. So, by
applying Proposition 2.2.11 to S ⊂ F , we obtain that codim〈F 〉(F ) ≤ codim〈S〉(S) =
1. Therefore, F is either a linear space or a hypersurface. By Proposition 2.3.3(a)
and (b), we obtain the conclusion.
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Next, we prove the following theorem, which is the case d = 4 in Conjecture
2.1.1.

Theorem 2.3.5. Let X ⊂ PN be a smooth complex projective manifold of dimension
n ≥ 7. Assume that there exists a smooth quartic hypersurface of dimension m ≥
[n
2 ]+4 passing through a general point of X. Then X admits a morphism ϕ : X → Y

such that

• ϕ is a contraction of an extremal ray;

• the relative dimension of ϕ is at least m;

• either ϕ is a scroll, or general fibers of ϕ are quartic hypersurfaces.

Proof. By Proposition 2.3.3, we get a contraction of an extremal ray ϕ : X → Y
whose general fiber F satisfies the conditions (i)-(iv). Then F is a Fano manifold
with i(F ) ≥ f − 2 and Pic(F ) ∼= Z〈OF (1)〉, where f := dimF . We notice that the
inequalities m ≥ [n

2 ] + 4 and n ≥ m yield f ≥ m ≥ 7. According to Propositions
2.2.4, 2.2.5, and 2.2.6, F is isomorphic to one of the following:

If i(F ) = f + 1,

(1) a linear space.

If i(F ) = f ,

(2) a quadric hypersurface.

If i(F ) = f − 1,

(3) a cubic hypersurface,

(4) a complete intersection of two quadric hypersurfaces.

If i(F ) = f − 2,

(5) a quartic hypersurface,

(6) a complete intersection of a quadric hypersurface and a cubic hypersurface,

(7) a complete intersection of three quadric hypersurfaces,

(8) a linear section of the spinor variety S4 which is an irreducible component of
the Fano variety of 4-planes in Q8,

(9) a linear section of the Grassmann variety G(2,C6) ⊂ P14.

In any case, we know that codimPM (F ) ≤ 6, where M := dim 〈F 〉. This implies

m ≥ [
f

2
] + 4 ≥ [

M − 6
2

] + 4 > [
M − 1

2
].

Now F contains a quartic hypersurface S of dimension m, so we have codim〈F 〉(F ) ≤
codim〈S〉(S) = 1 by Proposition 2.2.11 again. Therefore, F is either a linear space
or a hypersurface. By Proposition 2.3.3(a) and (b), we obtain the conclusion.
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Chapter 3

On the Picard number of
rationally quartic connected
manifolds

3.1 Introduction

We consider a smooth complex projective manifold X of dimension n ≥ 2 which is
rationally connected by rational curves of degree d with respect to a fixed ample line
bundle H, namely, whose two general points can be joined by a rational curve of
H-degree d. We study structures of such a manifold. In particular, we investigate
the Picard number ρX and lines on X, where a line means a curve of H-degree one.
For small degree d, they have been studied well.

In case d = 1, X is called line connected, and it is known that (Pn, O(1)) is the
unique manifold which is line connected.

In case d = 2, X is called conic connected.

Fact 3.1.1 ([26, Theorem 7.4] and [16, Theorem 3.6]). If X is conic connected, then

(i) ρX ≤ 2;

(ii) X is covered by lines unless (X,H) is isomorphic to (Pn, O(2)).

We remark that P. Ionescu and F. Russo classified the conic connected manifolds
with ρX = 2 embedded in a projective space ([13, Theorem 2.2]), and V. Paterno
generalized their classification for polarized manifolds ([26, Theorem 7.4]).

In case d = 3, X is called rationally cubic connected. Then there is no upper
bound on the Picard number (see [24, Example 3.1]). However, G. Occhetta and V.
Paterno obtained the following results:

Fact 3.1.2 ([24, Proposition 5.5 and Theorem 1.1]). Suppose that X is rationally
cubic connected with respect to a family F .

(i) If F is not generically unsplit (see Definition 3.2.4), then ρX ≤ 3 and X is
covered by lines.
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(ii) (Even when F is generically unsplit) If X is covered by lines, then ρX ≤ 3.

They also proved that rationally cubic connected manifolds which are not covered
by lines are obtained by rationally cubic connected manifolds of Picard number one
by blow-ups along smooth centers ([25, Theorem 1.1]).

In this chapter, we consider the case d = 4, namely, the case where X is rationally
quartic connected with respect to a family F , and one of our main problems is to
find what conditions imply ρX ≤ 4. In case d = 4, it turns out that there is no
upper bound on the Picard number, even when F is not generically unsplit and X
is covered by lines (see Example 3.3.2).

In general, if X is rationally connected with respect to F , then (−KX .F ) ≥
n + 1, and equality holds if and only if F is generically unsplit (see Remark 3.2.9).
Recall that ρX ≤ 2 holds unconditionally ((−KX .F ) ≥ n + 1) in case d = 2, and
that ρX ≤ 3 holds if (−KX .F ) ≥ n + 2 in case d = 3. So, when d = 4, it seems
natural to consider the case (−KX .F ) ≥ n + 3 for a first approach to our problem.
In our main result, we will prove that, with two kinds of exceptions, this assumption
implies ρX ≤ 4 and X is covered by lines. The statement of our main theorem is as
follows:

Theorem 3.1.3. Let X be a smooth complex projective manifold of dimension n ≥ 2
with a fixed ample line bundle H, and assume that X is rationally connected with
respect to a family F which satisfies (H.F ) = 4 and (−KX .F ) ≥ n + 3. Then we
obtain at least one of the following:

(a) ρX ≤ 4 and X is covered by lines;

(b) X is rationally cubic connected;

(c) X is 2-connected by conics which are numerically proportional to F , namely,
for two general points x, y ∈ X there exist two conics C1 and C2 such that
[C1] = [C2] = 1

2 [F ], x ∈ C1, y ∈ C2, and C1 ∩ C2 6= ∅.
This theorem fails under the assumption (−KX .F ) = n+2 (see Example 3.3.2).

In addition, as shown in Example 3.3.3, even when (−KX .F ) ≥ n + 3, the Picard
number may possibly be greater than four and X may not be covered by lines in
cases (b) and (c).

Furthermore, we will provide a classification of rationally quartic connected sur-
faces (Theorem 3.5.1).

In our proof, Lemmas 3.4.6 and 3.4.7, which are generalizations of [24, Propo-
sition 5.4], are key lemmas. In order to prove ρX ≤ 4, we need to apply skillfully
these lemmas and results of [1].

3.2 Families of rational curves

Throughout this section, we consider a smooth complex projective manifold X of
dimension n ≥ 2.
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Definition 3.2.1. Let H be a fixed ample line bundle. Then a curve C ⊂ X is
called a line, conic, cubic, and quartic, if the intersection number (H.C) is equal to
one, two, three, and four, respectively.

Definition 3.2.2. We denote by RatCurvesn(X) the normalization of the scheme
of rational curves on X (see [18, II.2]), and define a family of rational curves on X
to be an irreducible component of RatCurvesn(X). Given a rational curve C on X,
we define a family of deformations of C to be a family of rational curves containing
C.

Definition 3.2.3. Let V be a family of rational curves. Let U be the univer-
sal family of V , and let p : U → V and q : U → X be the associated mor-
phisms. q(U ) is denoted by Locus(V ). We say that V is a dominating (resp.
covering) family if Locus(V ) = X (resp. Locus(V ) = X). For a subvariety
Y ⊂ X, p(q−1(Y ))(the subscheme of V which parametrizes curves intersecting
Y ) is denoted by VY , and q(p−1(VY )) is denoted by Locus(V ; Y ). In particu-
lar, when Y is a point, V{x} (resp. Locus(V ; {x})) is also denoted by Vx (resp.
Locus(V ; x)). For families of rational curves V 1, . . . ,V k, we inductively define
Locus(V k, . . . ,V 1; Y ) := Locus(V k; Locus(V k−1, . . . ,V 1; Y )).

Definition 3.2.4. For a family of rational curves V ,

(i) V is unsplit if it is proper;

(ii) V is locally unsplit if for a general point x ∈ Locus(V ) Vx is proper;

(iii) V is generically unsplit if for a general point x ∈ Locus(V ) and a general
point y ∈ Locus(V ; x) there is at most a finite number of curves of V passing
through both x and y.

Definition 3.2.5. Let V be a dominating family of rational curves. We say that
X is rationally connected with respect to V , if there exists a curve of V passing
through two general points of X.

Definition 3.2.6. Let V 1, . . . , V k be unsplit families of rational curves. We say
that two points x, y ∈ X can be connected by a (V 1, . . . , V k)-chain of length m
if x ∈ Locus(V i(1), . . . , V i(m); y) (see Definition 3.2.3) for some 1 ≤ i(j) ≤ k. We
say that x and y are in rc(V 1, . . . ,V k) relation if they can be connected by a
(V 1, . . . ,V k)-chain of length m for some m. It is known (see [18, IV Theorem 4.16])
that there is an open subvariety U ⊂ X and a proper morphism π : U → Z with
connected fibers such that

(i) the rc(V 1, . . . ,V k) relation restricts to an equivalence relation on U ;

(ii) π−1(z) coincides with an equivalence class for the rc(V 1, . . . ,V k) relation for
every z ∈ Z;

(iii) any two points of π−1(z) can be connected by a (V 1, . . . ,V k)-chain of length
at most 2dim X−dim Z − 1 for every z ∈ Z.
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We call the morphism π the rc(V 1, . . . ,V k) fibration. If Z is just a point, then we
say that X is rationally chain connected with respect to V 1, . . . ,V k.

Definition 3.2.7. For a family of rational curves V , we denote by V the closure
of V in the Chow variety Chow(X). For a subvariety Y ⊂ X, we define V Y as in
Definition 3.2.3.

Definition 3.2.8. N1(X) is the R-vector space of 1-cycles with real coefficients
modulo numerical equivalence. We denote by ρX the Picard number of X, which is
the dimension of the R-vector space N1(X). For a family of rational curves V , we
denote by [V ] the numerical class of a curve of V , and by (D.V ) the intersection
number of a divisor D and a curve of V .

Remark 3.2.9. Assume that X is rationally connected with respect to a family
V . Then by [18, II Theorem 3.11], the dimension of the subscheme of V which
parametrizes curves passing through two general points of X, is equal to (−KX .V )−
n − 1. Thus we have (−KX .V ) ≥ n + 1, and equality holds if and only if V is
generically unsplit. If V is not generically unsplit, then Mori’s Bend-and-Break ([21,
Theorem 4]) gives a reducible connected 1-cycle parametrized by V (see Definition
3.2.7) passing through two general points of X.

Proposition 3.2.10 ([1, Lemma 4.1]). Let Y ⊂ X be a closed subvariety, V a
family of rational curves on X. Then every curve contained in Locus(V ;Y ) (see
Definition 3.2.3) is numerically equivalent to a linear combination with rational
coefficients aCY +

∑k
i=1 biCi, where CY is a curve contained in Y , and each Ci is

an irreducible component of a cycle parametrized by V Y (see Definition 3.2.7).

Proposition 3.2.11 ([1, Corollary 4.4]). Suppose that X is rationally chain con-
nected with respect to some unsplit families V 1, . . . ,V k. Then every curve in X is
numerically equivalent to a linear combination of curves in V 1, . . . ,V k. In particu-
lar, ρX ≤ k.

Proposition 3.2.12 (proof of [1, Lemma 5.4]). Let x be a point of X, and let
V 1, . . . ,V k be numerically independent families of rational curves on X. Set Y j :=
Locus(V j , . . . ,V 1; Y ) and Y 0 := {x}. Assume that

• V j
y is proper for every 1 ≤ j ≤ k and every point y ∈ Y j−1;

• Y k is nonempty.

Then we have

dimY k ≥
k∑

j=1

(−KX .V j)− k.

3.3 Examples

Example 3.3.1. Products of four projective spaces (Pr×Ps×Pt×Pu, O(1, 1, 1, 1))
are trivial examples of rationally quartic connected manifolds with Picard number
four.
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Example 3.3.2. Let ϕ : Y → Pr be the blow-up of Pr at general k points P1, . . . , Pk

with k ≤ (
r+3
3

)−2r−2, and Ei := ϕ−1(Pi) the exceptional divisor. Let X be Y ×Ps,
and set

H := p∗1{ϕ∗OPr(3)−
k∑

i=1

Ei}+ p∗2OPs(1),

where p1 and p2 are the projections. Then H is ample by [3]. Notice that (Y, ϕ∗OPr(3)−∑
Ei) is a rationally cubic connected manifold which was given by [24, Example 3.1]
Now for a general line l on Pr and for any line m on Ps, we get a rational curve

in |O(1, 1)| on l̃ ×m, where l̃ ⊂ Y is the strict transform of l. We define F to be
the family of deformations of such a rational curve. Then we know that (H.F ) = 4
and X is rationally connected with respect to F . Remark that

−KX = p∗1{ϕ∗OPr(r + 1)− (r − 1)
k∑

i=1

Ei}+ p∗2OPs(s + 1),

so we have (−KX .F ) = r + s + 2, thus F is not generically unsplit. In addition,
X is covered by lines. On the other hand, X has large Picard number ρX = k + 2.
Moreover, we also know that this manifold satisfies none of the three conclusions of
Theorem 3.1.3.

Example 3.3.3. Let ϕ : X → Qn be the blow-up of a smooth quadric hypersurface
Qn ⊂ Pn+1 of dimension n ≥ 3 at general k points P1, . . . , Pk with k ≤ 2n + 1, and
Ei := ϕ−1(Pi) the exceptional divisor. Set

H := ϕ∗OQn(2)−
k∑

i=1

Ei.

Then it follows from the next lemma (Lemma 3.3.4) that for any curve C ⊂ X,

(H.C) ≥ m(C)
n + 1

,

where m(C) means the maximum of the multiplicities at the points of C, so H is
ample by Seshadri’s criterion ([8, Theorem 7.1]).

Let F be the family of deformations of the strict transform of a general conic
on Qn. Note that

−KX = ϕ∗OQn(n)− (n− 1)
k∑

i=1

Ei.

Then we know that (H.F ) = 4, (−KX .F ) = 2n ≥ n + 3, and X is rationally
connected with respect to F . However, ρX = k + 1. We also see that every line
with (−KX)-degree at least two is contracted by ϕ, so X is not covered by lines.

On the other hand, we show that X satisfies both (b) and (c) in Theorem 3.1.3.
Let E be the family of deformations of the strict transform of a general conic on Qn

passing through P1. Then (H,E ) = 3, and X is rationally connected with respect
to E because there is a conic on Qn passing through three general points, so (b)
holds. Next, let C be the family of deformations of the strict transform of a general
line on Qn. Then [C ] = 1

2 [F ], and since Qn is 2-connected by lines, X has the same
property with respect to C . Thus (c) also holds.
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Lemma 3.3.4. Let P1, . . . , Pk be general points of a smooth quadric hypersurface
Qn ⊂ Pn+1 with k ≤ 2n + 1. Let C ⊂ Qn be an irreducible curve of degree d, and
let mi be the multiplicity of C at Pi (in case Pi /∈ C, set mi := 0). Then we have

k∑

i=1

mi ≤ 2n + 1
n + 1

d.

Proof. We may assume m1 ≥ · · · ≥ mk. We only have to prove the case k = 2n + 1.
Let L ⊂ Pn+1 be the hyperplane passing through P1, . . . , Pn+1. Note that none of
Pn+2, . . . , Pk is contained in L.

If C is not contained in L, then Bézout’s theorem ([9, I Theorem 7.7]) yields∑n+1
i=1 mi ≤ d. This implies the conclusion.
If C is contained in L, then C ⊂ L ∩ Qn = Qn−1. In case n = 2, C must be a

smooth conic, so
5∑

i=1

mi =
3∑

i=1

mi ≤ 3 <
10
3

.

In case n ≥ 3, by induction on n, we obtain

k∑

i=1

mi =
n+1∑

i=1

mi ≤ 2n− 1
n

d <
2n + 1
n + 1

d.

3.4 Preliminaries

In this section, let X be a smooth complex projective manifold of dimension n ≥ 2.

Definition 3.4.1. Let (V 1, . . . ,V k) be a k-tuple of families of rational curves on
X. We define a 1-cycle parametrized by (V 1, . . . , V k) as a 1-cycle C1 + · · · + Ck

such that each Ci is a curve parametrized by V i. We say that X is dominated by
connected 1-cycles of (V 1, . . . ,V k) (resp. (V 1, . . . ,V k; i)), if for a general point
x ∈ X there exists a connected 1-cycle C1 + · · ·+ Ck parametrized by (V 1, . . . , V k)
such that x ∈ C1 ∪ · · · ∪ Ck (resp. x ∈ Ci). We use the word “covered” instead
of “dominated” if the same conditions hold for every point x ∈ X. We also say
that X is connected by 1-cycles of (V 1, . . . , V k) (resp. (V 1, . . . ,V k; i, j)), if for two
general points x, y ∈ X there exists a connected 1-cycle C1 + · · ·+ Ck parametrized
by (V 1, . . . ,V k) such that x, y ∈ C1 ∪ · · · ∪ Ck (resp. x ∈ Ci and y ∈ Cj).

Definition 3.4.2. In graph theory, a tree is an undirected connected graph without
simple cycles. Let t be a tree with k vertices, and V (t) = {v1, . . . , vk} the set of
vertices of t. Then we define a 1-cycle parametrized by (V 1, . . . , V k; t) as a connected
1-cycle C1+· · ·+Ck parametrized by (V 1, . . . , V k) satisfying the following condition:
if t has an edge connecting vi and vj , then Ci intersects Cj (see Figures 1 and 2).
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Figure 1. A tree t.
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Figure 2. A 1-cycle parametrized by (V 1, . . . , V 7; t).

When the same conditions as in Definition 3.4.1 hold for a 1-cycle parametrized
by (V 1, . . . , V k; t), X is said to be, respectively, {dominated or covered} by con-
nected 1-cycles of {(V 1, . . . , V k; t) or (V 1, . . . , V k; i; t)}, and connected by 1-cycles
of {(V 1, . . . ,V k; t) or (V 1, . . . ,V k; i, j; t)}.
Lemma 3.4.3. Suppose that X is dominated by a family of rational curves V which
is not locally unsplit. Then we obtain an integer k ≥ 2, a k-tuple of families of
rational curves (V 1, . . . ,V k), a number 1 ≤ i ≤ k, and a tree t with k vertices such
that

• [V 1] + · · ·+ [V k] = [V ];

• X is dominated by connected 1-cycles of (V 1, . . . , V k; i; t) (see Definition 3.4.2).

Proof. Let H be an ample line bundle. For an integer 2 ≤ k ≤ (H.V ), let Λk be the
set of k-tuples of families of rational curves (V 1, . . . , V k) such that [V 1]+· · ·+[V k] =
[V ], and let Tk be the set of trees with k vertices. Remark that both Λk and Tk are
finite sets. For each λ = (V 1, . . . , V k) ∈ Λk, each 1 ≤ i ≤ k, and each t ∈ Tk, let
A(k; λ; i; t) be the set of x ∈ X such that there exists a connected 1-cycle C1+· · ·+Ck

parametrized by (V 1, . . . , V k; t) which satisfies x ∈ Ci. By assumption, we get a
reducible connected 1-cycle parametrized by V (see Definition 3.2.7) passing through
a general point of X. It follows that

⋃
2≤k≤(H.V )

⋃
λ∈Λk

⋃
1≤i≤k

⋃
t∈Tk

A(k; λ; i; t)
dominates X. Since X is irreducible, we conclude that A(k;λ; i; t) = X for some k,
λ, i, and t, as desired.

We can also prove the following lemma in the same way as the proof of Lemma
3.4.3, by considering subsets of X ×X.

Lemma 3.4.4. Suppose that X is rationally connected with respect to a family V
which is not generically unsplit. Then we obtain an integer k ≥ 2, a k-tuple of
families of rational curves (V 1, . . . ,V k), two numbers 1 ≤ i, j ≤ k, and a tree t with
k vertices such that

• [V 1] + · · ·+ [V k] = [V ];

• X is connected by 1-cycles of (V 1, . . . ,V k; i, j; t) (see Definition 3.4.2).
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Lemma 3.4.5. Let π : U → Z be a dominant morphism mapping from an open
subvariety U ⊂ X to some variety Z, and V a dominating family of rational curves
on X. Assume that V is numerically equivalent to a linear combination of some
curves C1, . . . , Ck which are contained in U and contracted by π. Then general
curves of V are also contracted by π.

Proof. Set d := dimZ. Let W1, . . . , Wd be general effective divisors on Z passing
through none of the k points π(C1), . . . , π(Ck), and let Yj be a prime divisor on X
contained in the closure of π−1(Wj). Then by construction, (Yj .C

i) = 0 for every
i and j. Let x ∈ ⋂

Yj be a general point. We may assume that x ∈ U , and that
Vx is nonempty because V is dominating. Then for any curve C ∈ Vx, (Yj .C) = 0
by assumption, hence C ⊂ Yj . Thus π(C) ⊂ ⋂

Wj . Since
⋂

Wj is a finite set, we
conclude that π(C) is a point.

Lemma 3.4.6. Suppose that X is rationally connected with respect to a family V .
Let V 1, . . . , V k be unsplit families of rational curves. We assume that

• [V ] is a linear combination of [V 1], . . . , [V k];

• X is covered by connected 1-cycles of (V 1, . . . , V k) (see Definition 3.4.1).

Then N1(X) is spanned by [V 1], . . . , [V k]. In particular, ρX ≤ k.

We show the following lemma, which is a strong form of Lemma 3.4.6.

Lemma 3.4.7. Suppose that X is rationally connected with respect to a family of V .
Let W be a dominating family of rational curves, and let V 1, . . . ,V k, W 1, . . . ,W m

be unsplit families of rational curves. We assume that

• [V ] is a linear combination of [V 1], . . . , [V k];

• [W ] is a linear combination of [W 1], . . . , [W m];

• X is dominated by connected 1-cycles of (V 1, . . . , V k, W ; k+1) (see Definition
3.4.1);

• X is covered by connected 1-cycles of (W 1, . . . , W m).

Then N1(X) is spanned by [V 1], . . . , [V k], [W 1], . . . , [W m].

Proof. Let π : U → Z be the rc(V 1, . . . , V k, W 1, . . . ,W m) fibration (see Definition
3.2.6), and x ∈ U a general point. By assumption, we get a connected 1-cycle∑m

j=1 Dj passing through x such that Dj ∈ W j . Then since each Dj is contained
in U and contracted by π, Lemma 3.4.5 yields that general curves of W are also
contracted by π.

Now let y ∈ U be another general point, and let
∑k

i=1 Ci + D be a connected
1-cycle such that Ci ∈ V i and D ∈ Wy. Then D is contracted by π. Observe that D
is contained in U because π : U → Z is proper, and that each Ci is also contained
in U and contracted by π. By Lemma 3.4.5 again, we obtain that general curves of
V are also contracted by π. Since two general points of X can be joined by a curve
of V , Y must be a point. Therefore, Proposition 3.2.11 implies the conclusion.
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3.5 Rationally quartic connected surfaces

In this section, we give a classification of rationally quartic connected surfaces.

Theorem 3.5.1. Let X be a smooth complex projective surface with a fixed ample
line bundle H, and assume that X is rationally connected with respect to a family
F with (H.F ) = 4.

(1) If X is covered by lines, then (X, H) is isomorphic to one of the following:

(i) (P2,O(1)),

(ii) (P1 × P1, O(1, 3)), (iii) (P1 × P1,O(1, 2)), (iv) (P1 × P1,O(1, 1)),

(v) (F1, C0 + 4f), (vi) (F1, C0 + 3f), (vii) (F1, C0 + 2f),

(viii) (F2, C0 + 4f), (ix) (F2, C0 + 3f),

(x) (F3, C0 + 4f),

where we denote by C0 a minimal section and by f a fiber on Fe = PP1(O(−e)⊕
O).

(2) If X is not covered by lines and F is not generically unsplit (see Definition
3.2.4), then (X,H) is isomorphic to one of the following:

(xi) (P2,O(2)),

(xii) (P1 × P1, O(2, 2)),

(xiii) (Sk,−KSk
) for some 2 ≤ k ≤ 8,

where Sk means a blow-up of P2 at k general points.

(3) If X is not covered by lines and F is generically unsplit, then (X, H) is iso-
morphic to one of the following:

(xiv) (P2,O(4)),

(xv) (Tk, 4L−E1 − · · · − Ek) for some 1 ≤ k ≤ 15,

(xvi) (Tk, 4L− 2E1 − E2 − · · · −Ek) for some 1 ≤ k ≤ 12,

(xvii) (T̃k, 4L̃− 3Ẽ − 2Ẽ1 − Ẽ2 − · · · − Ẽk) for some 1 ≤ k ≤ 11,

where Tk is a blow-up of P2 at k (possibly not general) points, and we denote
by L the pullback of O(1) and by Ei the exceptional curve, and furthermore,
T̃k is a blow-up of Tk at a point in E1, and we denote by L̃ the pullback of L,
by Ẽ the exceptional curve, and by Ẽi the strict transform of Ei.

Remark 3.5.2. In Theorem 3.5.1, (1) and (2) are complete classifications. On the
other hand, (3) is not. In some cases in (xv), (xvi), and (xvii), H is not ample.
It seems difficult to classify completely the possible values of k and the possible
positions of centers of the blow-up (for instance, we need to consider the case where
three points among them are colinear).
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Proof of Theorem 3.5.1. Since X is a rational surface, if ρX = 1, then X is isomor-
phic to P2, and we obtain (i), (xi), and (xiv), respectively. So, from now on, we
suppose that ρX ≥ 2.

First, we consider the case (1). Then X is a ruled surface Fe, and f is a line
with respect to H. So H ≡ C0 + hf for some integer h. Since H is ample, we have

h− e ≥ 1. (3.1)

Suppose that F ≡ aC0 + bf , then

4 = (H.F ) = a(h− e) + b. (3.2)

Notice that F is numerically equivalent to neither C0 nor f because X is rationally
connected with respect to F . So we know (see [9, V Corollary 2.18]) that

a ≥ 1, b ≥ 1, and b ≥ ae. (3.3)

Furthermore, the genus formula yields

0 = 1 +
1
2
{(F )2 + (KX .F )} = (a− 1)(b− 1

2
ae− 1). (3.4)

Then we can easily check that every (a, b, e, h) satisfying all of (3.1), (3.2), (3.3),
and (3.4) is listed in the following table (Table 3.1). Thus we get one of (ii)-(x).

Table 3.1: Possible (a, b, e, h).
a = 1 a = 1 a = 1 a = 2 a = 3
b = 1 b = 2 b = 3 b = 2 b = 1

e = 0 (1, 1, 0, 3) (1, 2, 0, 2) (1, 3, 0, 1) (3, 1, 0, 1)
e = 1 (1, 1, 1, 4) (1, 2, 1, 3) (1, 3, 1, 2) (2, 2, 1, 2)
e = 2 (1, 2, 2, 4) (1, 3, 2, 3)
e = 3 (1, 3, 3, 4)

Next, we consider the case (2). Then (−KX .F ) ≥ 4 by Remark 3.2.9, so it
follows from the next proposition (Proposition 3.5.3) that X is a del Pezzo surface
with −KX = H. We finally show that X cannot be isomorphic to S1. Assume by
contradiction that X = S1 = F1. Suppose that F ≡ aC0 + bf . Since H = −KX =
2C0 + 3f , we have

4 = (H.F ) = a + 2b. (3.5)

On the other hand, the genus formula implies

2 = (−KX .F )− 2 = (F )2 = −a2 + 2ab. (3.6)

However, there is no pair of integers (a, b) satisfying both (3.5) and (3.6). Therefore,
we obtain either (xii) or (xiii).

Finally, we consider the case (3). In this case, we have (−KX .F ) = 3, which
is equivalent to (F )2 = 1 by the genus formula. Moreover, X is neither conic con-
nected nor rationally cubic connected. Indeed, since X is not covered by lines, conic
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connectedness implies (X,H) ∼= (P2,O(2)) (see Fact 3.1.1), and cubic connectedness
implies H = −KX by Proposition 3.5.3 (see also [25, Proposition 3.3]). Therefore,
for a rational curve C ⊂ X, if (H.C) = 2, 3 then we have (−KX .C) ≤ 2 (i.e.,
(C)2 ≤ 0), and if (H.C) = 1 then we have (−KX .C) ≤ 1 (i.e., (C)2 < 0).

Now Proposition 3.2.10 yields that F is not locally unsplit because ρX ≥ 2. By
Lemma 3.4.3, at least one of the following holds:

(a) There is a family of cubics E and a line l such that

• [E ] + [l] = [F ];

• X is dominated by connected 1-cycles of (E , l; 1) (see Definition 3.4.1).

(b) There are two families of conics C and D such that

• [C ] + [D ] = [F ];

• X is dominated by connected 1-cycles of (C , D ; 1).

(c) There is a family of conics C and two lines l and m such that

• [C ] + [l] + [m] = [F ];

• X is dominated by connected 1-cycles of (C , l, m; 1).

In case (a), E is dominating, so we get (−KX .E ) = 2 (i.e., (E )2 = 0), and
(−KX .l) = (−KX .F − E ) = 1 (i.e., (l)2 = −1). Thus we obtain ϕ : X → X ′ which
is a blow-up of a smooth surface at a point with exceptional curve l. Then H + l is
a supporting divisor for l, so H = ϕ∗H ′ − l for some ample divisor H ′ on X ′. Let
F ′ be the family of deformations of the image of a general curve parametrized by
F . Now

0 = (F − l)2 = 1− 2(F .l)− 1

implies (F .l) = 0, therefore we find that (X ′,H ′) is also rationally quartic connected
with respect to the generically unsplit family F ′, and it is not covered by lines.

In case (b), since C is dominating, we have (−KX .C ) = 2 (i.e., (C )2 = 0), and
(−KX .D) = 1 (i.e., (D)2 = −1). In particular, D consists of a curve D. Thus, in a
similar way, we can contract D by a morphism ϕ and get another rationally quartic
connected surface (X ′,H ′) which satisfies the same conditions and H = ϕ∗H ′− 2D.

In case (c), we know (−KX .C ) = 2 (i.e., (C )2 = 0), and

(−KX .l) + (−KX .m) = (−KX .F − C ) = 1,

so we may assume that (−KX .l) = 1 (i.e., (l)2 = −1) and (−KX .m) = 0 (i.e.,
(m)2 = −2). Then

−1 ≤ 2(C .l)− 1 = (C + l)2 = (F −m)2 = −2(F .m)− 1 ≤ −1

yields (C .l) = (F .m) = 0. Hence (C .m) > 0 because there exists a connected
1-cycle parametrized by (C , l, m), and

0 ≤ 2(C .m)− 2 = (C + m)2 = (F − l)2 = −2(F .l) ≤ 0
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implies (C .m) = 1 and (F .l) = 0. Thus we can contract l by a morphism ϕ and
get another surface (X ′,H ′) which satisfies the same conditions and H = ϕ∗H ′ − l.
Note that −KX = ϕ∗(−KX′) − l. Let m′ be the image of m in X ′, and let F ′

be as in the case (a). Since (l.m) = (l.F − C − l) = 1, we have (H ′.m′) = 2,
(−KX′ .m′) = 1 (i.e., (m′)2 = −1), and (F ′.m′) = 0. Therefore, we can contract
m′ by a morphism ϕ′ and get another surface (X ′′, H ′′) which satisfies the same
conditions and H ′ = ϕ′∗H ′′ − 2m′. Then H = ϕ∗ϕ′∗H ′′ − 3l − 2m.

The procedure stops when the Picard number becomes one, namely, eventually
we get (P2, O(4)). Now we know that (X, H) contains at most one conic with
self-intersection −1. Indeed, if it contains two such conics C and D, then H =
4L− 2C − 2D − · · · , where L is the pull back of O(1), so H cannot be positive on
the strict transform of the line on P2 passing through the two centers. Therefore,
(X,H) is isomorphic to one of (xv), (xvi), and (xvii). Since (H)2 > 0, we get the
upper bound for k in each case.

Proposition 3.5.3. Let X be a smooth complex projective surface with a fixed ample
line bundle H, and assume that

• ρX ≥ 2;

• X is not covered by lines;

• X is rationally connected with respect to a family F with (H.F ) = d and
(−KX .F ) ≥ d.

Then −KX is linearly equivalent to H. In particular, X is a del Pezzo surface.

Proof. Now KX + H is nef. Indeed, if it is not nef, then there exists an extremal
ray on which it is negative, so this ray has length at least two, and hence X must
be either P2 or a ruled surface.

Let
∑k

i=1 Ci be any 1-cycle parametrized by F . Then

d ≤
k∑

i=1

(−KX .Ci) ≤
k∑

i=1

(H.Ci) = d.

Thus we obtain that (−KX .Ci) = (H.Ci) for each i.
Let x ∈ X be a general point, then by assumption, we have Locus(F ; x) = X.

It follows from Proposition 3.2.10 that any curve C ⊂ X is numerically equivalent
to a linear combination of irreducible components of cycles parametrized by F x,
so we have (−KX .C) = (H.C). This means that −KX and H are numerically
equivalent. Recalling that X is a rational surface, we conclude that they are also
linearly equivalent.

3.6 Proof of Theorem 3.1.3

Proof. By our assumption, F is not generically unsplit. So Lemma 3.4.4 implies at
least one of the following:
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(1) There are four families of lines L 1, L 2, L 3, and L 4 such that

• [L 1] + [L 2] + [L 3] + [L 4] = [F ];

• X is connected by 1-cycles of (L 1, L 2, L 3, L 4) (see Definition 3.4.1).

(2) There is a family of conics C and two families of lines L 1 and L 2 such that

• [C ] + [L 1] + [L 2] = [F ];

• for two general points x, y ∈ X there exists one of the following 1-cycles:

(2.1)

r
x

r
yC

L 1 L 2

(2.2)

r
x

r
yL 1

C L 2

(2.3)

r
x

r
yC

L 1 L 2

(2.4)

r
x

r
yC

L 1
L 2

(2.5)

r
x

r
yL 1

L 2 C

(2.6)

r
x

r
y

C
(2.7)

r
x

r
y

L 1

(3) There is a family of cubics E and a family of lines L such that

• [E ] + [L ] = [F ];

• for two general points x, y ∈ X there exists one of the following 1-cycles:

(3.1)

r
x

r
y

E L

(3.2)

r
x

r
y

E

L
(3.3)

r
x

r
y

E

L
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(4) There are two families of conics C 1 and C 2 such that

• [C 1] + [C 2] = [F ];

• for two general points x, y ∈ X there exists either of the following 1-cycles:

(4.1)

r
x

r
y

C 1 C 2

(4.2)

r
x

r
y

C 1

C 2

Remark that X is covered by lines except the cases (2.6), (3.2), (4.1), and (4.2).

Case (1):
Since X is rationally chain connected with respect to (L 1, L 2, L 3, L 4), we

obtain ρX ≤ 4 by Proposition 3.2.11.

Case (2.1):
In this case, Locus(L 2, L 1, C ; x) = X for a general point x ∈ X. If C is locally

unsplit, then after employing Proposition 3.2.10 three times, we know that N1(X)
is spanned by [C ], [L 1], and [L 2], hence ρX ≤ 3.

If C is not locally unsplit, then Lemma 3.4.3 gives two families of lines M 1 and
M 2 which satisfy the following:

• [M 1] + [M 2] = [C ];

• for a general point x ∈ X, there are two lines m1 ∈ M 1
x and m2 ∈ M 2 such

that m1 ∩m2 6= ∅.
Since Locus(L 2; Locus(L 1)) = X, we get two lines l2 ∈ L 2 and l1 ∈ L 1 such
that m2 ∩ l2 6= ∅ and l2 ∩ l1 6= ∅. Thus X is dominated by connected 1-cycles of
(M 1, M 2, L 2, L 1). Since [M 1] + [M 2] + [L 2] + [L 1] = [F ], Lemma 3.4.6 yields
ρX ≤ 4.

Case (2.2):
In this case, Locus(L 2, C , L 1; x) = X for a general point x ∈ X. If C is proper

at every point in Locus(L 1;x), then by Proposition 3.2.10, we see that N1(X) is
spanned by [L 1], [C ], and [L 2], hence ρX ≤ 3.

If C is not proper at a point in Locus(L 1; x) for a general point x ∈ X, then as
in the proof of Lemma 3.4.3, we get two families of lines M 1 and M 2 such that

• [M 1] + [M 2] = [C ];

• X is covered by connected 1-cycles of (L 1, M 1, M 2; 1) (see Definition 3.4.1).

Since L 2 is covering, X is also covered by connected 1-cycles of (L 1,M 1, M 2, L 2).
Therefore, we obtain ρX ≤ 4 by Lemma 3.4.6.
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Case (2.3):
In this case, Locus(L 1,C ; x) = X for a general point x ∈ X. If C is locally

unsplit, then by applying Proposition 3.2.10 two times, we see that N1(X) is spanned
by [C ] and [L 1], so ρX ≤ 2.

If C is not locally unsplit, then by Lemma 3.4.3 we have two families of lines
M 1 and M 2 such that

• [M 1] + [M 2] = [C ];

• X is covered by connected 1-cycles of (M 1, M 2).

Since Locus(L 1; Locus(L 2)) = X, X is also covered by connected 1-cycles of
(M 1, M 2, L 1, L 2), so ρX ≤ 4 by Lemma 3.4.6.

Case (2.4):
If C is locally unsplit, ρX ≤ 2 holds for the same reason as in Case (2.3).
If C is not locally unsplit, then Lemma 3.4.3 gives two families of lines M 1 and

M 2 such that

• [M 1] + [M 2] = [C ];

• X is covered by connected 1-cycles of (M 1, M 2).

So we also know that X is dominated by connected 1-cycles of (C ,L 1,L 2, M 1,M 2; 1).
By employing Lemma 3.4.7 (V = F , W = C , V 1 = L 1, V 2 = L 2, V 3 = W 1 =
M 1, V 4 = W 2 = M 2), we obtain ρX ≤ 4.

Case (2.5):
Since X is rationally chain connected with respect to (L 1, L 2), ρX ≤ 2 follows

from Proposition 3.2.11.

Case (2.6):
In this case, X is conic connected, so ρX ≤ 2 according to Fact 3.1.1. Moreover,

since (X, H) cannot be isomorphic to (Pn,O(2)) (which has no lines), X is covered
by lines.

Case (2.7):
Since X is line connected, (X, H) is isomorphic to (Pn, O(1)), which satisfies all

the three conclusions.

Case (3.1):
Let Λ be the set of triples of families of lines (M 1, M 2, M 3) such that

• [M 1] + [M 2] + [M 3] = [E ];

• X is covered by connected 1-cycles of (M 1, M 2,M 3);

and let Γ1 (resp. Γ2) be the set of pairs of families of conics and of lines (D , M )
such that

• [D ] + [M ] = [E ];

• X is dominated by connected 1-cycles of (D , M ; 1) (resp. (D , M ; 2)).
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Now let x ∈ X be a general point. Since Locus(L ,E ; x) = X, by applying Propo-
sition 3.2.10 two times, we find that N1(X) is spanned by the numerical classes of
L , E , and families contained in one of Λ, Γ1, and Γ2.

If there exists a triple (M 1, M 2, M 3) ∈ Λ, then X is also covered by connected
1-cycles of (M 1, M 2, M 3,L ) because L is covering. This yields ρX ≤ 4 by Lemma
3.4.6. So we may assume Λ = ∅. Then we have

N1(X) = 〈[L ], [E ], {[M ]}(D ,M )∈Γ1∪Γ2
〉.

If [E ] = 3[L ], then [F ] = 4[L ]. Since L is covering, this implies that ρX = 1
by Lemma 3.4.6. Thus we may assume that E and L are numerically independent.

If [M ] is a linear combination of [L ] and [E ] for every pair (D , M ) ∈ Γ1∪Γ2, then
N1(X) is spanned by just [L ] and [E ], hence ρX = 2. Therefore, we may assume
that there exists a pair (D , M ) ∈ Γ1∪Γ2 satisfying [M ] /∈ 〈[L ], [E ]〉, namely, D , M ,
and L are numerically independent.

Case (i) (D ,M ) ∈ Γ1.
Now X is dominated by connected 1-cycles of (D , M ; 1). Since L is covering,

Locus(L , M ,D ; x) is nonempty for a general point x ∈ X. If D is locally unsplit,
then by applying Proposition 3.2.12, we see that

dimLocus(L , M , D ;x) ≥ (−KX .F )− 3 ≥ n.

Thus Locus(L , M , D ; x) = X. By using Proposition 3.2.10 three times, we conclude
that ρX ≤ 3.

Next, if D is not locally unsplit, then we get two families of lines M 1 and M 2

such that

• [M 1] + [M 2] = [C ];

• X is covered by connected 1-cycles of (M 1, M 2) by Lemma 3.4.3.

Then X is dominated by connected 1-cycles of (D , M , L , M 1,M 2; 1). Therefore,
Lemma 3.4.7 implies ρX ≤ 4.

Case (ii) (D , M ) ∈ Γ2.
In this case, Locus(L ,D , M ; x) is nonempty for a general point x ∈ X. If D is

proper at every point of Locus(M ;x), then as in the first half of Case (i), we can
prove Locus(L , D ,M ;x) = X, and hence ρX ≤ 3.

If D is not proper at some point of Locus(M ; x) for a general point x ∈ X, then
as in the proof of Lemma 3.4.3, we get two families of lines M 1 and M 2 such that

• [M 1] + [M 2] = [D ];

• X is covered by connected 1-cycles of (M , M 1, M 2; 1).

Then X is also covered by connected 1-cycles of (M ,M 1, M 2, L ), hence Lemma
3.4.6 allows us to conclude that ρX ≤ 4.

Case (3.2):
X is rationally cubic connected, so the second conclusion holds.
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Case (3.3):
(X,H) is isomorphic to (Pn, O(1)).

Case (4.1):
If [C 1] = [C 2], then just the third conclusion holds. So we suppose that C 1 and

C 2 are numerically independent. Then we show that at least one among C 1 and
C 2 is not locally unsplit. By contradiction, assume that both of them are locally
unsplit. Then Proposition 3.2.12 implies

dimLocus(C 1
x ) + dim Locus(C 2

y ) ≥ (−KX .F )− 2 ≥ n + 1

for general points x, y ∈ X. It follows that Locus(C 1
x ) ∩ Locus(C 2

y ) has positive
dimension, so we get a curve contained in this intersection. Then according to
Proposition 3.2.10, this curve must be numerically proportional to both C 1 and C 2,
a contradiction. So, from now on, we suppose that C 1 is not locally unsplit, in
particular, X is covered by lines. Then we only have to show that ρX ≤ 4.

If C 2 is not locally unsplit either, then Lemma 3.4.3 gives four families of lines
M 1, M 2, M 3, and M 4 such that

• [M 1] + [M 2] = [C 1];

• [M 3] + [M 4] = [C 2];

• X is covered by connected 1-cycles of (M 1, M 2,M 3, M 4).

Thus ρX ≤ 4 by Lemma 3.4.6.
We finally consider the case where C 2 is locally unsplit. Let Λ be the set of pairs

of families of lines (N 1, N 2) such that

• [N 1] + [N 2] = [C 1];

• X is dominated by connected 1-cycles of (C 2,N 1, N 2; 1; t) (see Definition
3.4.2), where t is a tree as Figure 3 (see also Figure 4).

±°
²¯
v1 ±°

²¯
v2 ±°

²¯
v3

Figure 3.

s
C 2

N 1

N 2

Figure 4.

Since Locus(C 1, C 2; x) = X for a general point x ∈ X, Proposition 3.2.10 yields
that N1(X) is spanned by the numerical classes of C 1, C 2, and families contained
in Λ, hence

N1(X) = 〈C 1, C 2, {[N 1]}(N 1,N 2)∈Λ〉.
If [N 1] is a linear combination of [C 1] and [C 2] for every pair (N 1, N 2) ∈ Λ,

then ρX = 2. So we may assume that there is a pair (N 1, N 2) ∈ Λ such that C 2,
N 1, and N 2 are numerically independent.

Now Locus(N 2, N 1, C 2; x) is nonempty for a general point x ∈ X. Then as
is Case (3.1)(i), Proposition 3.2.12 implies Locus(N 2,N 1, C 2;x) = X, and hence
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ρX ≤ 3 by Proposition 3.2.10.

Case (4.2):
It follows from Fact 3.1.1 that ρX ≤ 2 and either X is covered by lines or (X, H) is

isomorphic to (Pn, O(2)). Note that the third conclusion holds in the latter case.

Remark 3.6.1. In the proof of Theorem 3.1.3, we use the assumption (−KX .F ) ≥
n+3 only in Cases (3.1) and (4.1), and use (−KX .F ) ≥ n+2 in order to show that
at least one among (1)-(4) holds.
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