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Introduction

This thesis is organized as three main research subjects. In Chapter I, we study
geometric properties of the space of smooth rational curves lying in a hypersurface
of projective space. In particular, we consider the smoothness, the dimension and the
connectedness of the space. In Chapter 11, as a research of geometry in positive charac-
teristic, we investigate projective varieties which admit embeddings whose Gauss maps
are of rank zero. This chapter contains the results of the joint work with S. Fukasawa
and H. Kaji. In Chapter III, we study the Segre locus, which is the locus of points
from which a closed subvariety in projective space is projected non-birationally. Here
we give a method to compute polynomials generating the defining ideal of the Segre
locus.

In the following, we state the details of each chapter.

I. Rational curves on hypersurfaces For a hypersurface X C P" of degree d, we
define R.(X) to be the open subscheme of the Hilbert scheme Hilb®*'(X/k) which
parametrizes smooth rational curves of degree e in P” lying in X, where k is an alge-
braically closed field of arbitrary characteristic. We set

(1) pw=Mnm+1—de+n—4,
which is called the ezpected dimension of R.(X). It is known that if X is smooth and
if there exists C' € R.(X), then the dimension of R.(X) at C' is greater than or equal
to it = x(Neyx) (see Ch. I, Remark 2.2 or [45], II, Theorem 1.2).

The starting point of our study is the following result for lines on hypersurfaces

obtained by W. Barth and A. Van de Ven over C, and by J. Kollar over an algebraically
closed field of arbitrary characteristic.

Theorem A (W.Barth and A.Van de Ven ([7]), J.Kollar ([45], V, Theorem 4.3)).
Let X be as above. Then
(a) Ri(X) =0 for general X if u <0,
(b) R1(X) is smooth of dimension p for general X if p > 0,
(c) Ri(X) is connected for any X if u > 1, except when X C P3 is a smooth
quadric.

What can we say about the family R.(X) for the degree e > 27 The following
result has been obtained by J. Harris, M. Roth, and J. Starr.

Theorem B (J.Harris, M. Roth, and J. Starr ([30], Theorem 1.1)). Assume that the
ground field is C, d < (n+1)/2, and n > 3. For general X and for any e > 1, the
scheme R.(X) is an integral, local complete intersection scheme of dimension p.
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2 INTRODUCTION

We shall study R.(X) without the assumption on the characteristic of the ground
field. Our main result is:

Theorem I. Let X C P" be as above with n > 3.

(a) Assume d > max{e—2,1}. Then R.(X) =0 for general X if n < 0.

(b) Assume either 1 <e<3 andd>1, ore>4 andd > 2e — 3. Then R.(X) is
smooth of dimension u for general X if > 0.

(c) Ra(X) is connected for general X if i > 1, except when X C P3 is a cubic.

In characteristic zero, one can obtain the result of Theorem I(b) under a weaker
assumption, which is a conclusion of Ch. I, §2 (Ch. I, Theorem 2.16). In the exceptional
case of Theorem I(c), we certainly find that Ry(X) is disconnected for any smooth
cubic X C P? (Ch. I, Proposition 4.4). Non-existence of rational curves on general
hypersurfaces has been studied by several authors [13], [17], [18], [52], [59], [60].
Various properties of R.(X) (e.g., rational connectedness, singularity, e.t.c.), besides
the ones stated in Theorem B, have been studied in [31], [58].

II. Gauss map of rank zero Let X be a projective variety of dimension n in PV
defined over an algebraically closed field K of characteristic p > 0. The Gauss map of
X C PV, denoted by 7, is by definition the rational map from X to the Grassmann
variety G(n,PY) which sends each smooth point z of X to the embedded tangent
space T, X to X at x in PV ([26, §1, (e)], [62, I, §2]). To avoid trivial exceptions we
treat « only for a non-linear X C PV. According to a theorem of F. L. Zak [62, I,
2.8. Corollary], v is finite for a smooth X, and it is well known that a general fibre
of v is linear if p = 0 ([26, (2.10)], [62, I, 2.3. Theorem]); hence ~ is birational for a
smooth X in p = 0.
Now we introduce an intrinsic property of a projective variety X as follows:

there exists an embedding ¢ of X into some PM such that
(GMRZ) .
the Gauss map ~y is of rank zero.

Here the rank of a rational map is defined to be the rank of its differential at a general
point, and the differential of a rational map is by definition the induced K-linear map
between Zariski tangent spaces. Note that a variety X satisfies (GMRZ) only if p > 0,
since the rank of a rational map is equal to the dimension of its image if p = 0.

In this paper, we consider the case where the variety X has a rational curve f :
P! — X. We have the following basic theorem, where we find that the property
(GMRZ) imposes Strong restrictions on rational curves on X:

Theorem I1.1. Let X be a projective variety, let f : P' — X be an unramified
morphism, and denote by Ny the dual of the kernel of the natural homomorphism

fro Q% — Q. Assume that X is smooth along f(P') and N} ~ @,._, Opi (i)"
for some non-negative integers r; (i > —1). Then we have:

(a) If X satisfies (GMRZ), then r;_yr; =0 for any i > 0.
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(b) Moreover if r_y > 0, then p|deg f*1*Opn (1) —1 for any embedding 1 : X — PM
with Gauss map of rank zero, and if r; > 0 for some i > 0, then p = 2 or
pli + 1.

Theorem I1.1 is proved by investigating bundles of principal parts (Ch. II, §1). As
a consequence of Theorem II.1, we have

Theorem I1.2. (a) Let X be a projective variety with a non-constant morphism
T to a variety Y, and assume that there exists a smooth point y of Y such that
the fibre X, := w1 (y) is isomorphic to a projective space P! and 7 is smooth
along X,. Then X satisfies (GMRZ) only if p = 2 and | = 1. Moreover, a
product [[,<;, P™ of two or more projective spaces (r > 2,n; > 1) satisfies
(GMRZ) if and only if p=2 and n; = 1 for any 1.

(b) A Grassmann variety G(I,1 + m) of I-dimensional subspaces of an (I + m)-
dimensional vector space (I,m > 1) satisfies (GMRZ) if and only if | = 1 or
m = 1.

(c) A smooth quadric hypersurface Q in PN (N > 3) satisfies (GMRZ) if and only
ifp=2 and N = 3.

(d) A smooth cubic hypersurface X in PN (N > 3) satisfies (GMRZ) only if p = 2.

A rational curve (or a morphism) f : P! — X is said to be free if the pull-back f*T’x
of the tangent bundle Tx on X is generated by its global sections ([15, p. 85], [45,
11.3.1]), and a free f minimal if f*Tx is isomorphic to Op:(2) & Opi (1)42 @ Oy !
with d = deg(—f*Kx) ([15, p. 93], [45, IV.2.8]). One of the most basic results in
characteristic zero case to guarantee that existence is

Theorem C ([45, IV.2.10]). Let X be a smooth projective variety in p = 0. If there
exists a free rational curve on X, then there exists a minimal free rational curve on X.

Note that for a smooth X in arbitrary characteristic p > 0, the existence of free
rational curves is equivalent to the separable uniruledness ([45, IV.1.9]). In positive
characteristic case, however, the conclusion of Theorem C turns out to fail, as we will
see below. In fact, Theorem II.1 implies

Theorem 11.3. Let X be a projective variety, and assume that X satisfies (GMRZ)
with an embedding v : X — PM. Let f : P* — X be a minimal free rational curve such
that X is smooth along f(P'), and set a := deg f*1*Oprn (1). Then one of the following
holds:

(a) deg(—f*Kx)=n+1,a>pandp|a—1.

(b) deg(—f*Kx)=p=2 and 2 | a.
In particular, we have a > 1.

Using Theorem I1.3, one can give a counter-example for Theorem A, that is, a
projective variety which admits a free rational curve, but no minimal free rational
curve, in each characteristic p > 0 (Ch. II, Theorem 3.2; Cf. [45, 1V.2.10.1]).

Next, we will consider a general hypersurface of low degree with (GMRZ):

Theorem I1.4. A general hypersurface X in PN of degree d with 3 < d < 2N — 3
satisfies (GMRZ) only if p=2 and d = 2N — 3.
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For a higher dimensional cubic hypersurface, we have

Theorem I1.5. A smooth cubic hypersurface X in PN with N > 4 satisfies (GMRZ)
if and only if p =2 and X is projectively equivalent to a Fermat hypersurface.

To obtain Theorems I1.4 and II.5 above, we need in addition detailed studies on
the normal bundles of conics in a hypersurface (Ch. II, §4), and on projective geometry
on cubic hypersurfaces with Gauss map of rank zero (Ch. II, §5, §6).

Next, in Ch. II, §7, we see that the statement of Theorem II.5 is no longer true
in the case of N = 3 (Ch. II, Corollary 7.3). Moreover, we show that every smooth
rational surface admits an embedding whose Gauss map is of rank zero if p = 2 (Ch. II,
Theorem 7.5). This is deduced from the following result for blowing-ups:

Theorem I1.6 (= Ch. II, Theorem 7.1). In the case of p = 2, the process of blowing-
ups at points preserves the property (GMRZ) for projective varieties X .

The results of Ch. 11, §1-85 is based on [FFK], the joint work with S. Fukasawa
and H. Kaji. On the other hand, Ch. 11, §6-§7 is the consequence of [24].

ITI. Defining ideal of the Segre locus B. Segre [57] studied the locus of points
from which X is projected non-birationally, for a variety X embedded in P¥. We
rigorously define as follows:

S(X) :={z €PN\ X |m,, : X = m.(X) is not birational },
G™(X):={z€ X | : X\ {2} = m(X\{z}) is not birational },

where 7, : PV \ {2z} — PV~ ! is the projection from a point z € PV. As an essential
result, Segre proved that &°"(X) is a union of finitely many linear subspaces of P in
characteristic zero case [57], [10, Thm. 1]. After him, &°**(X) is called the Segre locus.
Recently, the study of G°"*(X) and &™*(X) has been developed by several authors
(A. Calabri and C. Ciliberto [10], E. Ballico [6], A. Noma [50]). We denote by

Gtot(X) — Gout(X) U Ginn(X)’
and call this the total Segre locus of X. Our main result is:

Theorem IIT (= Ch. III, Theorem 2.8). Let X C PV be a non-degenerate projective
(reduced and irreducible) variety over an algebraically closed field k of characteristic p.
If either p > deg(X) or p = 0, then the total Segre locus & (X) is equal to a union
of finitely many linear subspaces of PV,

For the case of p < deg(X), we give an example of X such that &*%(X) is non-
linear (see Ch. III, Example 2.1). Note that the linearity of &°**(X) follows from
Theorem IIT (Ch. III, Remark 2.11).

In this paper, we propose a new approach to investigate the total Segre locus,
working in arbitrary characteristic. In Ch. III, §1, we give a method to calculate
polynomials generating the defining ideal of &**(X). In Ch. III, §2, by using this
method, we determine the total Segre locus of Ch. III, Example 2.1, and next give the
proof of Theorem III (Ch. III, Theorems 2.2 and 2.8).



CHAPTER 1

Rational curves on hypersurfaces

1. Regularity of a power of an ideal sheaf

For later use, we investigate the Castelnuovo-Mumford regularity of a power of the
defining ideal sheaf of a curve in projective space, by applying an argument which is
similar to the proof of [28], Theorem 1.1.

Theorem 1.1. Let X C IP" be a reduced irreducible non-degenerate curve of degree d,
let Ix C Opr be the ideal sheaf of X, and let o € N. Then 3% is a(d + 2 — r)-regular
in the sense of Castelnuovo-Mumford.

Proposition 1.2. Let X C P" be a reduced curve, with normalization X, and let
p: X — P" denote the natural map. Set M = p*QL. (1), and suppose that A is a line
bundle on X such that

2
H'(X,\M&A)=0.
Then 3% is a - h%(X, A)-regular.

PROOF. As in the proof of [28], Proposition 1.2, we have an exact sequence of
sheaves on P,

([28], (1.3)) HY (X, M ® A) @, Opr(—1) = H' (X, A) @) Opr — p, A — 0.

As in [28], p.496, we set ng = h%(X, A) and set J to be the zeroth Fitting ideal
sheaf of p, A, i.e., J = im(A™u) C Opr. Here, since p,A is supported on X, and since
X is reduced, we have

Jd CIx.

Moreover Jx /§ is supported in finitely many points of P"; hence so is I /J*. Therefore
we find that the sheaf J5 is ang-regular if the sheaf J* is so.

On the other hand, the above sequence ([28], (1.3)) induces the following exact
sequence of sheaves on P",

HOX, M @ A% @, Opr(—1) “255 HO(X, A)® @ Opr — p, AP 5 0,

Then we have J* = im(A*"u®*) C Opr; hence the sheaf J* is the zeroth Fitting ideal
sheaf of p,A%*. Now we have the Eagon-Northcott complex constructed from u®®,

e OM (—amg + 1= 1) e = OB (—amg — 1) — OM(—ang) 55 3% 0,

where ¢ := A0y is surjective. Since this complex is exact off X, it follows from
(28], Lemma 1.6 that H'(P",J*(ang — m)) =0 for 1 < m < r and i > m. O

b}
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PROOF OF THEOREM 1.1. By using Proposition 1.2 and [28], Lemma 1.7, we have
the theorem. O

2. Projection of the incidence variety to the space of hypersurfaces

Let R be an open subset of Hilb® ™ (P"/k) whose general member corresponds to
a smooth rational curve of degree e. Let H := |Opn(d)|, the space of hypersurfaces of
degree d. We actually assume one of the following conditions (i-ii):

(i) e>2,d>max{e—2,1}, and R C Hilb""'(P"/k) is
(2) the space of smooth rational curves of degree e in P,
(ii) e=2,d>1, and R = Hilb* ™ (P"/k),

and study the incidence variety
(3) I={(X,C)e HxR|CCX}

with the projection py : I — H. Note that we additionally deal with the case where
R is the whole space Hilb* ™ (P"/k) as (2.ii) above, because that is necessary in the
proof of Theorem I(c) (§4).

In this section, we first give an explicit construction of the incidence variety I,
which is obtained as a projective bundle over R by assuming one of the conditions (i-
ii) of (2). Then Theorem I(a) is proved by the calculation of the relative dimension of
pr- Next, as a preparation of the proof of Theorem I(b-c), we study properties of the
projection py in terms of the normal sheaves N¢/pn and Nx/pn.

In order to prove Theorem I(b), we need to establish the generic smoothness of the
projection py in arbitrary characteristic (§3). However, just in the characteristic zero
case, the statement of Theorem I(b) can be obtained by showing that py (1) is dense
in H (§2.3).

2.1. Basic construction. Since R is an open subscheme of Hilb®*!(P"/k), there
exist the universal family v : Univ — R and the projection F' : Univ — P". Then we
have the following morphism of sheaves on R:

To construct the incidence variety, we show the following lemma. Here, we denote
by Na/p := Home,(Ta/T%,04) the normal sheaf of a subscheme A in a scheme B,
where J4 C Op is the ideal sheaf of A in B. We denote by B E := Proj(Sym(E"))
the covariant projectivization of a k-linear space or a locally free sheaf E, where the
points of B E correspond to lines in fibers of E.

Lemma 2.1. Let n > 3, and assume one of the conditions (i-ii) of (2). Then the
following holds.
(a) The scheme R is a smooth irreducible subvariety of Hilb® ' (P"/k) of dimen-
sion (n + 1)e +n — 3, where (n + 1)e +n — 3 = h®(Ngypn) for any C € R.
(b) We have h°(C, Oc(d)) = de+1 and have that H°(P", Opn(d)) — H°(C, Oc(d))
1s surjective for any C' € R.
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(c) We have that ker(®) @ k¢ is isomorphic to H°(P",Jo(d)) for any C € R, where
ke is the residue field of the Hilbert point C on R. Hence, ker ® is a locally
free sheaf on R of rank h°(P", O(d)) — (de + 1).
Thus the projective bundle I := B.(ker ®) over R is a smooth irreducible variety with
dim [ = dim H + p, where we set H = |Opn(d)| and p = (n+1—d)e+n —4 as in §,

(1).

Remark 2.2. We have 1 = x(N¢/x), in the case where X C P" is a hypersurface of
degree d, and C' C X is a smooth rational curve of degree e, such that X is smooth
along C. The reason is the following: Let f : P! — P" be a morphism parametrizing
C. From the exact sequence 0 — f*Tx — f*Tpn — [*Nx/pn — 0, we have x(f*Tx) =
(n+1—d)e+n—1. Thus, from the exact sequence 0 = Tpr — f*T'x — f*Ng/x — 0,
we have X(N¢g/x) = (n+1—d)e+n—4.

By applying [45], I, Theorem 2.8 and Proposition 2.14, we find that the scheme
R.(X) is of dimension > x(N¢/x) = p at C.

Remark 2.3. Let C' C P" be a smooth rational curve of degree e > 2, let L C P" be
the linear subspace spanned by C', and let r = dim(L). Here we have the following
information about the dimension of L and regularity of C.

(a) We have r < e. In addition we have r > 3 in the case e > 3, because every
plane rational curve of degree > 3 must be singular.

(b) We have r = e in the case e < 3, as follows: If e = 2, then C' is a conic; hence
we have r = 2. If e = 3, then it follows from (a) that we have r = 3.

(c) We have max{ (e —2),1} > e+ 1 —r. This is because it follows from (b) that
we have r = e if e < 3, and it follows from (a) that we have r > 3 if e > 4.

(d) The ideal sheaf I¢)p, of C'in L is (e+2—r)-regular, and hence H°(P", Opn(d)) —
H°(C,Oc¢(d)) is surjective for any d > e + 1 — r. The reason is as follows: Since C'is
non-degenerate in L, it follows from [28], Theorem 1.1 that J¢/p, is (e +2 — r)-regular.
By regularity, we have H*(J¢/1(d)) = 0 for d + 1 > e + 2 — r, which implies that

H(L,O(d)) — H*(C,0(d))
is surjective. Since H°(P", O(d)) — H°(L,O(d)) is also surjective, so is the composite
map HO(P", Opn(d)) — H(C,O0c(d)).

Remark 2.4. Each element C' € Hilb* ™' (P"/k) is given by a complete intersection of
a linear plane L C P" and a quadric hypersurface of P", which is a smooth conic, a
union of two lines intersecting in one point, or a double line. Here we have an exact
sequence

(4) 0= O0p(-2) = O = Oc — 0.
In addition, we have N¢/, ~ O¢(2) and
(5) NC/HJm ~ NC/L @ NL/IPn‘C ~ 00(2) @ Oc(l)®n_2

On the other hand, we have a morphism

7 Hilb* (P /k) — G(2,P")
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by sending each C' to the linear plane L spanned by C, where each fiber 771(L) at
L € G(2,P") is isomorphic to Hilb**'(L/k) ~ |OL(2)|. Indeed, Hilb* ™ (P"/k) is
obtained as the projective bundle B(S?(U)) on G(2,P"), where U is the universal
bundle on G(2,P") of rank 3.

PROOF OF LEMMA 2.1. (a) Assume the condition (2.i). Then R is the space of
smooth rational curves of degree e in P*. Let C' € R and let f : P! — P" be a morphism
parametrizing C. Since Tp» is ample, so is f*Neg/pn on P'. Hence h,l(NC/[pm) = 0. Thus
it follows from [45], I, Theorem 2.8 and Proposition 2.14 that R is smooth of dimension
hO(Ngypn) = (n+ 1)e +n — 3 at every C' € R.

Next, for any elements C;,Cy € R, we give an irreducible curve in Hilb*" (P /k)
connecting C7 and Cs, as follows: We have morphisms f; = ( fi,j)?:o . Pt — P
parametrizing C; with ¢ = 1,2. Here we set A C P! x P to be the closure of the image
of P! x P! under the rational map,

P! x P! -—> P' x P": ((a,b), P) — ((a,b), (afi;(P) + bfa;(P))i_y).

Then the first projection A — P! gives a flat family whose fibers at (1.0), (0.1) € P*
are isomorphic to Oy, C, C P". Thus we have a morphism P! — Hilb® (P /k) whose
image contains the elements C; and C5. This implies that R is irreducible, since we
already showed that R is smooth.

Assume the condition (2.ii). Then R = Hilb***(P"/k), which is a projective bundle
on G(2,P") whose fibers are of dimension 5, as we saw in Remark 2.4. Thus R is a
smooth irreducible variety of dimension dim(G(2,P")) +5 = (n+ 1)2+n — 3. By the
formula (5) in Remark 2.4, one can calculate h®(Ngjpn) = (n+1)2 +n — 3.

(b) Assume the condition (2.i). Let C' € R and let f : P! — P" be a morphism
parametrizing C. Since f*(Oc(d)) = Op(de), the k-linear space H°(C,Oc(d)) is
isomorphic to H(P!, Op:(de)), which is of dimension de+1. Since d > max{ (e—2),1},
it follows from Remark 2.3(c-d) that H(P", Opn(d)) — H°(C, Oc(d)) is surjective.

Assume the condition (2.ii). Let C' € R, and let L C P" be the linear plane spanned
by C. From the exact sequence (4) in Remark 2.4, we have h°(C, Oc(d)) = 2d + 1.
Since H*(Or(d—2)) = 0, the k-linear map H°(L, Or(d)) — H°(C,Oc(d)) is surjective,
and hence so is H(P", Opn(d)) — H(C,Oc(d)).

(c) From (b), the function h°(C,Oc(d)) is constant for any C' € R. Thus, from
[32], 111, Corollary 12.9, we have u,(F*(Opn(d)))®kc = HY(C, Oc(d)). For any C € R,
since ker(®) ® k¢ is isomorphic to the kernel of the morphism

(6) H°(P", Opn(d)) @ ke — u(F*(Opn(d))) ® ke = H(C, Oc(d)),

we have ker(®)®kc ~ H°(P",Jo(d)). From (b) again, the k-linear map (6) is surjective.
Hence dimy, ker(®) ® ke = h°(P", O(d)) — (de + 1).

Note that, from (a) and (c), it follows that dim I = dim R + rk(ker ®) — 1 is equal
to dim H + p. In addition, since R is smooth and irreducible, so is I. O

Definition 2.5. Assume one of the conditions (i-ii) of (2). Then we define the incidence

variety I as the projective bundle B.(ker @) over R, as in Lemma 2.1. Since ker @ is a
subbundle of H°(P", Opn(d)) @y Og, it follows I C H x R, where H = |Opn(d)|. Hence
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we have projections,

pH

I —H.

|

R

For each C' € R, we set I to be the fiber pg_el(C), which is isomorphic to the set of
hypersurfaces X € H containing C', via the projection py. This is because ker(®)®kq is
isomorphic to H*(P",J¢(d)) due to Lemma 2.1(c). Therefore the variety I is described
as the formula (3).

Under the condition (2.i), since R is the space of smooth rational curves of degree e
in P", and since the formula (3) holds, the fiber p;;'(X) is isomorphic to R.(X) for each
hypersurface X € H. Similarly, under the condition (2.ii), since R = Hilb**!(P"/k),
the fiber p;;'(X) is isomorphic to Hilb**'(X/k).

Here we prove the emptiness of R.(X) for u < 0, stated in Theorem I(a).

PROOF OF THEOREM I(a). The case e = 1 is nothing but Theorem A(a). Thus
we consider the case (2.1) with g < 0. From Lemma 2.1, we have dim [ = dim H + p <
dim H; hence the subset py () is not dense in H. Since R.(X) =~ p;'(X) = 0 for all
X € H\ pg(I), the statement follows. O

Remark 2.6. Under the condition (2.i), the incidence variety I is smooth as in
Lemma 2.1. In characteristic zero, applying the generic smoothness theorem to the
morphism pg : I — py(I), we find that the scheme R.(X) ~ pj'(X) is smooth of
dimension p + dim H — dim(pg (1)) for general X € py(I), and moreover for general
X € H if py(I) is dense in H.

From now on, we investigate the projection py in more detail.

Lemma 2.7. Assume one of the conditions (i-ii) of (2), and let (X,C) € I. Then the
following are equivalent:

a) The k-linear map dix.cypu : Tixcyl — TxH of Zariski tangent spaces is
(X,0) (X.0)
surjective.
(b) The natural morphism H°(C, Nepn) — H(C, Nx/pn|c) is surjective.

Proor. We have a morphism dx,c)px : T(x,c)l — TcXR, which is surjective since
I is a projective bundle over R. Here TR, the Zariski tangent space of the Hilbert
scheme, is isomorphic to H°(Ngpn). Similarly Tx H is isomorphic to H°(X, Nx pn).

On the other hand, we have an exact sequence 0 — Nx/pn ® Jo — Nx/pn —
Nxpnlc — 0. It follows from Lemma 2.1(b) that H(P", O(d)) — H°(C,O(d)) is
surjective, hence so is H°(X, Nxpn) — H°(C, Nx/pn|c).

For the sheaf Q} /R of relative differentials, considering the base change, we ob-

tain Q}/R ® kx.o) = Q. ® kx,c); hence ker(dx,cypr) =~ Tix,cylo, where Tix oylc is
isomorphic to H°(X, Nxpn ® Jc).
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As a consequence, we have the following diagram with exact rows:

d(x,c)p
0 Tix.o)lc Tix,o) Sk TeR 0
ld<x,c>pH lN
o~ TXH H0<C7 NC/]Pm)

- |

0 e HO(X, NX/[pm ® jc) e HO(X, NX/[P’”) e HO(C, NX/I[D'IL

C) - 07
which implies the equivalence between (a) and (b). d

Definition 2.8. For a local complete intersection curve C' C P", we define
50 = (Sc/pn : HOGPm,jc(d)) — HO(C, Ngﬂpn ® Oc<d))

as the k-linear map induced from the surjective morphism Jo — N/ o = Jc/I% of

sheaves on P”, where we note that Ne/pn is defined as Homo, (Jo/Te, Oc) and is
locally free on C.
Under the identification of H°(C, N¢pn ® Oc(d)) with Homo,, (No/pn, Oc(d)), each

polynomial h € H°(P",J(d)) gives a morphism of sheaves on C,
(Sc(h> : Nc/pm — OC(CZ)

Remark 2.9. Let X C P" be the hypersurface defined by h. Then the morphism
dc(h) factors through the natural morphism Ne/pn — Nx/pn|c of normal bundles.
The reason is as follows: Multiplication with h yields an isomorphism Opn(—d) — Jx
on P". Restricting this to X, we have an isomorphism of sheaves on X,

(7) Ox(—d) — Ix/T%.
On the other hand, the inclusion Jx < J¢ induces the following morphism,
(8) Ix /7% © O — I0 /T,

The dual morphism d¢(h)Y : Oc(—d) — I /T2 is given by
(f modJc)r (h-f modJ3)

for a section f € H°(U, Opn(—d)) with an open subset U C P". Hence dc(h)¥ factors
into the restriction of (7) to C, followed by the morphism (8):

Oc(—d) 2" g, 72,

Ix /7% ® Oc
By considering the dual of this diagram, we have the assertion.

From Lemma 2.7 and Remark 2.9, we have a criterion for d(x,c)pg to be surjective.
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Proposition 2.10. Assume one of the conditions (i-ii) of (2). Let (X,C) € I, and
let h € H'(P",0(d)) be a defining equation of X. Then dix,cypm : Tix.cyl — TxH is
surjective if and only if

H°(6c(h)) : H(C, Neyjpn) — HY(C,Oc(d))
18 surjective.

We additionally have the following lemma:

Lemma 2.11. Let C C P™ be a local complete intersection curve, and let X € H be
a hypersurface containing C' and defined by h € H°(P", O(d)). Then X is singular
at a point P € C if the k-linear map dc(h)(P) : Neypn @ k(P) — Oc(d) ® k(P) is
wdentically zero.

PROOF. The assumption implies that h is equal to zero as an element of N/ pn ®
Oc(d) ® k(P). By taking an element hy € H°(P", O(d)) with ho(P) # 0, we have
that h/hy is equal to zero in Né/w ® k(P). For the maximal ideal mp C Opn p,
since Jo,p C mp and since Ngp, ® k(P) 2= Je,p/dcp - mp, it follows that (h/he
mod m%) = 0 in mp/m%, which means that X is singular at P. O

In the following, we study the surjectivity of the k-linear map do. For a linear
subspace L C P containing C, we set ¢z, : H'(L,Io/(d)) — H(C, Ng,, @ Oc(d))
to be the k-linear map induced from Jo/p, — Ng/L = JC/L/JQC/L, where Jo/p, C O is
the ideal sheaf of C' in L. Then the surjectivity of dc is reduced to that of dc/r, as
follows:

Lemma 2.12. Let C' C P™ be a local complete intersection curve, let L C P™ be
a linear subspace containing C', and let d > 1. Suppose that the restriction map
HO(P", Opn(d — 1)) — H(C, Oc(d — 1)) is surjective. Then ¢ is surjective if dcyp, is
s0.

PROOF. From the exact sequence 0 — J;, — Opn — Op — 0, we have that
H'(P",9.(d)) = 0. From the exact sequence 0 — N¢/, — Neypn — Npjpn|c — 0 on
C, we have the following commutative diagram of k-linear spaces with exact rows:

HO(P™,91.(d)) HO(P",Jc(d)) H(L,Jc/(d)) ——0

| B oo

0 —= HO(C,NY jpu ® Oc(d)) —= HO(C, N 5. ® Oc(d)) — = HO(C, Ny, ® Oc(d))

0

By assumption, the k-linear map d¢/, of the third column is surjective. Thus, in order
to prove that d¢c is surjective, it is sufficient to show that ¢ is surjective. By choosing

coordinates (2o, ..., z,) on P" we may assume that L is the zero set of polynomials
Zr41,. -, Zn, Where we set r:= dim L. Then N/, = I0/9, =@, 0u(-1) - z.

Let g € H(C, NX/HM ®0Oc(d)). Then we have g = gpy1-Zr 41+ -+ gn- 2, With g; €
H°(C,Oc(d—1)). By assumption, there exist sections f,y1, ..., f, € H'(P", Opn(d—1))
such that g; = fi|c. We set

f = fr-‘rl C Zr41 + -+ fn " 2Zp € HO(]PmajL(d))
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Since e(f) = (0f/0zr+1)|c - Zrp1 + -+ -+ (Of /0zn)|c - Zn and since (0f/0z;)|c = g; for
r+ 1 <i < n, weobtain e(f) = g. O

Proposition 2.13. Suppose that C' C P™ is a smooth rational curve of degree e >
2. Then é¢c is surjective if d > 2(e —r) + 3, where the integer r with r < e is the
dimension of the linear subspace of P* spanned by C'.

PRrOOF. Let L. C P" be the r-dimensional linear subspace spanned by C. Then,
sinced—1 > 2(e—7)+2 > e+1—r, it follows from Remark 2.3(d) that H°(P™, Opn(d—
1)) — H°(C,Oc(d — 1)) is surjective.

In addition, Theorem 1.1 implies that the second power J% /L is 2(e+2 —r)-regular.
Since d + 1 > 2(e + 2 —r), we have H'(L,J¢,,(d)) = 0. From the exact sequence
0 — 32C/L — Jo/n — Né/L — 0 on L, the k-linear map d¢/r, is surjective. Hence
Lemma 2.12 implies that d¢ is surjective. U

2.2. Bounds of the splitting type of the normal bundle of a rational
curve. Let C' C P” be a rational curve of degree e > 2 parametrized by a morphism,

(9) foPh— P (s,t) = (fols,t), fi(s, 1), ..., fn(s,1)).

It is known that every vector bundle on P! is isomorphic to a direct sum of line
bundles on P'. We study such a splitting type of the pullback f*N¢/pn on P'.

For a smooth variety Y and for an invertible sheaf £ on Y, we denote by P (L)
the bundle of principal parts of £ of first order, which gives an exact sequence

(€ve) 0= QL®L = PLL)— L —0.

Note that in the case Y = P" and £ = Opn(1), it follows Pp. (Opn (1)) ~ H°(P", O(1))®
Op» and the sequence ({pno,, (1)) gives the Euler sequence.

As in [38], for the morphism f : P — P", we set P' := PL, (f*(Opn(1))). Then the
following commutative diagram with exact rows is induced functorially:

([38], (1.1))

(F*pr0m (1) 0 —= F*(QL) ® f*(Opn (1)) —= HO(P", O(1)) @k Opr — f*(Opn (1)) —= 0

| :

(€p1, 1+ (0pn (1)) 0 ——> Qs @ f*(Opn (1)) P! f*(Opn (1)) —0,

where we denote by a} the morphism of the second column. In the case where f is
unramified, since f*(Qp.) — Q. is surjective and its kernel is isomorphic to f*N /B
the above diagram ([38], (1.1)) induces the following exact sequence of sheaves on P!

(10) 0 = [*Npn ® f*(Opn (1)) = H(P", O(1)) @ Op1 —5 P — 0.

Proposition 2.14. Let C' C P" be a non-degenerate smooth rational curve of degree
e > 2, let f parametrize C as in (9), and let f*Nepn =~ @1 O(a;) be the splitting
on P* with a; € Z. Then we have inequality e + 2 < a; < 3e —2n+2 for each
1<i<n—1.
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PROOF. Let (zo,21,...,2,) be homogeneous coordinates on P", and let p > 0 be
the characteristic of the ground field k. From [38], Lemma (1.2), we have the following
description of the bundle P!,

P'~0O(e—1)@®0O(e—1) and aj(z) = (0f;/0s,0f;/0t) if p=0orpfe,
P'~O(e) ®O(e —2) and aj(z) = (fi,t~'0fi/0s) if p|e.

Here, note that the description of a}(zi) depends on the choice of an isomorphism from
Pl to its direct sum decomposition, and note that equality t=*0f;/0s = —s~10f; /Ot
holds in the case p | e ([38], Remark 1.4).

From the exact sequence (10), it follows H° (P!, SN pn @ f*(Opn (1)) @ Opr (—1)) =
0, which implies e — a; — 1 < —1 for each i; hence min{ a; }; > e.

Suppose min{ a; }; = e. Then there exists a nonzero element { = Y " ;2 €
H°(P", O(1)) with a; € k such that a3(§) = 0 in H°(P',P'). In the case p { e, we have

i=0 =0

From Euler’s formula, we get >"*  a; f; = 0, which contradicts that C' is non-degenerate.
In the case p | e, we straightforwardly have Y o, f; = 0, a contradiction.
Suppose min{ a; }; = e + 1. Then there exists a nonzero element

¢ = Z(ais + Bit)z € HO(P", O(1)) @ H'(P',0(1))

with a;, 8; € k such that aj(€) = 0 in HO(P*, P*(1)). Here, since & is nonzero, at least
one of the elements { oy, 5; }I, must be nonzero. Without loss of generality, we can
assume ag # 0. In the case p1 e, it follows that

Z(C(is + Bit)0fi/0s = Z(ais + Bit)0fi/0t = 0.
i=0 =0
From Euler’s formula, we get F' = Y7 (a;s + ;) fi = 0. This implies > " ja;f; =
Yoroifi + > o(cus + pit)0f;/0s = OF /0s = 0. Since o # 0, it follows that C is
degenerate, a contradiction. In the case p | e, it follows that F' = Y"" (a;s+5;t)f; =0
and Y7 (s + Bit)t 10 fi/0s = 0. This implies Y o, fi = 0F/0s = 0. Thus we
have a contradiction again.
In consequence, we get the inequality min{a; }; > e + 2. Thus, putting a; =
max{ a; };, we have a; = 3" a; — S0 a4 < ((n+ e —2) — (n — 2)(e + 2)
3e —2n 42

0l

2.3. Projection dominating the space of hypersurfaces.

Proposition 2.15. Assume the condition (2.1) with n > 3, and assume either e < n
andd >3, ore >n andd > 2(e—n)+3. If u > 0, then the projection py is dominant
on H, and is smooth at a general point of I.
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ProOF. We can take a smooth rational curve C' C P" of degree e such that the
linear subspace L of P" spanned by C' is of dimension r := min{e,n }. The reason
is as follows: Suppose e < n. Then we set C C P® C P" to be a rational normal
curve of degree e (i.e., the rational curve defined by the morphism P! — P : (s,t) —
(s€,...,87 ... t°). Suppose e > n. Then we first take C’ C P° to be a rational
normal curve of degree e. Since n > 3 and since the secant variety of C' is of dimension
< 3, there exists a linear projection 7 : P® --» P which gives an isomorphism from C’
to its image. Then we set C' = m(C") C P", which is a non-degenerate smooth rational
curve of degree e.

Now, we give a morphism « : Nepn — Oc(d) such that HY(«) is surjective, as
follows. Let f : P! — P" be a morphism parametrizing C. Since Neyprn ~ Ny @
Nypnle ~ Neyp @ Oc(1)®*77, we have an isomorphism

r—1
f*Nc/pn ~ @ O(az) © O(e)@"f’"
i=1
on P! with a; € Z. From Proposition 2.14, it follows e + 2 < a; < 3e — 2r + 2 for each
1 <4 < r —1; hence we particularly have a; < de. We set a; = e forr <i<n—1,
and set mg := 0, m; :=m;_1 + (a; +1) = Z;Zl(aj +1)for1<i<n—1

Since my—1 — (de + 1) = x(Ngypn) — (de + 1) = p > 0, there exists an integer
1 < ip < n— 2 such that m;, < de + 1 and m;,+1 > de+ 1. Let (s,t) be homogeneous
coordinates on P!. We set

& = sPTTmimiet € HO(PY, O(de — ay)),
and set o € H°(C, Ng/w ® Oc(d)) ~ @;:11 H°(P', O(de — a;)) as

Q= (517527 o giou tde_aiO-H g Ky 7*)'
For each 1 < i < ig, the k-linear subspace &;- H°(P!, O(a;)) € H*(P', O(de)) is spanned
by the followmg a; + 1 monomials,

(11) Sde—mifltmifl, sde—mi,]_—ltmifl-‘rl’ . Sd6+1_mitmi_1.

Y

By identification of H°(C, N p. ® Oc(d)) with Homo, (Neyen, Oc(d)), we regard
« as a morphism Ne/pn — O¢ (d) which induces the following k-linear map,

H(a) : H(C, Ngypn) @HO (P!, O(a;)) = H°(C,Oc(d)) ~ H(P', O(de)).

Here all monomials of H°(P!, O(de)) are given by the monomials of (11) with 1 < i < i
and t%~%o+1 . HO(P! O(a;,11)). Hence the k-linear map H(«) is surjective.

From Proposition 2.13, the k-linear map do is surjective; hence we have h €
H°(P",Jc(d)) such that @ = d¢(h). Let X C P™ be a hypersurface defined by h.
Then Proposition 2.10 implies that d(x c)pg is surjective; thus the subset py (1) C H
is dense, and the projection py is smooth at (X, C'). In particular, py is smooth on an
open neighborhood of (X,C) in I. O

Now the statement of Theorem I(b) is proved in the characteristic zero case:
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Theorem 2.16. Let the characteristic be equal to zero, and assumen > 3, e > 2, and
d > max{e—2,2(e —n) +3,3}. Then R.(X) is smooth and of dimension p, for a
general hypersurface X C P" of degree d with p > 0.

Remark 2.17. The conclusion of Theorem 2.16 also holds if e = 1,2 or 3 and d > 1.
Indeed, the case e = 1 follows from Theorem A(b). The case e = 2 or 3 with d > 3
follows from Theorem 2.16. The case d = 1 or 2 follows from the homogeneity of X.

PROOF. Let R C Hilb“*!(P"/k) be the space of smooth rational curves of degree
e in P". Since the condition (2.i) holds, Proposition 2.15 implies that py(I) C H is
dense. Thus, by the argument of Remark 2.6, the result follows. U

3. Generic smoothness of the projection

Recall that 1 = (n+ 1 — d)e + n — 4, the expected dimension defined as in Intro-
duction, Eq. (1). To establish the generic smoothness of the projection py : I — H in
the case > 0 in arbitrary characteristic, we consider the non-smooth locus Z of the
projection py as follows.

Definition 3.1. We define Z to be the set of (X, C') € I such that the projection py is
not smooth at (X, C'), i.e, the k-linear map d(x,cypu : T(x,c)I — Tx H is not surjective.
In addition, we define I° to be the set of (X,C) € I such that the hypersurface X is
smooth along C.

In this section, we set R to be the space of smooth rational curves of degree e, as
in the condition (2.i). In §3.1, we will show that the subset Z° := Z N 1" is sufficiently
small:

Proposition 3.2. Let n > 3, assume the condition (2.1), and assume d > max{ 2e —
3,4 }. Then we have codim(Z° ) > u+ 1.

Here, note that I° is a dense subset in I (see Corollary 3.5), and note that we
consider the subset Z° instead of Z because we need to shrink Z in the process of
proving that the codimension is “> p+ 1”7 (Lemma 3.13).

The statement of Proposition 3.2 above does not cover the case e < 3 and d < 3.
For this case, the following will be shown in §3.2:

Proposition 3.3. Let X C P" be a hypersurface of degree d = 2 or 3, and assume one
of the following:
(i) X is a quadric hypersurface, and C is a smooth rational curve of degree e = 2 or 3
such that X is smooth along C.
(ii) X s a cubic hypersurface, and C is a smooth rational curve of degree e =2 or 3
such that X is smooth along C' and that the linear subspace of P spanned by C
15 not contained in X .
(iii) X is a general cubic hypersurface, and C' is a smooth rational curve of degree
e =2 or 3 such that X is smooth along C'.

Then we have H'(N¢/x) = 0.

At the end of the section, the generic smoothness of py and Theorem I(b) will be
proved by Propositions 3.2 and 3.3.
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3.1. Codimension of the non-smooth locus of the projection. For C' € R,
we set I := py'(C) as in Definition 2.5. Then the subset I¢ \ I° is isomorphic to the
set of hypersurfaces X € H containing C' and being singular at some point of C', via
the projection py. Here, under a general setting, we have:

Proposition 3.4. Let C' C P" be a smooth curve, let d > 2 satisfy that Io(d) is
generated by its global sections, and denote by Ho the set of hypersurfaces X C P™ of
degree d containing C. Then the set of X € Hg being singular at some point of C' is
of codimension > n — 2 in He.

PRrROOF. We denote by SE := { X € H¢ | X is singular at P} for a point P € C'.
Then the set of X € H¢ being singular at some point of C' is given by the union of S&
with P € C. Thus it suffices to show that codim(SZ, He) =n — 1 for each P € C.

As in the proof of Bertini’s theorem [32], II, Theorem 8.18, we have a k-linear map

op: H'(P",0(d)) = Oc¢,p/m% : h+— (h/hy mod m%),

where mp C Opn p is the maximal ideal, and hy is a polynomial of degree d satisfying
ho(P) # 0. Here, for a hypersurface X C P" containing P, and for a defining polyno-
mial i of X, it follows that ¢p(h) = 0 in mp/m?% if and only if X is singular at P. In
particular, we have

(12) h € ker(¢p) N H(P",Jc(d)) if and only if X € SE.

By assumption, the Opn-module J¢ p is generated by global sections g1, g2, . .., gm €
H°(P™,Jc(d)). Hence the k-linear space Jo p/Jcp Mm% is generated by the elements

©r(91),p(g2); - - -, P(gm), which implies that
QOp(H()(Pn, jc(d))) = Jap/:jc’p N m?;

Thus the dimension of the k-linear space Jo p/Jcp N'm3 and the codimension of the
k-linear space ker(pp) N H(P",Io(d)) in H°(P",Jc(d)) are the same, and are equal to
codim(SE, He) due to the equivalence (12).

We consider the following exact sequence,

2 2 = =2
0— JQp/jc,p Nnmp — mp/mp — mp/mp — 0,

where mp is the maximal ideal of O¢ p. Since P is a smooth point of P", we have
dimy, mp/m% = n. Since P is a smooth point of C', we have dimy mp/m% = 1. Hence
dimg(Jo.p/Io.p N'm%) is equal to n — 1, and so is codim(SE, He). O

Corollary 3.5. Assume the condition (2.1) and assume d > max{ (e —1),2}. Then
we have codim(I \ I°,T) > n — 2. In particular, the subset I° C I is dense if n > 3.

PRrROOF. For any C € R, since J¢/p, is (max{ (e—1),2 })-regular as in Remark 2.3(c-
d), it follows that Jo/r(d) is generated by its global sections, and hence so is Jo(d).
Thus Proposition 3.4 implies that codim(I¢ \ I°, I¢) = n — 2. Since C' is arbitrary, we
obtain codim(I \ I°, 1) >n — 2. O

Next, we fix a smooth rational curve C' C P of degree e. Let d¢(h) : Neypn —
Oc(d) be the morphism defined in Definition 2.8.
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For (X, C) € I and for a defining equation h of X, it follows from Proposition 2.10
that (X,C) € Z if and only if H°(dc(h)) is not surjective. Here we remark that the
k-linear map H°(d¢c(h)) is not surjective if and only if 1 (im(H°(d¢(h)))) = 0 for some
nonzero linear functional ¢ : H°(C,Oc(d)) — k. We denote by o, the composite
k-linear map,

H°(C, N¢ypn @ Oc(d)) ~ Homo,, (Ngyen, Oc(d))

0
s Homy (H*(C, Neypn), HY(C, Oc(d)))
2, Homy(H(C, Neypn), k),
By the above argument, the following lemma holds:

Lemma 3.6. Assume the condition (2.1). Let (X,C) € I, and let h € H°(P",Ic(d))
be a defining equation of X. Then (X,C) € Z if and only if o,(dc(h)) = 0 for some
nonzero linear functional v : H*(C, Oc(d)) — k.

Let Z¢o := Z N1, which is isomorphic to the set of hypersurfaces X € H containing
C such that py is not smooth at (X, ). If dc : HO(P", Jo(d)) — H(C, N¢jpn @ Oc(d))
is surjective (as in the conclusion of Proposition 2.13), then Lemma 3.6 implies that
the codimension of Z¢ in I is equal to the codimension of the union,

(13) U ker(oy) in HO(C, Ngpn ® Oc(d)).
yeHomy (HO(C,0¢(d)),k)

In order to study these codimensions, we investigate oy and its kernel.

We take a morphism f : P! — P" which parametrizes the smooth rational curve
C of degree e. Then we have a splitting f*Ne¢/pn ~ @?:_11 Opi(a;) on P! with a; € Z.
For ¢ : H°(PY, f*(O(d))) — k, the k-linear map o, is identified with the direct sum of
k-linear maps,

n—1
(14) S @HO (P, O(de — a;)) — €D Homy (H(P', O(a;)), k),
=1

where awi is defined as follows.

Definition 3.7. Let € > 0 be an integer, and let ¢ : H°(P!,O(¢)) — k be a linear
functional. For an integer a@ with 0 < o < ¢, we denote by ag the composite k-linear
map

HO(P', O(e — ) — Homy (H°(P', O(a)), H'(P*, O(¢)))
22, Homy, (HO(PY, O(a)), k),
where the first transformation is the adjoint of the usual multiplication.

Now, we investigate oy in detail. Let (s,t) be homogeneous coordinates on P!
Then H°(P!, O(«)) has a standard ordered basis

(5%, ..., 8% )
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for every integer a. Let v : HO(P', O(e)) — k be a linear functional. Then the matrix
of 1 with respect to the standard ordered basis for H°(P!, O(¢)) is denoted by

My=[co - & - .
Lemma 3.8. Let £, be integers with 1 < o < e —1, and let ¢ : H'(P', O(e)) — k
Then the matriz of o with respect to the standard ordered basis for HO(P!, O(e — ))
and the dual standard ordered basis ((s*)Y,...,(s*74)Y, ..., (t*)V) for H(P', O(«a))
is equal to the (o + 1) x (¢ —a+ 1) catalecticant matrix,
Co C1 Ce—a
a | € Co Ce—a+1
Mw N P
Ca Ca+1 Ce

PROOF. The k-linear map H°(P!, O(e—a)) — H°(P!, O(a))V@ H°(P!, O(¢)) sends
each s5~ 790 to Y0 ((s* )V @ (5T (s ) = SO0 (s @57 () Thus

we have
G Z(Sa—iti)v ® (s~ D) = Z cin (5“7 @ 1)
i=0 =0
for 0 < j < & — a. Hence oy is represented by the matrix M. O

Let G := B Hom,(H° (P!, O(¢)), k) ~ P¢, where we regard M2 = [cy -+ ¢; -+ c.]

Sai(s 6_Z'zf’i)v on G. We set G5 = {¢ € G |

as homogeneous coordinates of ¢ =
p<min{a,e—a}+1.

rkoy < p } for integers p, a with

Lemma 3.9. Let €, be integers with 1 < a < e — 1, Then the following holds.

(a) We have that G coincides with the rational normal curve in G parametrized
by the morphism,

P' = G:(a,b)— [a° - " - B =) a (s

Moreover G coincides with the locus
{9 € G| ker(v)) = H'(P*, O(e)(—P)) for some P € P'},

where we remark that the definition of this locus does not depend on the integer
a and the choice of coordinates on P*.

(b) Let p be an integer with p < min{a,e — a}. Then G coincides with the
p-secant variety S,_1(GT) of the rational normal curve G¢ in G. Hence we
have dim G} = 2p — 1.

(c) Let p be an integer with p < min{ a,e —a }+1, and let = rypy +-- -+ 1,4,
be a linear functional with ry,...,r, € k and @bl, e ,@Dp e GY. Ifrk Mf; =p,
then we have ker oy C keroyy N ---Nkeroy .
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PROOF. (a) We show that G is contained in the rational normal curve in G, as
follows: We take 1) € G with M£ = [co N R cg}. Then we set

v; = [Ci Cit1 - Cs—a+i} ,

the i-th row vector of pr“ for 0 < 7 < «. Since rk Mf; = 1, any two vectors v; and
v; are linearly dependent. First, we consider the case ¢y # 0. Then we have v; = Ay
with A € k, which implies

€1 = Ao, Co =M1 = AN2Co, «.y Como = NCo—g1 = N 0.
Since c; = Ay, we also have vy = Mvy; hence co_qp1 = Ace_q = ATy, Similarly,
we have ¢; = Mgy for all 0 < 7 < . Thus ng =y [1 A A2 )\5]. Next, we
consider the case ¢y = 0. Then we have ¢; = 0, because if ¢; # 0, then vy and v; must
be linearly independent. Similarly, we find ¢; = ¢ = --- = ¢._;1 = 0. Thus we have
Mg = [0 - 0 cg] with ¢, # 0, and the assertion follows.

Conversely, one can similarly show that G contains the normal rational curve in
G.

On the other hand, we find that if ) € G is an element of the rational normal curve
with M) = [a® --- a7 --- b°], then ker(¢) is equal to H(P*, O(e)(—P)) with
P := (a,b) € P'. This is because each polynomial f =Y f;s*~t' € H'(P', O(e)) with
[i € k satisfies that ¢ (f) = Y fia®"b", which is equal to f(P). Hence 9 (f) = 0 if and
only if f(P) = 0.

Finally, we show that if ¢ € G satisfies ker(¢)) = H°(P', O(g)(—P)) for some
P € P', then 1 is contained in the rational normal curve in G, as follows: With-
out loss of generality, we can assume P = (1,\) € P' with A € k. Let M) =
[co N TR cg}. Since each polynomial f = \'s® — s*~ ! with 0 < 7 < € satisfies
f(P) =0, we have XNcg — ¢; = ¢(f) = 0. Therefore M) = co- [1 A A -+ X].
Thus the assertion follows.

(b) This is straightforward from [29], Propositions 9.7 and 11.32.

(c) From (a), there exists (a;,b;) € P! such that M) = [a5 --- a5 ‘b --- bf] for
cach 1 < i < p. Then we have im(0f; ) = k - ¢;, where we set e; € H(P', O(a))" to be
the element given by [a® --- a2 “b} --- b?] with respect to the dual standard ordered
basis for HO(P!,O(a))Y. Note that e; corresponds to a point of the rational normal
curve of degree a.

Here, we show that the elements v,...,%, are linearly independent, as follows:
Suppose that ty,...,9, are linearly dependent. Then % is contained in the (p — 1)-
secant variety S,_o(GY). Since p—1 < min{ o, e —a }, it follows from (b) that we have

¢ € Gy, which contradicts that the assumption rk M§ = p.

Since 1, ...,v, are linearly independent, it follows that (ay,b1),...,(a,,b,) € P!
are distinct points. This implies that ey, ..., e, are linearly independent ([29], Exam-
ple 1.14).

For any h € ker(oy), we take B3, ..., 3, € k such that o, (h) = Sie;. Since
ripier + -+ rpBpe, = oy, (h) + -+ 1,0y (h) = oy(h) =0,
and since r; # 0, we find that 3, =--- = 3, = 0. O
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Recall that we identify o, with @?:’1101‘2", as in (14). Applying Lemma 3.8 in
the case ¢ = de and a = q;, we find that the k-linear map 01‘2" is represented by a
(a;+1)x(de—a;+1) catalecticant matrix. We consider the case where 2 max{ a; }; < de,
that is to say, a; + 1 < de — a; + 1 for all 4.

Definition 3.10. Let G = B Homy(HO(P!, O(de)), k) ~ P%. We set G, := Gt
and U, := G, \ G,_; for each integer 1 < p < max{a; }; + 1.
We regard A := H(P, f*Ng pn @ [*(Oc(d))) as affine space. Then we set

K(S) = U ker(oy),
PeSs
which is a closed affine subvariety of A for a subset S C G.

In this notation, the union of kernels given in (13) is expressed as the variety K(G),
and is equal to the union of X(U,) with 1 < p < max{a; }; + 1. For a linear functional
Y H'(P', O(g)) — k, we have the following equality

n—1
(15) codim(ker(oy), A) = Z ko,
i=1

because of codimy (ker(oy)), H'(P', O(de — a;))) = dimy,(im(oy;)) = rk oy for each i

Lemma 3.11. Let C' be a smooth rational curve of degree e, and assume 2 max{ a; }; <
de. For integers 1 < p < max{a; }; +1 and 1 <i < n — 1, the following holds.

(a) If p < ay, then we have G, = G5 in G.

(b) If¢ € U, then rkoy’ = min{a; +1,p }.

PROOF. (a) Lemma 3.9(a) implies that the varieties G; and G coincide and are
equal to the rational normal curve in G. From Lemma 3.9(b), we have G, = S,_1(G;) =
Gy in G.

(b) Let ¢ € U,,. From (a), we have G,, = G%. Thusif p > a;, then we have ) ¢ G%,
and hence tkoy’ = a; + 1. If p < a;, then it follows from (a) that e G\ Gy
Hence rk oy’ = p.

Lemma 3.12. Under the assumption of Lemma 3.11, the following holds.

(a) codim(X(Umax{a; yi41),A) = p+ 1.
(b) K(U,) C K(G1) if p <min{a; }; +1 and p < max{a; };.

PROOF. (a) Let ¢ € Umaxf{aii41- For each 1 < i < n — 1, it follows from
Lemma 3.11(b) that rkoy/ = a; + 1. Hence the equality (15) implies that

[y

n—

codim(ker(oy), A) = » (a; +1) = x(Neypn)
i=1

. Since dim G = de, we have codim(X(Unax{a;}+1),A) = X(Neypn) — de = p+ 1.
(b) Let o € U,. Since p < max{a };, it follows from Lemma 3.9(b) that G, =

S,—1(G1). Thus we have ¥y,...,¢, € Gy and rq,...,7r, € k such that ¢ = r¢; +
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oo+ 1, Since p < min{a; }; + 1, it follows from Lemma 3.11(b) that tkoy’ = p.
Hence Lemma 3.9(c) implies that ker(oy’) C ker(oy:) N --- Nker(oy; ) for each 4. Thus

ker(oy) C ker(oy,) N ---Nker(oy,) € K(Gy). Since ¢ € U, is arbitrary, we have
X(U,) C K(Gy). O

For the fiber I = py'(C), let us calculate the codimension of Z2 := Z° N I¢ in
Ic, where Z2, is isomorphic to the set of hypersurfaces X € H containing C' and being
smooth along C' such that the projection py is not smooth at (X, C). We denote by
7% < HO(P",9o(d)) the affine subset isomorphic to the affine cone of Z% C I¢.

Lemma 3.13. Let n > 3 and assume the condition (2.i). Let C' C P" be a smooth
rational curve of degree e > 2 parametrized by a morphism f : P! — P" and assume
d > max{2(e —r) + 3,4}, where r is the dimension of the linear subspace spanned by

C. Then the following holds.

(a) 2max{ a; }; < de,

(b) do(Z8) C K(G) \ K(Gn),

(¢) codim(X(G) \ K(G1),A) > p+ 1.
As a result, we have codim(Z2,Ic) > p+ 1.

PROOF. Let f*Nepn =~ @!-| Opi(a;) © Opi(e)®*" be the splitting on P'. From
Proposition 2.14, we obtain the following inequality,

(16) e+2<a;<3e—2r+2

for 1 <i¢<r—1. In addition we set a; = e for r <1< n— 1.

(a) Suppose e = 2 or 3. Then we have r = e as in Remark 2.3(b). Thus the right
hand side of inequality (16) is equal to e+ 2, that is to say, a; = e+2for 1 <7 <r—1.
Hence, by the assumption d > 4, we have 2max{ a; }; < de.

Suppose e > 4. Then, by the assumption d > 2(e — r) 4 3, the right hand side
of inequality (16) is less than or equal to e + d — 1. Thus we have 2max{a; }; <
2(e+d—1) < 4max{d,e} — 2. By the assumption d > 4, we have min{d,e} > 4,
and hence 2max{ a; }; < min{ d,e } max{d,e} —2 = de — 2.

(b) Let h € Z% and let X € H be the hypersurface defined by h. Since (X,C) € Z°,
it follows from Lemma 3.6 that we have oy (d¢c(h)) = 0 for some 1; hence ¢ (h) € K(G).

Suppose that §¢(h) € ker(oy) with some ¢ € G;. Then H°(5¢(h)) is contained
in ker(1), where we have ker(v)) = H°(P', O(de)(—P)) for some P € P! due to
Lemma 3.9(a). Hence dc(h)(f(P)) = 0. From Lemma 2.11, the hypersurface X is
singular at f(P) € C, which contradicts that X is smooth along C'.

(¢) From Lemma 3.12(b), it follows that

JC(G) \ j<j(Gl) C K(Umax{ai }H—l) U U K(Up)
min{ a; };+2<p<max{ a; };

From Lemma 3.12(a), we have already seen codim(X(Unax{a, }:41);A) = p+ 1. Thus
it is sufficient to show the integer v := min{ codim(X(U,),A) | min{a; }; +2 < p <
max{ a; }; } is greater than or equal to pu + 1.
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Now, for each integer p with min{ a; }; +2 < p < max{ a; };, we will calculate the
codimension of X(U,) in A. Here we set « to be the smallest integer a; with 1 <7 <
r — 1. Since inequality (16) holds for 1 < i < r — 1 and since a; = e for r <i < n— 1,
we have

e+2<p<3e—2r+2 and a=e+2.

By definition, K(U,) is the closure of the union of ker(o,) with ¢ € U,. Here it follows
from the equality (15) that we have codim(ker(cy),A) > 327~} rkoy’ + (n —r)rkoy,
where Lemma 3.11(b) implies that the right hand side is greater than or equal to
(r—1)min{a+1,p}+ (n—7)(e+1). In addition, it follows from Lemma 3.9(b) that
dim U, = 2p — 1. Thus we have inequality,

(17) codim(X(U,),A) = (r—1)min{a+1,p} +(n—7r)(e+1)— (2p—1).

Assume p > e + 3. Then we have min{ a4+ 1,p} > e+ 3. By using this inequality
and p < 3e — 2r + 2, we can see that the right hand side of inequality (17) is greater
than or equal to

(18) (r—1)e+3)+(n—r)(e+1)—(2(3e —2r+2)—1) =ne+n+ 6r — 7e — 6.
From the assumption d > 2(e — r) + 3, by calculating (18), we have
(19) codim(K(U,),A) > ne+n—e—3d+ 3.

Assume p = e + 2. Then we have min{ a« + 1,p} > e + 2. By using this inequality
and by substituting p = e+ 2, we can see that the right hand side of inequality (17) is
greater than or equal to

(20) (r—=1e+2)+(n—r)e+1)—(2(e+2)—1)=ne+n+r—3e—>5.
Thus, from the assumption d > 2(e — r) + 3, by calculating (20), we have
(21) codim(K(Uet2), A) = ne+n—2e—d/2—7/2.
Here if equality e = r holds, then by applying this equality to (20), we have
(22) codim(K(Ue12), A) = (n —2)e +n — 5.

Next, let us show v > p + 1 by calculating v — (1 + 1), where we recall that
w = (n+1—de+n—4 Suppose e = 2. Then we have max{a; }; = 4 and

v = codim(X(Uy), A). Hence inequality (22) implies that v — (u+ 1) > 2d — 8.
Suppose e > 3. Then inequality (19) implies that

codim(K(U,),A) — (p+1) > (e —3)(d—2) for p>e+3.
In addition, for the case p = e + 2, the inequality (21) implies that
codim(K(Ueio), A) — (u+1) = (e — 1/2)(d — 3) — 2.
Thus v — (p+ 1) > min{ (e — 3)(d — 2), (e — 1/2)(d — 3) — 2 }.

In consequence, for e > 2 and d > 4, it follows that the integer v is greater than
or equal to p + 1, hence so is codim(X(G) \ K(G;),A). Therefore the assertion (c)
follows.
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Here Proposition 2.13 implies that the k-linear map d¢ is surjective. Since we can
regard 6¢c : HO(P",Jo(d)) — A as a smooth morphism of affine spaces, it follows from
(b) that we have the following inequality,

codim(Z2, I)) = codim(Z2, H'(P™, I (d))) > codim(K(G) \ K(G1), A).
From (c), we have codim(Z2, Ic) > pu+ 1. O

PROOF OF PROPOSITION 3.2. Let C' € R, and let r be the dimension of the linear
subspace spanned by C. By the assumption d > max{ 2e — 3,4 }, we have inequality
d > max{2(e —r) + 3,4}, as follows: If e = 2or 3, then we have e = r as in
Remark 2.3(b); hence 4 > 2(e—r)+3. If e > 4, then we have r > 3 as in Remark 2.3(a);
hence 2¢ —3 > 2(e — 1) + 3.

Thus Lemma 3.13 implies codim(Z2,Ic) > p+ 1. Since C € R is arbitrary, we
have codim(Z°,I) > p+ 1. O

3.2. Quadric and cubic hypersurfaces. Let X C P" be a hypersurface, and
let (P")Y = G(n — 1,P") be the space of hyperplanes in P". We consider the Gauss
map,

VX G X --» (]P)n>\/
which sends each smooth point P € X to the embedded tangent space of X at P in
P,

Let (zo, 21, -.,2,) be homogeneous coordinates on P", and let h be the defining
equation of X. We denote by (zy,2),...,2’) the dual basis of H°((P")",0O(1)) =
H°(P™,O(1))". Since the embedded tangent space of X at P is defined as the zero set
of (0h/02)|p - 20 + -+ + (Oh/Dz,)|p - zn, the k-linear map v% : H°((P")V,O(1)) —
H°(X,0(d — 1)) is given by

(23) Vx(2) = (0h/0z)|x
with 0 <17 < n. To prove Proposition 3.3, we show the following two lemmas.

Lemma 3.14. Let X be a cubic hypersurface, and let C C X be a smooth rational
curve of degree e = 2 or 3. Let L C P™ be the linear subspace spanned by C, and
let L* ={M € (P")V | L € M}. Suppose that X is smooth along C, and suppose
vx(C) C L*. Then we have L C X.

PROOF. By changing coordinates on P", we may assume that L is the zero set of
Zerl,---,2n € HP(P",O(1)), and assume that the rational curve C' C P™ of degree
e = 2 or 3 is parametrized by a morphism

Pt — P (s, t) = (54,87 ..., 1%,0,...,0).

We denote by ¢’ the k-linear map H°(P",O(i)) — H°(P',O(i - €)) induced from f.
Then the composite morphism vx o f : P! — (P")V induces the composite k-linear
map,

©* oyt HY(P", 0(1))Y — HY(P",0(2)) — H°(P', O(2¢)).
Here we find (¢? o %) (z) = 0 for 0 < i < e, as follows: Since yx(C) C L*, it follows
(% o Vi) (HO((P™)Y, T+ ypryv(1))) = 0. We note that P" ~ (P")¥V by sending z € P"
tox*={M e (P")" |z € M}, ahyperplane of (P")¥. In particular, L is isomorphic



24 I. RATIONAL CURVES ON HYPERSURFACES

to the space of hyperplanes of (P")Y containing L*. This means that H°(L, O(1))" ~
HO((P™)Y, T+ ypryv(1)). Since HY(L,O(1))Y C H°(P",O(1)) is spanned by zj, ..., 2/,
we get (02 ovi)(zY) =0for 0 <i<e.

Assume e = 2. Let h be a defining equation of X. Since h € H°(P",J-(3)), we can
write h = g(2? — 2022) + hgzz + - - - + hpz, with g € k|20, 21, 20]1 and h; € HO(P", O(2)).
From the formula (23), it follows

(2 0 73) (%) —e(g)t?
(9> 07%)(=1) | = | 20 (g)st
(% 0 7%)(2) —¢'(9)s
Since (¢? o y%)(2) = 0 for 0 < i < 2, we obtain ¢!(g) = 0. Since g € k2o, 21, 221, it

follows g = 0. Hence h € H°(P",J.(3)).

Assume e = 3. Then we can write h = go(2122 — 2023) + 91(27 — 2022) + ga(25 —
2123) + hyzg + -+ + hpz, with g; € k|20, 21, 20, 23]1 and h; € H°(P*, O(2)). From the
equality (23) again, it follows

(% o vx) (=) —0'(g0)t> — o' (g1)st?

(24) (@? o i) (1) | _ ¥ (g0)st” + 20" (91) 57t — @' (g2)t
(or )| = [ st — e a)s® + 20 (g)st?
(9% o vx) (=) —0'(g0)s* — ¢'(g2)s7t

Setting ¢g; = a; 020 + a;121 + a; 222 + a; 323 with a;; € k, we can represent the above
vector (24) with respect to the basis (s, s°¢, ..., %) by the following matrix A,

0 0 —aio —ai,1 — ao,o —ai,2 — ap,1 —ai1,3 —ap,2 —ao,3

0 2a1,0 2a1,1 + ao,0 2a1,2 +ao1 —a20 2a13+ a2 —az1 Qo3 —az2 —a23
ai,o ai,1 —ap,0  ai2 —ao1 +2a20 a1,3 — ao,2 + 2az21 —ao,3 + 2a2,2 2a2,3 0
—ap,0 —ao,1 — a2,0 —ap,2 — az,1 —ao,3 — a2,2 —a2,3 0 0

Since (p? 0 v%)(2Y) = 0 for 0 < i < 3, it follows A = 0. As a result, we have ag; =
—a12 = —A2y0, Qo2 = —A13 = —A21, and other ;5 = 0, even if char(k) = 2. Hence
go(z122 — 2023) + g1 (27 — 2029) + g2(23 — 2123) = 0, which implies h € H(P",J;(3)). O
Lemma 3.15. Let X C P" be a hypersurface of degree d, and let C C X be a
smooth rational curve of degree e such that X is smooth along C'. Assume one of
the following conditions: (i) (e,d) = (2,2),(3,2) and n > 3; or (ii) (e,d,n) =
(2,3,3),(3,3,3),(3,3,4). Then we have H (N¢/x) = 0.

PROOF. We have f*Ngpn >~ f*Nppn @ f*Neyp o~ Op(€)"7¢ @ Opi(e + 2)% 1
We consider the following exact sequence on P*,
(25)
0— f*NC/X L> f*NC/[pm ~ OPI (6)69”_6 S O]pl (6 + 2)696_1 — f*Nx/[pm ~ O]pl (de) — 0.

Let f*No/x = @)= O(b;) be the splitting on P* with by < ... < b, o, and let
B :=37"2b;. Here we have 8 = (n + 1 — d)e — 2, and have b, 5 < e + 2 since 7 is
injective. To prove H'(N¢/x) = 0, it is sufficient to show b > —1.

If n = 3, then we have by = 8 = (4 —d)e — 2. If n = 4, then we have b, =
B—by > ((5b—d)e—2)—(e+2)=(4—d)e—4. Hence in the case (ii), and in the case
(e,d) = (2,2),(3,2) with n = 3,4, the assertion follows.
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We consider the case (i) with n > 5. If an integer iy with 1 < ip < n — 2 satisfies
b;, = e+1, then since the morphism 7 in (25) is injective, so is O(by,) B+ - D O(bp_2) —
O(e +2)%71 and then the following inequality must hold:

n—2

(26) > (i+1) < (e—1)(e+3).

1=10

Suppose (e,d) = (2,2). Then b, o < 4. If b,_3 > 3, then b, 3+ b, o+ 2 > 8§,
which contradicts the inequality (26). Hence we have b, 3 < 2, which implies b; =
B=S"2b > (n—1)2—2) — (4+2(n —4)) = 0. Suppose (e,d) = (3,2). Then
bp_3 < by_o <5. If b,_4y >4, then b,_4 + b,_3 + b,_o + 3 > 15, which contradicts the
inequality (26). Hence we have b,_, < 3, which implies b > ((n — 1)3 — 2) — (10 +
3(n — 5)) = 0. 0

PROOF OF PROPOSITION 3.3. (i) The case d = 2 follows from Lemma 3.15(i)

(ii) Suppose that the linear subspace L spanned by C is not contained in X.
We show that H'(Ng/x) = 0 by using the induction on n. If (e,d,n) is equal to
(2,3,3),(3,3,3),0r (3,3,4), then H'(N¢/x) = 0, since the condition (ii) of Lemma 3.15
is satisfied. Assume either (e,d) = (2,3) and n > 4, or (e,d) = (3,3) and n > 5. From
Lemma 3.14, the image vx(C) is not contained in L*; hence #(vx(C) N L*) < oc.
Since dimL* = n —e — 1 > 1, there exists a hyperplane M C P" such that M €
L*\ vx(C) C (P")V. Then the hypersurface M N X in M ~ P"! is smooth along
C. By induction hypothesis, it follows H'(N¢/mnx) = 0. From the exact sequence
0— NC/MOX — NC’/X — NMﬂX/XlC ~ Oc(l) — O, we have Hl(Nc/X) = 0.

(iii) Suppose that the hypersurface X is general. Let C' C X be a smooth rational
curve of degree e = 2 or 3, and let L C P" be the e-dimensional linear subspace
spanned by C. Here we assume that L C X, since the case L ¢ X was already seen
in (i).

Let us consider the following commutative diagram with exact rows:

0 —— H°(L, N/x) —> H%(L, Ny jpn) —= H*(L, Nx;pn|1) ~ H°(L, O(3))

l | |

0— H(C, Nyx|c) —= H°(C, Nppe|c) —= H°(C, Nxpn|c) =~ H(C, O(3)).

We show that the k-linear map ve is surjective, as follows: We denote by F.(X) C
G(e,P™) the space of e-dimensional linear subspaces of P lying in X. Then L € F,(X).
Since X is general and since F.(X) # 0, it follows from [16], §1 and Théoréme (2.1)
that the scheme F,(X) is smooth and has the expected dimension; hence we have

(L, Ny/x) = dimy, Tp FL(X) = (e + 1)(n — €) — (3 j e).

Thus h°(L, Npx) = h°(L, Nppn) — h*(L, Nx pn|1), which implies that v, is surjective.
Since w is also surjective, so is the k-linear map v¢.
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Since ve is surjective and since H'(C, Ny jpn|c) = 0, we have H'(C, Np,x|c) = 0.
From the exact sequence 0 — N¢y, — Neyx — Niyx|e — 0, we obtain H'(N¢/x) =
0. O

Here we have a corollary, which will be used in the next section:

Corollary 3.16. For an irreducible and reduced conic C C P", we have Z& = 0 if
d =2, and have codim(Z2, Ic) > 3 if d = 3.

PROOF. Assume d = 2. For any hypersurface X satisfying (X,C) € I°, the con-
dition (i) of Proposition 3.3 holds. Hence we have H'(N¢,/x) = 0, which implies that
H°(N¢ypn) — H°(Nx/pn|c) is surjective. From Lemma 2.7, it follows that d(xcypy is
surjective, that is, (X,C) ¢ Z2. Since X is arbitrary, we have Z2 = (.

Next, assume d = 3. Let L C P" be the linear subspace spanned by C', and let
We be the set of (X,C) € Ic N I° such that X contains L. For any hypersurface X
satisfying (X, C) € I°\ W, the condition (iii) of Proposition 3.3 holds; hence we have
H'(N¢yx) = 0. Thus Lemma 2.7 implies (X,C) ¢ Zp. Therefore Z9 C Wc. Since
codim(Io, H x {C'}) = h%(O¢(3)) = 7 and codim(We, H x { C'}) = h°(OL(3)) = 10,
we get the statement. O

Now we come to the proof of Theorem I(b).

PrROOF OF THEOREM I(b). The case e = 1 is nothing but Theorem A(b). We
assume e > 2. Let R C Hilb® ™ (P"/k) be the space of rational curves of degree e in
P™ with n > 3, and assume either e < 3 and d > 1, or e > 4 and d > 2e — 3. Then the
condition (2.i) is satisfied. We also assume d > 2, since the case d = 1 (i.e., X ~ P"!)
follows immediately. Here it follows from Corollary 3.5 that I° C I is a dense subset.

Suppose e = 2 or 3, and suppose d = 2 or 3. In the case d = 2, since the condition
(i) of Proposition 3.3 is satisfied for each (X,C) € I°, we have H'(N¢/x) = 0. In the
case d = 3, for general (X,C) € I°, the hypersurface X does not contain the linear
subspace L C P" spanned by C, because of h°(P",Jc(d)) > h°(P",J;(d)). Since the
condition (ii) of Proposition 3.3 is satisfied, we have H'(N¢,x) = 0. Thus, in both
cases d = 2,3, it follows from Lemma 2.7 that d x c)pn is surjective; hence the subset
pu(I) C H is dense. For a general hypersurface X € H, it follows R.(X) ~ pg (X) #
0, and it follows from Proposition 3.3 again that H'(N¢/x) = 0 for all C' € R.(X).
Hence R.(X) is smooth and has the expected dimension .

Suppose e > 2 and d > max{2e — 3,4}. Then Proposition 3.2 implies that
codim(Z% I) > pu+1. Tt follows from p > 0 that pg is smooth on the non-empty subset
I°\ Z°. In particular, the image py (1) is dense in H. Since we have dim [ = dim H +
as in Lemma 2.1, it follows

dim Z° = dim I — codim(Z°,I) < dim H — 1 < dim H,

which implies that py(Z°) is not dense in H. Hence, for a general smooth hypersurface
X € H, we obtain p;'(X) C I°\ Z°% thus p,; (X) ~ R.(X) is smooth and has the
expected dimension pu. O
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4. Connectedness of the space of conics on a hypersurface

As in the condition (2.ii) in §2, we set R = Hilb**t'(P"/k), which is a proper
smooth variety over k. In this section, we will prove that the projection py : [ — H
has connected fibers in the case p > 1, by showing codim(Z, ) > 2.

We denote by U C R the space of irreducible and reduced conics in P", which was
already studied as the case (2.i) with e = 2. Let Bj be the set of C' € R such that
C is a union of two lines Il1,lo, C P™ with [; # [, intersecting in one point, and let
By :={C € R|red(C) C P"is a line }. Then we have R =UU B; U Bs.

Lemma 4.1. We have codim(B;,R) = 1 and codim(Bs, R) = 3.

PROOF. As in Remark 2.4, we consider the morphism 7 : R — G(2,P") which
sends each C' to the linear plane L C P" spanned by C. Then the fiber 77 (L) =~
Hilb* (L /k) is of dimension 5 for any L € G(2,P"). Here 7~ '(L) N By is isomorphic
to LY, the space of lines in L, which is of dimension 2. On the other hand, we have a
finite surjective morphism LY x LY\ A — 7~1(L) N By by sending (I, 15) to C' = [; Uls,
where A = {(I,1) | I € LY }. Hence dim(r~!(L) N B;) = 4.

Since the codimension of 7=!(L) N By (resp. 71(L) N By) in R is equal to 3 (resp.
1) for each L, the statement follows. O

Since codim(py'(Bi), ) = codim(By,R) = 1, we have codim(Z N py'(By),I) > 2
by showing the following lemma:

Lemma 4.2. Assume p > 1. For each C' € By, there exists a hypersurface X C P"
containing C such that (X,C) e I\ Z.

ProoF. Let C' = [y U ly with lines l;,lo C P intersecting in one point, and let
L C P" be the linear plane spanned by C. By choosing homogeneous coordinates
(s,t,u,23,...,2,) on P" we may assume L = (23 = --- = 2z, = 0) in P", and assume
Iy =(u=0)and Iy = (t =0) in L. Since C = (tu = 0) in L, we have H°(C,O(i)) =~
(k[s,t,ul/(tu)); with i > 0, and have N p, =Ic/T8 = Oc(2) - tu @ @3 Oc(1) - Z;.

Now, in a similar way to the proof of Proposition 2.15, we will give an element
a € H°(C, N pn ® Oc(d)) ~ Homo, (Neypn, Oc(d)) such that the k-linear map

H°(a) : H°(C, Ngypn) ~ H°(C,0(2)) & H°(C,0(1))*" % — H°(C,O(d))

is surjective, as follows. We define polynomials &, & € HY(C,O(d — 1)) by
R Lt I R L b N

Since tu = 0 in H(C, O(7)), the k-linear space & - HO(C,O(1)) + & - HY(C, O(1)) gives
the following 6 monomials of H°(C,O(d)):

8d—31t3z’ Sd—32—1t32+1’ Sd—32—2t3z+2’ Sd—3zu31 Sd—3l—1u3l+17 Sd_32_2U3z+2.

)

In addition, s4=2 - HO(C, O(2)) gives 5 monomials s, s7~1t, s3%2 5?1y, 597242, Then
we can take an element

a € H°(C,Ngpn @ Oc(d)) = H(C,0(d - 2)) - tu @ éHO(C, O(d—1)) -z,

1=3
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as follows: Since p = 3n —2d — 2, it follows from the assumption p > 1 that inequality
2d/3 < n—1 holds. Here we take integers d’ and r such that d = 3d'+r with 3 < r < 5.
If d = 3d' + 3, then it follows 2d’ + 2 < n — 1; thus we can define

Q= (Sd727£%7€%7€%7£§7 A 7€]C_l/7 gl7td71 + udil? *7 ctt *)
If d =3d + 4 or 3d’' + 5, then it follows 2d’ + 3 < n — 1; thus we can define
o= (sd_Q,ﬁ,f%, 5%,{%, e ,ff/, g;’, 47 4 su® 2 st T L *).

Since a - H*(C, Ngpn) gives all monomials of H°(C, O(d)), the k-linear map H%(«) is
surjective.

It follows from H'(L,JZ,,) ~ H'(L,O1(—4)) = 0 that ¢,y is surjective. Therefore
Lemma 2.12 implies that dc is surjective, and hence there exists h € H°(P", Io(d))
such that a = d¢(h). Let X C P" be the hypersurface defined by h. Since H°(6¢(h)) =

H(«a) is surjective, so is the k-linear map d(x,c)pu, due to Proposition 2.10. Hence
we have (X,C) ¢ Z. O

Here we have:
Proposition 4.3. Assume > 1 and n > 4. Then py : I — H has connected fibers.

PROOF. We denote by Is = py'(S) for a subset S C R. From Lemma 4.1, we
have codim(Bs, R) = 3; hence it follows that codim(Z N Ip,,I) > codim(/p,,I) = 3.
From codim(B;,R) = 1 and Lemma 4.2, we have codim(Z N Ip,,I) > 2. Since p > 1,
it follows from Proposition 3.2 and Corollary 3.16 that codim(Z° N Iy, I) > 2. From
Corollary 3.5, we have codim((7 \ I°) N Iy, I) > 2. Since Z = (Z N Ip,) U(Z N Ip,) U
(Z°N L) U(ZNn I\ I%N ), we have

codim(Z,I) > 2.
Now we take the Stein factorization,
pu: 1 ES M.

The variety [ is irreducible as in Lemma 2.1, and is proper over k since R is so.
Hence E is irreducible and proper over k. Suppose that ¢o is not étale. Then from
[25], p57, Theorem 1, the ramification locus has an irreducible component E; which is
of codimension 1 in E. Thus we get a non-smooth locus ¢; ' E; of py of codimension
1, which is absurd. Hence ¢, is étale; it is in fact an isomorphism because H is simply
connected. Therefore py has connected fibers. O

PROOF OF THEOREM I(c). We assume d > 2, since the case d = 1 follows imme-
diately. Suppose n = 3. Since p > 1, we have d = 2 or 3. For a quadric X C P3,
there exists an open embedding Ry(X) — (P*)¥ which sends each conic C' € Ry(X) to
the linear plane spanned by C'; hence Ry(X) is connected. The case (d,n) = (3,3) is
excepted (see Proposition 4.4).

Next, assume n > 4. Then py has connected fibers due to Proposition 4.3. Suppose
pu(Z) # H. Then py'(X) is smooth for general X € H. Suppose py(Z) = H. Then
it follows codim(p,; (X) N Z,p; (X)) = 2 for general X € H. Thus p;'(X) is normal
since it is regular in codimension 1 and a local complete intersection of I.
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As a consequence, we find that pj{l (X) is a normal irreducible variety for general X.
Therefore Ry(X) is connected since it is isomorphic to an open subset of p;'(X). O

Finally, we check the sharpness of Theorem I(c). First we investigate the excep-
tional case (d,n) = (3,3) in Theorem I(c). We find that Ry(X) is disconnected for
general X as follows.

Proposition 4.4. Let X C P? be a smooth cubic. Then Ro(X) has 27 connected
components. On the other hand, Hilb* (X /k) is connected.

PROOF. Let {I; } be the 27 lines lying in X, and let I; C ()" be the set of linear
planes containing /;. Then {I}} are lines in (P*)¥, and the union |JI; C (P?)Y is a
connected subvariety. We set

U= (U z;) \ (U It ml;) C (%)Y,

which is a disconnected open subset of | JI*. For C' € Hilb*™'(X/k), the intersection
of X and the linear plane spanned by C' is equal to the union of C' and [; for some 1.
Thus we have an isomorphism Hilb* (X /k) — (JI} by sending C' to the linear plane
spanned by C, which induces Ry(X) ~ U. O

Next we give a special X with p > 1 such that Ry(X) is disconnected.

Example 4.5. For a general hypersurface X' C P* of degree 5, the schemes R;(X’)
and Ry (X') are finite sets, because the expected dimensions of these schemes are equal
to zero in the case (d,n) = (5,4). Let { C } be the conics lying in X', and let { [} } be
the lines lying in X".

Let us consider 7, : P5\ {x} — P* a projection from a point x € P°. We set

X = m;1(X’) C P°, the cone of X" with vertex x. For a conic C' C P?, we obtain
that m,(C) is a line or a conic. Thus Ry(X) is isomorphic to the disjoint union of

Ry (m;1(CY)) and Ry (m, 1(15)).

However, we can show the following result for the Hilbert scheme Hilb**!(X /),
which contains Ry(X) as an open subset.

Proposition 4.6. Assume p > 1. Then Hilb*" (X /k) is connected for any X if
n =>4, and for any smooth X if n = 3.

PROOF. Suppose n > 4. Then py has connected fibers due to Proposition 4.3.
Since Hilb* ™ (X /k) ~ pz'(X), the result follows. Suppose n = 3. In the case (d,n) =
(2,3), we have Hilb*"!(X/k) ~ (P?)V. The case (d,n) = (3,3) has been seen in
Proposition 4.4. Il






CHAPTER 1II

Gauss map of rank zero

1. Bundles of principal parts

For a line bundle £ on a projective variety X, we denote by P% (L) the bundle of
principal parts of £ of first order ([27, §16], [54, §2]), which is equipped with a natural
exact sequence,

0= RL—=PY(L)—=L—=0 ().
A generically surjective homomorphism a' : H'(PY, Opn (1)) ® Ox — P (Ox(1)) is
associated to a projective variety X in PY. The Gauss map 7 of X is formally defined
to be the rational map X --» G(n,PV) associated with a' by the universality of
G(n,PY), where n := dim X.

If a vector bundle & on P! is isomorphic to Opi(a;)™ & -+ & Opi(a,,)™, then
[a}, ... alm] is called the splitting type of £. Note that, according to a theorem of
A. Grothendieck ([32, V, Exercise 2.6]), every vector bundle on P! splits into a direct
sum of line bundles, as above. By abuse of notation, a vector bundle of splitting type

[}, ..., al™] is denoted by the same symbol, for simplicity.

Lemma 1.1. For a line bundle Op:(a) on P!, we have

p%l(opl(a» _ {[ava - 2]7 pr|(l,

[a —12],  otherwize.

PROOF. See [38, (1.2)]. O

Proposition 1.2. Let X be a projective variety, let f : P! — X be an unramified
morphism, and denote by Ny the dual of the kernel of the natural homomorphism f* :
[ = Q. Assume that X is smooth along f(P'), and Ny = [=1"-1,07,... 4", .. .].
Then for an embedding ¢ : X — P, we have
a—2,a—1"1 g™ a+ 1" a+2"2, ... ;a+i"% ...], ifpla

*Pl L*O 1 — [ ) ) ’ ) ’ I ) ) ’
JPx (" Opu(1)) {[a—l”"1+2,a7"0,a+1"“1,a+2”,...,@—1—2’”,...], otherwise,
where a = deg f*1*Opnm(1).

ProOF. This follows from Lemmas 1.1 and 1.3 below. O

Lemma 1.3. With the same assumption as in Proposition 1.2, for a line bundle L on
X, we have a natural, splitting exact sequence,

0— N{ ® f°L— fPx(L) = Pp(fL) — 0.
31
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PROOF. A homomorphism f*Py (L) — P (f*L) is naturally induced, and is sur-
jective by the assumption on f. Using the sequences (§) for £ on X and for f*£ on P!,
one obtains the exact sequence above, which splits since Ext' (P (f*£), Ny®@f*L)=0
by Lemma 1.1 and the assumption on NJY. O

Proposition 1.4. Let X be a projective variety, let f : P! — X be a morphism, and
assume that X is smooth along f(PY). If X satisfies (GMRZ), then the splitting type
of [*Px(t*Opn (1)) 1s divisible by p.

PROOF. Denote by Q the universal quotient bundle of H*(PM, Opa (1)) ® Oy, ).
Then, Py (:*Opn (1)) =~ v*Q locally around f(P') by the definition of the Gauss map,
and one may assume that dim~(f(P')) = 1: Indeed, if not, f*P (t*Opn (1)) is trivial,
and the conclusion is obvious. Let L’ be the normalisation of v(f(P')), and let 7' :
P! — L’ be the induced morphism from v. Then it follows that

f*P;((L*OPAI(:l)) ~ ’)//*QL/7
where Qy is the pull-back of @ to L’. Since d is identically zero, so is dv'; hence +/

has degree divisible by p. Since the splitting type of f*Px(¢:*Opa (1)) is equal to that
of @/ over L' ~ P! multiplied by deg~’, the conclusion follows. O

Proor oF THEOREM II.1. According to Proposition 1.2, if both r_; and rq were
positive, then a — 1 and a would be divisible by p by Proposition 1.4. If both ry and 7,
were positive, then a and a+ 1 would be divisible by p. Similarly for any ¢ > 2, if both
r;—1 and r; were positive, then a+i — 1 and a + 4 would be divisible by p. Anyway this
is a contradiction. Moreover, using Propositions 1.2 and 1.4, we see that if r_; > 0,
then pla — 1. If rq > 0, then pla — 2 and p|a; hence p = 2. Furthermore we see that
r; > 0 implies p|i + 1 for any odd i > 1, and that r; > 0 implies p = 2 or p|i + 1 for
any even ¢ > 2. This completes the proof. O

2. Conormal bundles

Lemma 2.1. Let L be a projective line in PV. Then we have:
(a) Qby| = [-2, -1V,
(b) a natural exact sequence, 0 — N

L/BN 7 Qon | — Qf — 0 splits.
(C) NV/pN = [—1N71].

L

PROOF. Restricting to L the Euler sequence on P, 0 — QL (1) — HY(PY, Opn (1))®
Opy — Opn(1) — 0, we see that Qpy |, = [-2,—1V"]. Since Homp (Qpn]z, Q}) =
Homp: (Op1(—2), Q1) = K, the surjection Qpy|, — Qf splits. O
Lemma 2.2. Let X be a projective variety in PN, let L be a projective line in X, and
assume that X s smooth along L. Then we have:

(a) a natural ezact sequence, 0 — Ny, — Q% — QL — 0 splits.

(b) NZ/X =la1,...,a,] with a; > —1 for any j, that is, NLV/X(l) is spanned.

PROOF. Since Qpy|, — Qf factors through Q%|., the assertion (a) follows from
Lemma 2.1(b). Since Qpn|;, — Qx|p is surjective, so is N}/ pn — N/ x; hence (b)
follows. O
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Lemma 2.3. Let X be a projective variety with a morphism m onto a variety Y, let
y be a smooth point of Y, and assume that w is smooth along the fibre X, := 7 (y).
Then Nx,/x = [0™], where m := dim Y.

PRroOOF. By the assumption we have natural exact sequences of vector bundles,
0 — Txy — TX|Xy — ny/X — 0 and 0 — TX/Y|Xy — TX|Xy — 7T*Ty|Xy — 0.
Comparing these sequences via the canonical isomorphism T, ~ T'x /y] x,, we see that
Nx,/x ~ mTy|x,, which is isomorphic to a trivial bundle ty,, ®x Ox,, where ty,, is
the Zariski tangent space to Y at y. U

Lemma 2.4. With the same assumption as in Lemma 2.3, assume moreover that the
fibre X, is isomorphic to a projective space P!, and let L be a projective line in Xy
Then we have Ny, = [—171 0™

Proor. It follows from Lemmas 2.1(c) and 2.3 that a natural exact sequence,
0— Np/x, = Np/x — NXy/X|L — 0 splits; hence the conclusion follows. O

Lemma 2.5. Let X be a Grassmann variety G(I,1+m) of [-dimensional subspaces of
an (I + m)-dimensional vector space (I,m > 1), and let L be a projective line in X via
the Plicker embedding. Then we have Ny, = [—1tm=2 gU=Dim=1)],

PROOF. Let 0 — S — O™ — Q — 0 be the natural exact sequence on X =
G(l,1 + m), with a universal sub-bundle § of rank [ and a universal quotient Q of
rank m. Restricting to L, we see that Q|;, = [0™!, 1] since Q|; is spanned and
deg Q| = deg L = 1. Taking the dual of the sequence above, we obtain S|, = [—1, 07!
as well. Using a well-known fact Q} ~ QY ® S ([26, (1.10)]), we have Q| =
[—2, —1=D+m=1) oU=1(m=1]. hence the conclusion follows from Lemma 2.2(a). [

Lemma 2.6. Let X be a smooth quadric hypersurface in PN (N > 3), and let L be a
projective line in X . Then we have Ny, = [=1V73,0].

PROOF. Restricting to L a natural exact sequence, 0 — N py (1) — Qv (1) x —
Q% (1) — 0, we see that deg Q% (1)|, = 0 by Lemma 2.1(a) and Nx/pv =~ Ox(2); hence
deg N)/,x(1) = 1 by the sequence, 0 — N,y (1) = Q% (1)[r = Qp(1) — 0. According

to Lemma 2.2(b), N/, (1) is spanned; hence we have Ny, (1) = [0V %, 1]. O
Lemma 2.7. Let X be a smooth cubic hypersurface in PN (N > 3), and let L be a
projective line in X. Then we have Ny, = [-1¥721] or [-1V4,0%].

PROOF. Similarly to the quadric case above, we see that NLV/X(I) is spanned of
degree 2. Therefore N}/, (1) is either [0%%,2] or [0¥~4,17]. O

Example 2.8. Let X be an n-fold product (P')" of P! in p = 2, set

Iy = {(a1,...,a,) €{0,1,2}"|#{jla; = 1} =k},
and let ¢ : X —-» PM be a rational map defined by

(1 : y1) X X (1 : yn) — (y?l o '?/Z")(al ..... an)€lgUI; 5
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where M + 1 = 2" '(n + 2). Then by a direct computation as in [20, Proof of
Proposition] one can verify that ¢ gives an embedding of X with Gauss map of rank
zero; hence (P')™ in p = 2 satisfies (GMRZ).

PROOF OF THEOREM II1.2. Each only-if-part of (1-4) follows from Lemmas 2.4,
2.5, 2.6, 2.7 and Theorem II.1, where we note that every X in question contains a
projective line L. The if-parts of a and c¢ follow from Example 2.8, and that of b
follows from [21, Example 3.1]. O

3. Absence of minimal free rational curves

ProoOF OoF THEOREM II.3. It follows from [45, IV, 2.11] that a minimal free f is
unramified. Theorem IL.1 implies N} = [-1"""] or [0"~'].

Suppose Ny = [~1""']. Then we have deg(—f*Kx) = n + 1, and it follows from
Theorem II.1 that p | a — 1. We show a # 1 as follows: Assume a = 1, and identify X
with ¢(X) C PM. Then L := f(P') is a line in PM. We fix a point x = f(0) € L with
o € P!, where  is a smooth point of X. Since h'((f*Tx)(—1)) = 0, it follows from
(45, 11, 1.7] that Hom(P!, X;0 + z) is smooth at f. For an irreducible component
V C Hom(P!', X;0 + x) containing f, we consider the evaluation morphism F :
P' x V — X. Since f*Tx = [2,1"7], it follows from [45, II, 3.10] that rk d(, ) F = n;
hence F' is dominant. On the other hand, setting £ := F*Opun (1), we see from [45,
I1. 3.9.2] that the image of a morphism g € V' is a line in X passing through x, which
implies that X is a cone with vertex x. Since X is non-linear by our convention, X is
singular at x. Thus we reach a contradiction.

If Ny = [0"'], then we have deg(—f*Kx) = 2; hence it follows from Proposition 1.2
that p =2 and p | a. O

Remark 3.1. Both cases (1-2) in Theorem I1.3 actually occur:

(a) According to [21, Example 3.1], P satisfies (GMRZ), and we have Tpn|;, =
(171, 2] for each line L C P

(b) Let X = (PY)" with p = 2, which satisfies (GMRZ) by Example 2.8. Let us
consider an embedding f : P! — X such that f(P') is a product of P! and a
point in (P')"~!. Then f is minimal free with f*Tx = [0""!, 2].

Theorem 3.2. Assume p > 0, and let X be a Fermat hypersurface of degree ep+1 in
PN with e € N. Then X satisfies (GMRZ), and we have:

(a) X has no minimal free line, or equivalently, no free line.

(b) If N > e(p+ 1), then X has no minimal free rational curve.

(¢) If N = 2ep+1, then X has a free f:P* — X with deg f*Ox (1) = ep.
Thus a Fermat hypersurface X C PN of degree ep + 1 with N > 2ep + 1 gives a
counter-example for Theorem A in each characteristic p > 0.

Lemma 3.3. Let X be as in Theorem 3.2, suppose that X has a minimal free f : P! —
X, and set a := deg f*Ox(1). Then one of the following hold:
(a) deg(—f*Kx) = N, and there ezist positive integers €',e” such that e = €'e”,
a=¢e¢p+1=>23and N =ep+¢€’.
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(b) deg(—f*Kx)=p=a=2 and N = 2e+ 1.

PROOF. Since —Kx = Ox(N —ep), we have deg(—f*Kx) = a(N — ep). Applying
Theorem I1.3, we see that one of the statements (1-2) there holds.

Ifdeg(—f*Kx)= N and ¢/p = a—1 with ¢’ > 1, then it follows N = aep/(a—1) =
ep + e/e’. Here we have € | e, and set ¢” :=¢/e’. If deg(—f*Kx)=p=2and 2a’ =a
with @’ > 1, then we have 2a’(N — 2e) = 2; hence a/(N — 2¢) = 1, which implies o’ =1
and N = 2e + 1. U

PROOF OF THEOREM 3.2. (a) The result follows immediately from Theorem II.3.
(b) In the case of N > e(p + 1), neither (a) nor (b) in Lemma 3.3 occurs.
(¢) Set F:= Pt 4 2P ... 4 22" and assume that X is defined by F = 0.
Let us consider a morphism,
PPV (sit) s (8P s o P 5P PTG 0 0),

with €& +1 =0 (£ € K), and set C := f(P'). Then C is smooth and contained in
X.
To prove that f is free, we show H'(P!, f*N¢/x ® Opi(—1))) = 0. From a natural

exact sequence, 0 — f*Ne/x — f*Negjpw N [*Nxmpy =~ Opi(ep(ep + 1)) — 0, we
obtain an exact sequence,

0/ml rx HO(‘E@OW (=1)) 0/l
H (P, f*"Nepy ® Opi (1)) ————— H (P, Op1(ep(ep + 1) — 1))

= H'(P', [*Noyx @ Opi(=1)) = H'(P', " Noypn @ Opi (=1)).
Since H' (P!, f*N¢jpnv ® Op1(—1)) = 0 by f*Ngpnv = [ep™ =, ep+ 2971 [38, (3.5)], it

is sufficient to show that H°(e ® Opi(—1)) is surjective. Set V := H°(PY,O(1)). From
the Euler sequence we obtain a diagram as follows:

Ve f*O[pN(l) ~V® O]pl(ep) —— f¥Ipn

|

f*Nepv —— Opi (ep(ep + 1)),
and a composite map of the maps above, denoted by £, is given explicitly by
(FOF)0x:) )Ny = (F 2, f*a®, ..., fra®) = (s sepler—Dger  ylen)® )
Therefore an induced K-linear map,
HY(E® Op(—1)) : V@ H (P, Opi(ep — 1)) — HY(P', Opi(ep(ep + 1) — 1)),
is surjective, so is H%(e @ Op1(—1)). O

Remark 3.4. Let X be a Fermat hypersurface of degree p” + 1 in PV. It follows from
(15, pp. 50-51] that Ny,x = [1 — p",1¥73] for each line L C X, from which one can
deduce that Theorem 3.2(a) holds for this X.

Remark 3.5. For a Fermat cubic surface X in P? with p = 2, both cases (a-b) in
Lemma 3.3 (hence in Theorem II1.3) actually occur: First we have —Kx = Ox(1).
For a twisted cubic curve C3 C X with a parametrisation f3 : P! — X, we have
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deg(—fiKx) = 3; hence (a) occurs with f3. For a conic Cy C X with a parametrisation
fo : Pt — Oy, we have deg(— f; Kx) = 2; hence (b) occurs with fs.

4. General conics on general hypersurfaces

First we have the following:

Proposition 4.1. A general hypersurface X in PN of degree d with 3 < d < 2N — 3
satisfies (GMRZ) only if p =2 and either d =2N —3 ord = N — 1.

PROOF. From [45, V, (4.4.2)], for a general line L C X, we have
NV [02N=3=d qd=N+1 " if N —1<d < 2N -3,
LI [N 0= ifd < N — 1.
Hence Theorem II.1 implies either d = 2N —3 or d = N — 1. If d = 2N — 3 (resp.
d = N — 1), then it follows r; > 0 (resp. 9 > 0); hence we have p = 2 as well. O

To complete the proof of Theorem II.4, we study normal bundles of general conics
on X. Let R be the set of (irreducible reduced) conics in PY. Here R is an open
subvariety of Hilb**!(PV /K), the Hilbert scheme attached to the Hilbert polynomial
2t + 1. For an integer d > 1, we set H := |Opn(d)|, and

I={(X,C)eHxR|CCX},

which is a projective space bundle over R, with projections py : I — H and pg : [ — R.
We moreover set I° := { (X,C) € I | X is smooth along C'}, and

pe == 3N —2d — 2+ (N — 2)¢,

where we note that pue = x(f*Neyx @ Opi(€)) for any (X, C) e I°.

Fix a conic C, and take an embedding f : P! — PV with f(P') = C. From the
exact sequence, 0 — J%, — Jo — N N 0 on PV, we obtain the following K-linear
map,

dc : H'(PY,Jc(d)) — D := Homo,, (f*Neypn, f*Opn (d)),
which gives each X € py(pz'(C) N I°) a natural homomorphism of normal bundles,
60(X) : f*NC/]pN — f*NX/]pN ~ f*O]pN(d>

In addition, we have a decomposition, f*Ne/x = @1, Opi (b;(C/X)) for some inte-
gers b;(C'/X) determined by (X,C) € I°. Then, we set

Iz = {(X,C) € I’ | min{ b,(C/X) } > ¢},
I == { (X,C) € I' | max{ b;(C/X) } < £},

where we note that Ij>¢ (resp. Ij<¢) is an open subset of I by virtue of the upper semi
continuity of —min{ b;(C/X)} (resp. max{ b;(C/X)}) for (X,C) ([45, II, (3.9.2)]).

Lemma 4.2. The K-linear map dc is surjective.

>
<

ProOF. This follows from Chapter I, Proposition 2.13. U

Lemma 4.3. The morphism py is smooth on the open subset Ij>_q C I.
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Proor. This follows from Chapter I, Lemma 2.7 O

Proposition 4.4. (a) Iz is not empty if p_¢_1 = 0 and £ < 2.
(b) Ii<q is not empty if p—e—1 <0 and § < 2d.

PROOF. (a) Assume £ < 2, and fix C' € R. Since h'(f*Ne/py @ Op1 (= —1)) = 0, it
follows that for X € py(pz'(C)), min(b;(C/X)) = & (i.e., K (f*No/x ® Op1(—£—1)) =
0) if and only if the K-linear map,

0

HYP, f*Noyew ® O (—€ — 1) “—— 25 HOPY, " Nyjon @ Opa(=€ = 1)
is surjective. Since h(f*Ngpy @ Opi(—¢ — 1)) — h°(f*Nxjpy ® Opi(—€ — 1)) =
p_g—1 = 0, there exists a homomorphism « € D such that H(a ® Op(—§ — 1)) is
surjective: Indeed, taking account of f*Nc/pv = f*Neyy @ f*Nyjpn|c = [4,2V 2] with
Y = (C) C PV, one can easily verify the surjectivity, by writing a explicitly in terms
of an (N — 1)-tuple of homogeneous polynomials in s, ¢, where (s : t) is a system of
homogeneous coordinates of P!. It follows from Lemma 4.2 that there exists X € H
such that d¢(X) = «, which implies (X, C) € I;5¢.

(b) Assume ¢ < 2d, and fix C € R. For X € py(py'(C)), since h'(f*Ny/px ®
Op1 (—€—1)) = 0, it follows that max{b;(C/X)} < & (i.e., "°(f*Neyx @Op1 (= —1)) =
0) if and only if H°(0¢(X) ® Op1(—¢ — 1)) is injective. As in (a), h°(f*Nxpy ®
Op1 (=€ — 1)) = h(f*Neypy @ Opi (=€ — 1)) > —p_e—q > 0 implies the existence of
a € D such that H(a ® Op1(—¢ — 1)) is injective, hence of X € H with §¢(X) = «
by Lemma 4.2, so that (X, C) € Ii<g. O

Corollary 4.5. Assume pg = 3N —2d — 2 > 0. Then for a general hypersurface X
in PN of degree d, there exists a conic C lying in X. Moreover for a general conic
C C X, we have:
(a) max{ b;(C/X)} <1 if p_g=po—2(N —2) <
(b) min{ b;(C/X)} >0 if p_y = o — (N —2) > 0.
Hence if N —2 < po < 2(N —2) (i.e., —N/2+ N +
[_12(N—d) 0N—2—2(N—d)]'

1 <d < N), then f*Ng/X =

PROOF. Since iy = 0, it follows from Lemma 4.3 and Proposition 4.4(a) that the
morphism py is smooth on the non-empty open subset Ij»_i;. In particular py is
dominant; hence we find C' € px(py' (X)) if X € H is general. Assume 5 < 0. Then
it follows from Proposition 4.4(b) that Ij<y) is non-empty. Since py(/<q]) is dense in
H, we have a conic C' € pg(py,(X) N I<yj). Hence the statement of (a) is proved. The
statement of (b) follows in a similar way. O

PROOF OF THEOREM II.4. Let X C PV be a general hypersurface of degree d > 3
such that X satisfies (GMRZ). From Proposition 4.1, it is sufficient to show that the
case of p=2 and d = N — 1 does not occur.

Assume p =2 and N =d+ 1 > 4. It follows from Corollary 4.5 that f*Ng/X =
(12,07 for a general conic C' C X. Hence Theorem II.1 implies N = 4 and 2|a — 1,
where we set a := deg f*t*Opun (1) for an embedding ¢ : X — PM with Gauss map of
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rank zero. On the other hand, from the Lefschetz theorem [32, III, Exercise 11.6 (c)],
it follows Pic X = PicP?* for X C P*; hence a is divisible by 2 = deg f*(Ops(1)|x).
This is a contradiction. U

5. Characterisation of a cubic hypersurface with (GMRZ)

Let X be a smooth cubic hypersurface in If’N with N > 3. We denote the Gauss
map of X C PN by 7p: X — G(N —1,PY) =PV, Let F, C G(1,P") be the algebraic
set which parametrises lines in X passing through a point x € X, and set

Y= [JLCX
LEF,

We will characterise a smooth cubic hypersurface with (GMRZ). First of all, we note
the following:

Lemma 5.1. If L is a projective line in X with NX/X = [-1N=3 1], then the image
Yo(L) is a projective line in PN with v Opn (1)|1 =~ OL(2).
Proor. For the Gauss map g, we have an exact sequence
0— ’VSQ]%N(lﬂL — HO(PN, OPN(l)) X OL — ’}/SOPN(lﬂL — 0

by the Euler sequence on PV. We consider their global sections:

0 — HO(L, 95~ (1)]2) = H(BY, Opw (1)) = HO(L, %5 Opn (1)]1)-
Then, the restriction 7g|; to L is corresponding to the linear system defined by the
image of 7. Since Py (Ox (1)) ~ 7§QI%N(1)V, it follows from Lemmas 1.1, 1.3 and 2.1(c)
that 75QLy (1)L = [0V7!, —2]. Hence, 7;Opn(1)|1 has degree 2 and 7 rank 2, which
implies that 7o(L) is a projective line. O
Proposition 5.2. We assume that N > 5, p = 2 and NZ/X = [—1V=3.1] for any
projective line L C X. Then, the Gauss map vy of X in PN is of rank zero.

PRrOOF. A standard dimension-counting argument shows that for any = € X, every
irreducible component of F, has dimension at least N — 4 if N > 4 ([45, V.4.6.1]);
hence we have

(27) dimY/ > N — 3,

for every irreducible component Y, of Y,. Denote by d,v, the differential of ~, at
x € X, by r the rank of d,v, for a general x, and let U be the open subset of X such
that d,vo has rank r for any z € U.

Suppose that the rank r is not zero. Then, we have r > 2: Indeed, d,v, is given by
a certain Hessian matrix ([42, (3.3.15)]), which is skew-symmetric since it is symmetric
and the diagonal elements are all zero in p = 2; hence r must be even ([9, §5, n°l,
Corollaire 3]). We define M, to be the linear subspace in PV containing x such that
its Zariski tangent space at x coincides with the kernel of d,v,. For any x € U, since
d,vo has kernel of dimension at most N — 3 by r > 2, we have

(28) dim M, < N — 3.
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Now, assume that Y, & M, for some x € X. Then, by the definition of M,, there
exists a line L € F, such that the restriction |, is unramified at x. Moreover it
follows from Lemma 5.1 that 7|, has separable degree 2. Therefore, vo(xr) = 7yo()
for some point zj, € L\ {x}. Since we see from 27 that such a line L is movable in Y,
if N > 5, there exist infinitely many x;, € X with v(z) = 70(x). On the other hand,
7o is finite since X is a smooth hypersurface. This is a contradiction.

Thus Y, C M, for any = € X; hence, it follows from 27 and 28 that

Mx:}/x

for any point € U, which is linear of dimension N — 3 and contained in X. Then, by
Lemma 5.3 below, we obtain a contradiction if N = 5.

For the case N > 6, one can easily deduce a contradiction from the above, as
follows: Since M, C T, X for any y € M, by the linearity of M,, we have

’YO(M:t) - M;

in PV, where M denotes the set of all hyperplanes containing M,. This is a contra-
diction to the finiteness of 7y when N > 6: Indeed, we have dim M} =2 < N —3 =
dim M. O

Lemma 5.3. For a smooth cubic hypersurface X in P5 (in arbitrary characteristic),
there does not exist a non-empty open subset U of X such that 'Y, is a linear space of
dimension 2 for any point x € U.

PROOF. Assume that there exists such U. Firstly, for any x € U and for any
y €Y, NU, we have:

(29) (a) 20(Ya) = V7, (b) Y, =Y.

Indeed, since Y, C X is linear of dimension 2, we have v,(Y,) C Y and dim Y, = 2;
hence (a) follows from the finiteness of 7. Next we have Y, C Y,: Indeed, if z € Y,
then the line yz passing through y and z is contained in Y, C X; hence z € yz C Y.
Then, (b) follows from dimY, = dimY,,.

We note secondly the following elementary fact: If X is an irreducible hypersurface
in PV, then for a smooth point = of X and for a hyperplane H in PV, we have

(30) H=T,X & x € Sing(HNX).
Since X is smooth cubic and 7, is finite, it follows from 30 that for each z € X,
Zy = XNT, X

is an irreducible cubic hypersurface in T, X ~ P* with only finitely many singular
points. Denote by 7z, the Gauss map of Z,, which satisfies vz, (y) = T, X N T, X for
each smooth point y of Z,. Then the image 7z, (Y,) has positive dimension by (29.a):
Indeed, if dim vz, (Y,) = 0, then T, X NT,, X would be a fixed linear space of dimension
3 for any smooth point y of Z, contained in Y,, hence for a general y € Y,. But,
dimp(Yz) = 2 by (29.a). This is a contradiction.

Forz € U and y € Y, NU with T, X # T, X, set

Zoy = ZyNT,X = X NT,X NT,X.
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Since dim~z, (Y;) > 0, it follows from 30 that Z,, is smooth at a general point of
Y, C Z,,. Therefore, we have a decomposition,

ny:QUY;t

with some quadric hypersurface @ in T, X N T,X ~ P3 such that Q 2 Y, as sets.
Since z € Sing Z,, we have x € Sing Z,,; hence x € Q N'Y,. This implies that @ is
irreducible, reduced and singular: Indeed, if ) is not irreducible or not reduced, then
() is a union of linear spaces or a linear space as a set, hence there exists a line in @)
passing through x but not contained in Y,. This contradicts the definition of Y,. Thus
@ is irreducible and reduced. Moreover if () is smooth, then we have a decomposition,
QNY, =L, ULy with two lines L; # Ly satisfying Ly N Ly = {x}: Indeed, there exist
exactly two lines contained in () passing through z, which must be contained also in
Y, by its definition. Now, it follows from (29.b) that y € @ NY, = @ NY,. Applying
the same argument above to y, we have {y} = Ly N Ly = {z}. This is a contradiction.

Thus we may assume that () is a cone over a conic C' with a vertex z. Here we
see that z # x by the same argument above: Indeed, there exists a line in () passing
through z but not contained in Y,. Therefore we may assume moreover that x € C;
hence, C' N U is non-empty. If w € CNU, then Y,, C T, X: Indeed, Y,, is linear and
z€Y,bywzCQCX. Set

W= U Y, C XNT,X.

weCNU

Since XNT,X is irreducible, the closure W of W coincides with XN7,X. If we consider
the projection 7, : T,X ~ P* --» P3 from z, then we see that I is a cone over a cubic
surface 7, (W \ {z})~ C P? with vertex z: Indeed, Y, is a linear space containing z.
Moreover, 7, (W \ {z})~ is singular, because 7,(W \ {z}) contains infinitely many lines
by dimY,, = 2. Therefore the singular locus of W = X N7, X has dimension at least
1; hence by 30, this contradicts the finiteness of . O

Theorem 5.4. Let X be a smooth cubic hypersurface in PN with N > 3 in p = 2.
Then, the Gauss map o of X C PN is of rank zero if and only if X is projectively
equivalent to the Fermat cubic hypersurface.

ProOOF. The if-part is easily verified by a direct computation ([42, Exemple 3.4]).
We prove the only-if part. Let F' be a homogeneous cubic polynomial defining X, and
denote the partial derivatives as follows: F; := 9F/0z;, F;; := (F}); = 0*°F/0x;0x;,
and so on. To prove the assertion it suffices to show

(31) Fy; =0,

as a polynomial for any 4, j: Indeed, 31 implies that there exist linear polynomials
Lo, ..., Ly such that

F =20l +--+anLi.
According to an argument in [8, Théoreme, (iv) = (v)], F' is projectively equivalent
to a Fermat polynomial, as it is asserted.
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To prove 31 we show firstly that

on X for any i,j,k. If F), = 0 on X, then F} is divisible by F', hence F, = 0 as a
polynomial. Therefore, Fj;, = 0, Fj; = 0, and G(ijk) = 0, as is required. For the case
Fy. # 0 on X, it suffices to show that for any 4, j, there exists some [ & {i,j, k} such
that 32 holds on a canonical affine open subset U; of X defined by x; # 0. Renumbering
the indices, we may assume that [ =0 < 4,57 < N = k without loss of generality. Set
yi = x;/xo and f(y1,...,yn) = F(L,y1,...,yn). Then yq,...,yn_1 form a system of
local coordinates by virtue of the assumption fx(y1,...,yn) = Fn(L,41,...,yn) # 0
on Uy. If i = N or j = N, then 32 holds on Uj since fyny = 0in p = 2. Thus it suffices
to consider the case 0 < 7,7 < N. Taking the partial derivative of f = 0 on Uy by y;

then by y;, we obtain f; + J"}\/%y—y]‘V =0, and

Oyn Oyn '\ Oyn Pyny
(fm + fin 9y; ) + <ng + fun Dy; ) v + fN@yZ-@yj =0
PPyn  _

Here we note again that fyy = 0 in p = 2, and that 0 for any i, 7 since vy is

0y;0y;
of rank zero (see [42, (3.3.15)]). Combining these equations, we obtain

fiij + fjfiN + foij =0.

Homogenising the above, we obtain G(ijN) = 0 on Uy for any 7,5 with 0 <1i,7 < N.
This complete the proof of 32.

Now we see from 32 that aF' = G(ijk) for some a € K, by comparing the degrees.
Taking the partial derivative by x;, we obtain

(33) aly = FyFy, + Filj + FuFy + FijFag + FuFj + FpFg,

as polynomials. It follows from 32 that for a point x € X if F;(x) = F;(z) = 0, then
F;;(z) = 0, by the smoothness of X. Moreover it follows from 33 that if Fj(z) =
F;(z) = Fy(z) = 0, then aFj(z) = 0. Since X is smooth and N > 3, we find a = 0.
Setting | := ¢ in 33, we see that F;Fj; = 0 as a polynomial for any i, j, k; hence

Fiji = 0. By virtue of Euler’s formula, we finally obtain 31. U

Remark 5.5. R. Pardini [53] and A. Hefez [33] obtained formulae with the same form
as the key claim 31 in the proof of Theorem 5.4 under certain more general conditions
on the degree and singularities of X ([33, (7.4)], [53, (2.1)]), and deduced a canonical
form of I as well ([33, §9], [44, I, (14)], [53, §§2-3]). However, those results are proved
under the assumption p > 2, hence do not cover our result in p = 2. In fact, 31 does
not hold in p = 2 unless X is smooth, although the result of Hefez [33, (7.4)] is valid
even for a singular X if it is regular in codimension one. A cubic surface X defined by
F = wa? + wyz + 2% in P3, for instance, has Gauss map v, of rank zero with only a
finite number of singular points, but F,,, # 0.

Now we prove Theorem II.5 in the case where X is of dimension > 4 (i.e., N > 5).

ProoOF OF THEOREM IL.5 (N > 5). Denote by v the Gauss map of the embed-
ding of X in PV as a cubic hypersurface, as before. For the if-part, it is easily verified
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by a direct computation that v is of rank zero; hence X satisfies (GMRZ). For the
only-if-part, it follows from Theorem II.1 and Lemma 2.7 that NX/X ~ [—1N=3 1] for
any projective line L C X. Then, v is of rank zero by Proposition 5.2; hence X is
projectively equivalent to a Fermat by Theorem 5.4. Il

6. Cubic 3-fold

In this section, we prove Theorem I1.5 with N = 4 in several steps. Let X C P* be
a smooth cubic 3-fold. We recall that F':= { L € G(1,P*) | L C X } is the set of lines
on X, and denote by U C F' x X the universal family over F' with projections

u:U—=F and v:U — X.

For a projective line L C X, the splitting type of the normal bundle Ny, x is equal
to either [0,0] or [—1,1], as in Lemma 2.7. This implies that dim F' = 2, and hence v
is generically finite.

Proposition 6.1. For a smooth cubic 3-fold X, we have deg(v) = 6. In particular, if
p = 2, then the separable degree of v is equal to either 3 or 6.

PRrROOF. The statement follows from [1, (1.7)]. O

Recall that 7o : X — (P*)V is the Gauss map of the original embedding X C P*,
where g is a finite morphism. We denote by Ox (1) = Ops(1)|x. Since X is cubic, it
follows ’YS(O(IP‘l)V(l)) = OX(Q)

Proposition 6.2. Let X C P* satisfy (GMRZ). Then, for any line L on X, it follows
that N /x = [—1,1] and that the image vo(L) is equal to a line in (P*)".

Remark 6.3. Under the assumption of Proposition 6.2, we immediately have p = 2
due to Theorem II.2

In order to prove Proposition 6.2, we need to show the following:

Lemma 6.4. Under the assumption of Proposition 6.2, one of the following properties
holds:

(a) We have Np,x = [—1,1] for any line L on X.
(b) We have Ny,;x = [0%] for any line L on X.

PROOF. As in Remark 6.3, we have p = 2. Let + be an embedding whose Gauss
map is of rank zero. From the Lefschetz theorem, it follows that Pic X is isomorphic to
Pic PV and is generated by Ox(1); hence there exists an integer a such that t*Opa (1) =
Ox(a). Let L C X be aline. If Ny ,x = [1,—1], then from Propositions 1.2 and 1.4, we
have 2| a — 1. If Ny /x = [0%], then from Propositions 1.2 and 1.4 again, we have 2 | a.
Since the properties 2 | a — 1 and 2 | @ do not hold at the same time, the statement
follows. U

Now, we denote by F, := u(v~(z)) C F the set of L € F such that xz € L, where
the Zariski tangent space ¢, F, at L € F} is isomorphic to H(Ny,x(—1)).
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PROOF OF PROPOSITION 6.2. Assume that the property b of Lemma 6.4 holds.
Then v is a finite morphism. The reason is the following: Let x € X, let L € F,, and
let V' be an irreducible component of F, containing L. Then since h'(Ny,x(—1)) =
h?(Np/x(—1)) = 0, we have V = { L }, which implies the finiteness of v.

Next, we show that v is a smooth morphism, as follows: For each point (L, x) € F,
we have an exact sequence of Zariski tangent spaces,

0— t(L@)v_l(a:) — t(L,x)U M t. X
Since v™!(z) ~ F,, it follows that ¢ ,v~"(x) is of dimension H°(Ny,x(—1)) = 0.
Since dim U = dim X = 3, we have that d(; v is surjective. Hence v is smooth.
As a result, we have that the morphism v is étale. By [23, Cor. 2], the hypersurface
X is simply-connected. Therefore v is isomorphism, which contradicts Proposition 6.1.
Thus we have N ,x = [—1,1] for any L € F. Then it follows from Lemma 5.1 that
Y0(L) is equal to a line in (P™)V. O

Proposition 6.5. Let X be as in Proposition 6.2. Then 7|1 is inseparable for any
line L C X.

To prove Proposition 6.5, we show the following result. Here, for a linear subspace
A C P, we denote by A* C (P*) the subset of H € (P*)¥ such that A C H.

Proposition 6.6. Let X be as in Proposition 6.2, and assume that o, is separable for
a general line L C X. Then, for the 2-plane M C P* satisfying vo(L) = M* C (P*)Y,
we have a line R C X such that MNX = LUR. Moreover, for a general point x € L,
we have a line L' C X and two distinct points o, x5 € L™ such that LW N L = (),
L& AR #D, and vyo(x;) = yo(x) with i =2,3.

Lemma 6.7. Let X C P* be a smooth cubic 3-fold. Let L C X be a line, and let
M C P be a 2-plane such that vo(L) = M* in (P*)V. Then M N X contains L
multiply. Thus, set-theoretically, M N X s equal to either

(a) the line L, or

(b) a union LU R with some line R.

PROOF. Since vo(L) C L*, we have L C M. By assumption, we have M C T, X
for every x € L; thus M N X is singular at every point of L. Since X is cubic, the
assertion follows. O

From [56, §1], we have the following basic properties of a singular cubic surface:

Lemma 6.8. Let S C P? be a singular cubic surface which is not a cone.

(a) Ewvery singular point of S is a double point.

(b) For distinct singular points P,Q € S, the line PQ is contained in S.

(¢) The singular locus of S is equal to either a line of singularities or a set of
finitely many double points.

(d) Assume that the singular locus of S is equal to a set of finitely many double
points. Then, no three double points are colinear, no four double points are
coplanar, and the number of double points is less than or equal to four.
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PROOF OF PROPOSITION 6.6. We denote by X the set of points x € X such that
F, is a finite set and that 7|, is separable and unramified at x for any line L € F.
Then, since v is generically finite and since 7| is separable for general L € F, the
following subset of X is of codimension > 1:

U LU U {z €L |7l : ramified at z} U {z € X | dim(v " (x)) >0}

LeFi LeFs

where F' := {L € F | vz : inseparable } and F* := {L € F | | : separable }.
Thus the subset X, is dense in X.

Let L = Ly C X be a general line, and let x = 2o € L N Xy be a point. From
Proposition 6.1, we have at least two lines Ly, L3 C X passing through x. Then there
exist three points x; € L; with 1 <4 < 3 not equal to z such that vo(z;) = yo(x). For
the embedded tangent space H = T, X, the cubic surface S := H N X contains three
lines L; with 1 < i < 3 and is singular at four points z; with 0 < ¢ < 3. Here, by the
definition of Xy, the cubic S is not a cone. In addition, since 7, is a finite morphism,
S is singular at finitely many points.

As in Lemma 6.8, the line L®*) := T573 is contained in S. Now we set M C P* as
the 2-plane satisfying vo(L) = M*, where we have L. C M as in Lemma 6.7. Since L®
and M are contained in 7, X, we have L® N M # (. Since the four points z; are not
coplanar, two lines L and L™ are disjoint, which implies that the intersection point
of L®) and M is not contained in L. Hence we have M N X # L. From Lemma 6.7,
there exists a line R satisfying X N M = LU R, and R contains the intersection point
of L@ and M. O

PROOF OF PROPOSITION 6.5. Let h € H°(P* O(3)) be the defining polynomial
of X, and let 2, ..., 24 be homogeneous coordinates on P*. Then 7, is expressed by
polynomials Oh/0z|x € HY(X,0(2)) with 0 < < 4.

If 9|z is separable for some L € F, then so is 7|y for general L € F. This
is because 7|y is separable for L € F if and only if 0h/0z|, € H°(L,0(2)) is not
contained in the subset { f? | f € H°(L,0(1)) } with some 1.

We fix a general line L C X, and suppose that 7| is separable. Let U be the
subset of z € L such that there exists a line L(*) stated in Proposition 6.6. Then we
consider the following locus of X,

Y= JLO.

zeU

Let # € L be a general point. Then 7o(L®) intersects with vo(L) and with vo(R).
Thus the image vo(Y) is equal to the 2-plane R* C (P*)V, which is spanned by lines
Y(L) and vo(R). Since v ' (y0(x)) = Sing(X N T, X), it follows from Lemma 6.8d
that 75 (0(z)) N'Y is equal to a set of 4 points { x,z1, o, x5 }, where z,2; € L and
Tg, 3 € L&, Thus the separable degree of 7|y is equal to 4. Since

Y 5 (O (1)) = (70)(Y) - Oay (1)? = deg(oly) - deg(70(Y)) = deg(voly)

and since the left hand side of the above formula is equal to Y - Opa(2)? = 22deg Y, it
follows that degY is equal to the inseparable degree of vp|y. Thus degY = 2% with
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some integer a > 0. Since Y C X is a divisor and since Pic X = PicP", we have
3| degY, a contradiction. Thus the assertion follows. O

PROOF OF THEOREM I1.5 (N =4). Let X C P* be as in Proposition 6.2. From
Theorem 5.4, it is sufficient to prove rk dyy = 0, where recall that ~, is the Gauss map
of the original embedding X C P*.

From Proposition 6.5, it follows that |z is inseparable for any line L in X. Now
we show rk dvyy = 0, as follows. Let © € X be a general point. From Proposition 6.1, we
find at least three distinct lines L; C X with 1 < ¢ < 3 passing through z. Since 7oy,
is inseparable, we have rkd,v|r, = 0, that is, d,vo(t,L;) = 0 for the Zariski tangent
space t,L; C t,X. Since L; # Lo, we have rkd,yy < 1. Suppose that rkd,v, # 0.
Then, as in the proof of Proposition 5.2, by considering the Hessian matrix of d v, it
follows from p = 2 that we find rkd,vy > 2, a contradiction. Thus rkd,v, = 0. U

7. blowing-ups of varieties satisfying (GMRZ)
In §7.1, we will prove Theorem II.6, which is precisely described as follows:

Theorem 7.1. Let Y be a projective variety and let Y — Y be the blow-up at a
point P € Y. Assume that 'Y satisfies (GMRZ), and assume p = 2. Then'Y satisfies
(GMRZ).

Note that, in the theorem, we need not assume the smoothness of Y at the point
P. On the other hand, we can determine a situation that blowing-ups satisfy (GMRZ),
as follows:

Corollary 7.2. Let Y be a projective variety of dimension > 2 satisfying (GMRZ),
and let Z = |JZ; C Y be a reduced closed subvariety of codimension > 2 with the
irreducible components { Z; } such that (Z;)eg N Yeg # O for each i. Then the blowing-
up BLZY of Y along Z satisfies (GMRZ) if and only if p =2 and Z is a set of finitely
many points.

Since a smooth cubic surface in P? is given by the blowing-up of P? at 6 points, it
follows from Theorem 7.1 that we have:

Corollary 7.3. Every smooth cubic surface satisfies (GMRZ) if p = 2.

In §7.2, we will give construction of projective varieties which satisfy (GMRZ) by
using Theorem 7.1. As a result, we have:

Proposition 7.4. Let L' be any function field of dimension 1 over the ground field of
characteristic p = 2. For any purely transcendental extension L with finite transcen-
dence degree over L', there exists an smooth projective variety X satisfying (GMRZ)
such that K(X) = L.

In addition, as a generalization of Corollary 7.3, we have:

Theorem 7.5. A smooth projective rational surface X satisfies (GMRZ) if and only
if either p =2 orp >0 and X ~ P2
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Remark 7.6 (curves). Every rational or elliptic smooth projective curve satisfies
(GMRZ) for any p > 0. This follows from the study of inseparable Gauss maps for
rational curves (Kaji [39, Ex. 4.1], Rathmann [55, Ex. 2.13]), and for elliptic curves
(Kaji [40, Thm. 5.1} [41, Thm. 0.1]).

7.1. Blowing-up. In order to prove Theorem 7.1, we first study the blowing-up
of projective space P™ in characteristic p > 0. Let us consider the following composite
morphism,

Prro
F P 20 pro Py PM
where ['pop, is the graph morphism of the Frobenius morphism Frob, : P™ — P™,
and P™ x P™ — PM is the Segre embedding with M = (m + 1) — 1. Let P € P™,
P, := F(P), and let wp, : PM --s PM~! be the projection from a point P;. Now we set

(34) Xo:=(mp, o F)(P"\{P}) and X :=X, cPM !

We denote by P := BIJP(IP’m). By resolving indeterminacy of mp o F' : P™ --» X we
have a morphism ¢ : P — X. Here we have the following results.
Proposition 7.7. Let X C PM~1 be as in (34) above. Then the following holds.

(a) Xo is isomorphic to P™\{ P} and the Gauss map of the embedding X — PM~1
is of rank zero for any p > 0.
(b) X is isomorphic to P if and only if p = 2.
Thus the blowing-up of P™ at one point satisfies (GMRZ) if p = 2.

Remark 7.8. In (b) we in fact show that Sing(X) = ¢(F) in the case p > 3, where
E C P is the exceptional divisor.

PROOF. (a) By changing coordinates (zg, x1,. .., 2, ) on P™, we may assume P =
(1,0,...,0) and assume that F' is given by (x;)o<i<m — (287;)o<ij<m. Then wp o F is
given by

(@i )o<icm = (2725)o<i j<m, (19)%(00) -
On the open subset {x, = 1} C PY\ { P} with 1 < u < n, the sub-parameters
(o -y Tu1, 1, Tyq1 . . . Ty ) are appeared in the right hand side of the above description
of mp, o F. Thus {z, = 1} is isomorphic to its image in X for each wu; hence we have
P¥\ { P} ~ X,. Since a¥x; vanishes by the operators

{ 82/8$v6$w }ogu,wgm, vFEU, WEUS

it follows from [22, Lem. 2.1] that the Gauss map of X — PM~! is of rank zero.

(b) First, we give the coordinates of the morphism ¢ : P — X c PM~1 as follows:
Let I'y, : P\ {P} — P™ x P™! be the graph morphism of the projection 7p :
P™ —-» P~ where T, is given by

(o, 21, ..oy xm) = (o, T1, -, Tm), (1, -+, )

Then P is equal to the closure of Iy, (P™ \ {P}). Let (y1,...,4m) be the set of
coordinates on P~". Let us consider a morphism ® = ((¢; ; )o<i<m,1<j<m (£5)1<i<m) :
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P x Pt — PM~-1 defined by

go}’j((:co, Tyeeoy Tm)y (Y1, - Um)) = 2hy;  for 0
9012((3707 L1y .- ,Im>, <y17 s 7ym)) = xoxfily’i for 1
where M = (m + 1)> — 1. Then we have ® oT';, = 7p o F : IP’{V \{P} — Xo,
and have ¢ = ®[. Note that, we have two isomorphisms ¢z 5 : P\ E — X, and
¢lg : E— @(E), where E := { P} x P! C PP is the exceptional divisor. Therefore ¢

is a bijective morphism. )
Now suppose p = 2. We will show that ¢ is isomorphic, as follows: Let py : P —
P~ be the second projection, and let U; := {y; # 0} C P™! be the standard open

subset. Then it is sufficient to show that ¢ is isomorphic on p;* (U;) for all 1 < i < m.
By symmetry, we may assume ¢ = 1 and set U := U;. We have

P={((z),(y;)) € P" x P" | zyy; = 9, for 1 <i,j <m}
<

Here, in the case y; = 1, we have equalities x; = x1y; for 2 < 7 < m, and have an

isomorphism 1 : P! x U — p, ' (U) defined by

<<I07x1>7 (17?/27937 s 7?/m)) = (($07$17$1y271‘1937 s 7x1ym)7 (173/27?/3; cee 7ym))
Let V ={zy#0} CPL Then ENp,*(U) C(V x U). Here we have

((gpil,j © w|V><U)((1? 1171), <1>y27 cee 7ym)))i,j = (17 Y2, oo s Ymy ¥y oo ey *)7
((%2 o Ylyxv)(L,21), (1,42, - -+, Ym)))i = (21, $1y§> e ,flyi)-

Thus ® o 9|y «y is isomorphic to its image; hence so is | Py ()
Suppose p > 3. As above, we consider the morphism ¢ o 9|y «y. In this case, it is
obtained by,

((SOZI,J o 77Z)|V><U)((]-7 xl)a (1,927 R aym)))z,] = (]-7 Y2, ... 7ym7x11)a 1'117927 s 7$21?ym7 *ye00, *)7
((9F o Dlvso)(Lyn), (1 g2, ym)))i = (@l g, T gh,).

Thus ¢ ot is not isomorphic at each point of { (1,0) } x U. By symmetry, ¢ is not
isomorphic for each point of E. Here, we show that ¢(F) is the singular locus of X,
as follows: Assume that X is smooth at a point of @(F). Then, by symmetry, X is
smooth at every point of p(F); hence X is a smooth variety. Since ¢ is bijective, the
Zariski main theorem implies that ¢ is isomorphic, a contradiction.

Thus X is a singular variety with Sing(X) = ¢(FE). In particular, it follows that
X is not isomorphic to P. U

PROOF OF THEOREM 7.1. Assume p = 2, and let ¢ : Y < P™ be an embedding
whose Gauss map is of rank zero. We take a general point ) € Y. By changing
coordinates on P™, we may assume that P = (1,0,0,...,0) and @ = (0,1,0,...,0) in
P™. Then, as in [22, (2.1) and Lem. 2.1], we have local coordinates of Y around Q:

(f07 17227 s )Zn7zn+17fn+27 s 7fm)

where (29, ..., 2, 2541) are the local parameters, and { f; } are polynomials contained
in the maximal ideal of Ox g such that 9 f;/0z;0z, = 0 for each .
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As in Proposition 7.7, let P := BLp(P™) and let ¢ : P — P¥~! be the morphism
given by resolving indeterminacy of

(35) mp 0 F i P™ == P71 (2)ocicm = (2025 0<i j<m,(5,7)2(0,0)-

Here ¢ is an embedding because of p = 2. Let Y C P be the blowing-up of Y at P,
and let @) € Y be the point corresponding to @) € Y. Then

golf/ : Y/ — pM-1

gives an embedding. The local coordinates of ¢(Y) € PM~1 around the point p(Q) =
(mp, o F)(Q) is given by

(36) <7TP1 o F)(f07 17227 <oy Rny An41, fn+27 ey fm)u

By using the parametrization (35), we find that (36) consists of the local parameters
(1,22,...,2n, znt1) and local functions vanishing by operators { 9%/02,02y o< went1-
Thus it follows from [22, Lem. 2.1] that the Gauss map of p(Y) C P¥~! is of rank
Zero. g

Next we consider the only-if-part of Corollary 7.2.

Lemma 7.9. Let Y be an n-dimensional projective variety, let Z C Y be a closed
subvariety of codimension > 2, and let P € Zeg N Yieg. If Z is of dimension m at P,
we have Np gL,y = [1"7"72,0™, —1], where q : BL;Y — Y is the projection, and
L C ¢ Y (P) ~ P ™1 is a projective line.

PROOF. Let Z’ be an irreducible component of Z containing P. Here ¢~ (Z],,NY;eg)
is a P~ "-bundle over Z,,NY.ce. As in Lemma 2.4, we have Ny g1z = [1"7772,0™].

Since qul(Z)/BLZ(Y)|L = [—1], we have NL/BLZ(Y) = [].nimiQ, 0™, —1] Ul

Corollary 7.10. Under the assumption of Lemma 7.9, BLY satisfies (GMRZ) only
ifp=2and m=0 (i.e., { P} is an irreducible component of Z ).

PROOF. The statement follows from Lemma 7.9 and Theorem II.1. O

PROOF OF COROLLARY 7.2. If p =2 and Z is a set of finitely many points, then
Theorem 7.1 implies that BL,Y satisfies (GMRZ).

Conversely, suppose that BLzY satisfies (GMRZ). For an irreducible component
Z; of Z, we can take a point P € Z; N Zyeg N Y;ee. By applying Corollary 7.10, we have
p=2and m=0 (le., Z;, ={P}). O

7.2. Construction of varieties satisfying (GMRZ). For a smooth projective
variety Y C PM | and for an embedding PY — PM*! with a point P € P\ PM we
set

R(Y) := BLp Cone(P,Y),
the smooth projective variety ruled over Y defined as the blowing up of the cone
Cone(P,Y) C PM*! at the vertex P.

Lemma 7.11. Assumep = 2. LetY be a smooth projective variety satisfying (GMRZ),

and let v : Y < PM be an embedding whose Gauss map is of rank zero. Then the ruled
variety R(c(Y)) satisfies (GMRZ).
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PRrROOF. We set Yp := Cone(P,:(Y)) C PM*1 and denote by ¢p its embedding in
PM+1 Then we have the following commutative diagram,

Yp\{P} e, im(y,,) C G(dim(Y) + 1,PM+1)

yp l:

Yy — L =im(y) < G(dim(Y),PM),

where 7p : PMT\ { P} — PM denotes the projection from P. Since 7, is of rank zero,
so is 7,,. Hence Theorem 7.1 implies that R(.(Y")), the blowing-up of Yp, satisfies
(GMRZ). 0

Corollary 7.12. Assume p = 2, and let C' be a smooth projective curve, and let
L2 C = PN be an arbitrary embedding. Then the ruled surface R(1(C)) satisfies
(GMRZ).

PRrROOF. From [40, Cor. 2.2 and 2.3], since C'is a curve, it follows from p = 2 that
the Gauss map of ¢ is of rank zero. Therefore, from Lemma 7.11, the ruled surface

R(¢(C)) satisfies (GMRZ). O

PROOF OF PROPOSITION 7.4. For any function field L’ of dimension 1 over the
ground field, we find a smooth projective curve C' with K(C') = L’. Then, as above,
the Gauss map of any embedding + : C' < P is of rank zero. Let Y; := C. From
Lemma 7.11, we inductively have that Y; := R(¢;—1(Y;—1)) satisfies (GMRZ) for any
1 > 1if p = 2, where ¢;_1 is an embedding whose Gauss map is of rank zero. Here
K(Y;) is purely transcendental extension over L'. O

Now, in order to prove Theorem 7.5, we study minimal rational surfaces:

Proposition 7.13. A Hirzebruch surface ¥, := P(Op1 @ Op1(—e)) with e > 0 satisfies
(GMRZ) if and only if p = 2.

ProoOF. If ¥, satisfies (GMRZ), then Theorem II.2(a) implies p = 2.

Next, we assume p = 2. If e = 0, then ¥, ~ P! x P!; hence, in this case, the
statement follows from Theorem II.2(c). Thus, we assume e > 0. For a rational normal
curve C' C P of degree e, and for an embedding P¢ — P! with a point P € P¢*1\ P¢,
the surface 3, is isomorphic to the blowing-up of the cone Cone(P,C) € P*™! at the
vertex P. Therefore, as in Lemma 7.12, we find that ¥, satisfies (GMRZ). O

Corollary 7.14. A relative minimal rational surface X satisfies (GMRZ) if and only
if either p =2 orp >0 and X ~ P2

PROOF. A relative minimal rational surface X is isomorphic to P? or ¥, with
e > 0,e# 1. In the case X = X, the assertion follows from Proposition 7.13. On the
other hand, P? satisfies (GMRZ) for any p > 0 as in [21, Ex. 3.1]. O

ProoOF OF THEOREM 7.5. Let X be a smooth rational surface. Then X is given
by a chain of blow-ups of points X = X; — Xy — --- — X, with a relative minimal
rational surface X,. Thus the assertion follows from Corollaries 7.2 and 7.14. O






CHAPTER III

Defining ideal of the Segre locus in arbitrary characteristic

1. Calculation of the defining ideal of the total Segre locus

Let X C PV be as in Theorem III. We assume that X is of codimension > 2,
because if X is a hypersurface, then the total Segre locus is determined immediately.
We set X := m(X \ L), the closure of the image in PN~4m(H)~1 where 7, : PV \
L — PN=dim(L)~1 ig the projection from a linear subspace L C PV. In particular, we set
xy = () for a point z € PV\ L. The cone Coner,(X) of X with vertex L is given by
the closure of the preimage 7;'(X;) C PV, where we have deg(X;) = deg(Coner(X)).

Definition 1.1. We set Loc.(X) := { z € PV | deg(X,) < e} for an integer e.

Here G'*(X) is contained in Loce(X) for some e < deg(X) in the case when X is
not a cone. This is because if z € PV satisfies that 7.y 18 generically finite and is not
birational onto its image, then we have deg(X,) < deg(X).

In §1.1, we construct a matrix A(e) consisting of iterative higher derivations D;,
which defines Loc.(X) set-theoretically as a determinant variety if codim(X,PV) = 2
(Theorem 1.7). In addition, we see examples of actual calculation of the matrix A(e)
(Examples 1.4 and 1.9). In §1.2, we show that each irreducible component of G%*(X)
is equal to an irreducible component of Loc.(X) with some e < deg(X) (Proposi-
tion 1.10). In §1.3, we generalize the argument of §2.1 for the case of codim (X, PY) > 2.
(Theorem 1.13).

1.1. Determinantal ideal defining Loc.(X) set-theoretically for X of codi-
mension two. We use the following notation: Let xo,z1,...,zy be a set of homoge-
neous coordinates on PV. We denote by z* = zx(' - - - 23 the monomial of multidegree
i = (ig,i1, ..., in) € ZX, by Ji] := 3 4 i, and by

I = {ieZl"||i|=s}

For each integer | with 0 <1< N, we set w; = (w0, wi1,-..,win) € I; to satisty
wy = 1 and wy,, = 0if m # [ In arbitrary characteristic, the iterative higher
derivation [46, p209] of polynomials is defined as the operator induced by

(37) Dia? = <‘Z> i=t
where (i) = (ZS) (ﬁ) e (gg) Note that, in the characteristic zero case, we have

Dif = z'oul!-l--m!(ai())io(ail)h”' (%)W(f)

for a polynomial f.

o1
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Definition 1.2. Let e be an integer. Then, for a homogeneous polynomial f €
HO(PN,O(e)) of degree e and for an integer s < e, we set the following column vector,

D(e—s)wof
D(e—s—l)wo+w1f
Ae_s(f) = D;f (ieI._y).
L DeesponS
Note that Ao(f) = Do(f) = f. In addition, we set the following column vector,
A(e)(f) = Ae1(f), ifp>eorp=0,
)\efl(f)
Ae—p(f)
e)(f) = | Ae-a(f) |, if p<e.

AeLe/p)-p(f)
Here p is the characteristic of the base field k, and |e/p| :=max{a € Z | a <e/p}.

For a variety Y C PV, we denote by Vert(Y) C PV the maximal vertez of Y, which
is the locus of points z € Y such that 7, is not generically finite.

Lemma 1.3. Let F := (f = 0) C PV be a hypersurface of degree e defined by f €
HO(PN,O(e)). Then Vert(F) is equal to the locus { z € PN | X(e)(f)|. = 0}, where O
1s the zero vector.

Example 1.4. We see what Lemma 1.3 means, by considering an example that F' C P3
is a hypersurface of degree e defined by a polynomial f = 2¢ — zyx5 '. Here Vert(F)
must be equal to a point P = (1,0,0,0) since f does not have the variable x.

In characteristic zero, the vector A(e)(f) is defined by A._1(f), which consists of
linear polynomials De_1)w, f: De—2)wo+wr f> - - - De—1)wn f- Here we have
(38) D(efl)wlf = €T, Dw2+(672)w3f - _(6 - 1)1’3, D(efl)wg = —X2,
and D;f = 0 for other ¢ € I._;. Thus, by Lemma 1.3, we can compute that Vert(F')
is equal to (zy =23 =129 =0)={ P }.

Next we study the positive characteristic case. Here A(e)(f) is given by A._1(f)
and Ae_qp(f) with 1 < a < |e/p|. If pte—1and p t e, then we can calculate
Vert(F') in the same way as above. If p | e — 1, then the polynomial —(e — 1)z3 in

(38) vanishes. To complete this polynomial, we focus on A;(f), which is a sub-vector
of A(e)(f) because of e — ((e — 1)/p)p = 1. Here A\{(f) gives a polynomial

Dy, f = —a§
Thus, Lemma 1.3 implies that Vert(F) is equal to (2§ = 2y = 2, = 0) = { P}. If
p | e, then ex; in (38) vanishes. On the other hand, A(e)(f) has a sub-vector \o(f)
consisting of the polynomial

Dof = f.
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Thus, Vert(F) is again equal to (f =x3=2,=0)={ P }.
Lemma 1.5. Let f € H(PY, O(e)) be a homogeneous polynomial with f = > el [
(f; € k). Then we have D;f = Zévzo(is + 1) firw,xs for each i € I,_;.

PRrROOF. We have D;f = ZjeIe fiDix? = Zi,v:o fitw.Diz®t@s. Since D;xtes is
equal to (is + 1)z, we get the assertion. O

PrOOF OF LEMMA 1.3. Let z € PV. By a suitable coordinate change on PV, we
may assume z = (1,0,...,0). If z € Vert(F'), then f does not have the variable x.
Hence D, f|, = 0 for each 2, that is to say, A(e)(f)|. = 0.

Conversely, suppose that A(e)(f)|. =0, and let f =3, fjxd with f; € k. For
each ¢ € I, 1, Lemma 1.5 implies that

(io + 1) firwol: = Dif|. = 0.
Hence if p { (ig + 1), then we have fi1o,|, = 0. Therefore f;|, = 0 if j € I, satisfies
jo > 0 and p t jo. On the other hand, for ¢ € I._,, satisfying iy = 0, we have
D;f = Zu@-ap fizuDiz*t*, and hence
fi+apc'-’o|z = sz|z = 0.
This implies that f;|, = 0 if j € I, satisfies jo > 0 and p | jo. Therefore f does not
have the variable zg, that is to say, z € Vert(F'). O

Definition 1.6. Let {hy,...,h, } be a basis of the k-vector space H°(PN, Jx(e)),
where Jx C Opn is the ideal sheaf of X C PV. For s < e, we set the following matrix:

Ae—s L= [Ae—s(hl) Ae—s(hQ) te )\e—s(hr)]
[ D(e—s)wo hl D(e—s)wo h2 <o D(e—s)wo hr i
D(e—s—l)wo+w1h1 D(e—s—l)w0+w1 h? S D(e—s—l)wo—i—wlhr
= Dihy Dihs Dih, (8 € L),
L D(e—s)wN hl D(e—s)wN h2 cee D(e—s)wN hr J
In addition, we set A(e) := [A(e)(h1) A(e)(h2) --- Ale)(h,)]. In this setting, it
follows that A(e) = A._; if either p > e or p = 0, and that
Ae—l
Ae_,
Ale) = | Ae2p if p<e.
Aeele/n)-»

Now we denote by Z,(A(e)) the zero set of the s x s minors of A(e) for an integer
s.

Theorem 1.7. Let X C PV be a non-degenerate projective variety of codimension > 2,
and let v := hO(PN,Jx(e)) as above. Then we have Loc.(X) C Z.(A(e)). Moreover,
the equality holds if X is of codimension 2 in PN and is not a cone.
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Remark 1.8. The submatrix A._; of A(e) plays a central role in the actual calculation
of Loc.(X), where A._; consists of linear polynomials. In the positive characteristic
case, some entries of A._; may vanish. Then, instead of these entries, we focus on
polynomials of degree > 1 appeared in submatrices { Ac_,, } (see Examples 1.4 and
1.9).

In the following example, we see how Theorem 1.7 is used to calculate Loc.(X).

Example 1.9. Let X C P be a space rational curve of degree e? defined by two
polynomials,
hy =2 — xgx:‘;_l and hy = x5 — xlxg_l.
Note that X is parametrized by a morphism P! — P? : (s,1) — (s, s¢, 5, 1). Here we
have:
(a) Loc.(X) ={(1,0,0,0),(0,0,1,0) } if either p{ e or p =0,
(b) Loce(X) = (z3 = x§ws — 25T = 0) if p | e.

PROOF. Here, the polynomials h; and hy give a basis of H*(PY,Jx(e)). Note that
hy is the polynomial f studied in Example 1.4. From Theorem 1.7, the locus Loc,(X)
is equal to Z5(A(e)), the zero set of 2 x 2 minors of A(e). The submatrix corresponding
to the nonzero part of A._; is equal to

D(efl)wohl D(efl)wohﬁ 0 €T
D(efl)wlhl D(efl)wl h2 €Ty 0
Ay = Dw1+(e—2)w3h1 le+(e—2)W3h2 = 0 —(6 - 1)533
Dw2+(e—2)w3h1 Dw2+(e—2)w3h2 —(6 - 1)%3 0
D(e—l)wghl D(e—l)w3h2 —T2 —I
(a) Suppose pte and pfe— 1. Then A; gives three non-zero minors:
0 —(e—1)z3| |ex; O 0 ex
—(e—1)z3 0 " —zo —z1| |—x2 —x1|’

which are equal to —(e — 1)223, —ex?, exgre. Thus we find that Zy(A(e)) is contained
in Zo(A,) = { (1,0,0,0), (0,0,1,0) }.

Suppose p t e and p | e — 1. Then the minor —(e — 1)%z3 of the matrix A;
vanishes. Instead of this, we consider A;, which is a submatrix of A(e) because of
e—((e—1)/p)-p=1. Here A; contains a submatrix

. Dy b1 Dy ho| em‘f‘l —x§_1
> |Dy,hi Dyyhy| — | =257t 0o |’

which gives a minor —:cg(e_l). Combining A, and A;, we find that Zs(A(e)) is contained
in the set { (1,0,0,0),(0,0,1,0) } as above.

In addition, the opposite inclusion holds, as follows: For each ¢, D;h; does not have
the variable x( since so is h;. This implies that D;h|n,0,0,0) = 0. Hence every 2 x 2
minors of A(e)|(1,0,0,0) is equal to zero, that is, (1,0,0,0) € Zy(A(e)). In a similar way,
we have D;hs(0,0,1,00 = 0 and have (0,0,1,0) € Zy(A(e)).
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(b) Suppose p | e. Then entries exy and ex; of A; vanish. Instead of these, we focus
on Ay, which is a submatrix of A(e) because of e — (e¢/p) - p = 0. Here Ay consists of
Doh; = h; with i = 1,2. Thus A; and A gives the following submatrix of A(e):

Dw1+(e—2)w3h1 Dw1+(e—2)w3h2 0 _(6 - 1).%‘3
A3 — Dw2+(e—2)w3h1 Dw2+(e—2)w3h2 _ _<€ - 1)1:3 0
De—1)wsh1 De—1)wsh2 — Ty —x1
D0h1 Dohg .I’(i’ — Slfgiligil l’g - ‘Tll'gil

Therefore Zy(A(e)) is contained in Zy(Az) = (x5 = 2§20 — 25T = 0). In addition,
the opposite inclusion holds, as follows: For 4 # 0 with |¢| < e, the polynomial D;h,
(resp. D;hsy) does not have the variable x; (resp. xo) because of p | e. Thus, on the
locus (z3 = 0), the nonzero entries of A(e)|,—0) are given by the third and fourth
row vectors of As(z,—0). This implies that Zy(A(e)) = Zy(A(e)) N (x5 = 0) is equal to
(z3 = 25wy — 2571 = 0). O

PROOF OF THEOREM 1.7. Suppose z € Loc.(X). Then X, C PN is a variety of

degree < e. Thus there exists a polynomial f € 72 HO(PN=1 JIx_(e)) € H°(PN,Tx(e)).
Here we have f = Z;Zl a;h; with some ay, ..., a, € k. It follows from Lemma 1.3 that

> @)l = AP = 0.

Since the r column vectors of A(e)|, are linearly dependent, every r x r minor of A(e)|,
is equal to zero, i.e., z € Z.(A(e)).

Suppose codim(X,PY) =2, and let z € Z,.(A(e)). Then there exist ay,...,a, € k
such that 377, a;A(e)(hy)|. = 0. Setting f = 377 a;h; € H(PY,Ix(e)), we have
A(e)(f)]. = 0. From Lemma 1.3, the hypersurface F := (f = 0) C PV is a cone with
vertex z. Since X, C PV~ coincides with an irreducible component of F,, we obtain
deg(X,) < e; hence z € Loc.(X). d

1.2. Irreducible component of the total Segre locus. We denote by p, x the
multiplicity of X at a point z € PV, i.e., the intersection multiplicity of X N L along
z for a general linear subspace L ~ P«d™(X) containing z. Here we set .y = 0 if
z¢ X,

Proposition 1.10. Let X C PV be as in Theorem III, and assume that X is not a
cone. For an irreducible component Z of G*°%(X), there exist integers e,m < deg(X)
such that deg(X.) = e and p, x = m for general z € Z and that Z is an irreducible
component of Loc.(X).

In order to prove Proposition 1.10, we need two basic lemmas.
Lemma 1.11. Let X C PV be a non-degenerate projective variety. For a point z €
PN\ Vert(X), the following hold.
(a) We have deg(X) — p. x = deg(m|, ) - deg(X>).
(b) Let w € PN\ Cone,(X) satisfy that m,|, is birational. Then we have ., x, =
Hz X -
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(c) For an integer m, the set of points z € PN satisfying . x < m is open in PV,

PROOF. (a) Let ¢ := codim(X,PV). We fix a general (¢ — 2)-dimensional linear
subspace L; C P71 such that L; N X, = 0, and set L := 7;1(L;) C PY. Then
the projection 7y, : X --» PV~ factors into 7, : X --» X, C P¥! followed by

Triw : X, ——» PN=¢ Therefore we have
1x,

deg(mp) = deg(my) - deg(le‘Xz) and deg(ﬂLﬂXZ) = deg(X,).

For a general point z € PY~¢ and for a c-dimensional linear subspace M, := 7;'(z) C

PV, it follows that 7TZ|1X (x) = XN M, \{z}. Since XN M, \{z} has length deg(X) —
fx, we obtain deg(7, ) = deg(X) — p..x. Thus the result follows.
(b) From (a), it follows that

deg(X) —Hzx = deg(ﬂz\x) ’ deg(Xz) and deg(Xw) Mz, X = deg(’ﬁzw\xw) ' deg<XW>

Since w, ¢ X, we have deg(X) = deg(my, | ) - deg(Xzg). Since m,, is birational, we
have deg(X) = deg(X,) and deg(m.,|, ) = deg(m.| ) - deg(my. | ). Hence we obtain
Mz, X = Mz, X-

(c) We show the result by induction on ¢ = codim(X,PY). Suppose ¢ = 1. For
each z € PV, changing coordinates, we may assume z = (1,0,...,0). For the defining
equation f € HO(PVN,O(e)) of X with e = deg(X), we have f = 2§ *f, + 25 5 ' for1 +
-+ fewith s <e, f; € k[zy,...,2n];, and f; # 0. Then it follows p, x = s; hence
we have the result by using D; defined in equation (37) in §1.1. Suppose ¢ > 1, and
let z € PV satisfy p, x < m. We show that there exists an open neighborhood U of
z such that every x € U satisfies p, x < m. Let w € PV \ Cone,(X) be a general
point such that m,, : X — X, C P¥~! is birational. Let V' C P¥~! be the set of
points y € PN~ such that p, x,, < m. By induction hypothesis, the subset V' is open
in P! From (b), it follows that ., x, = p.x; thus we have z,, € V. Let

U :=P"\ {2z €PN |wc Cone,(X)}.

Again from (b), we have p,, x,, = pe x for each x € U’. Let U := 7 ;}(V) N U’, which
contains the point z and satisfies that p1, x < m for any x € U. O

Lemma 1.12. Let X be as in Lemma 1.11 and assume that X is not a cone. Then
the subset Loc.(X) is closed in PV,

PRrROOF. We prove the result by induction on ¢ = codim(X,P"). Suppose ¢ = 2.
Then it follows from Theorem 1.7 that Loc.(X) coincides with an determinantal variety,
thus is closed in PV.

Suppose ¢ > 2. For each z € PV with deg(X,) > e, it is sufficient to show that
there exists an open neighborhood U of z such that deg(X,) > e for all z € U. For a
point

w € PV \ (Cone, (X)U&™(X) U, '6(X.)),
we have birational projections 7, and 7|, . Then deg(X) = deg(X,,) and deg(,|,) =
deg(m.,|,, ). By induction hypothesis, the subset V' = PN~ \ Loc.(X,) is open.
Let U := 7, (V), where we have deg(X,) > deg(Xz) > e for any x € U. From
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Lemma 1.11(b), we have p, x = fi,, x,- From Lemma 1.11(a), we have deg(Xzz) =
(deg(Xw) — 2y x,,)/ deg(m2, |, ) = deg(X.) > e. Thus z € U, and hence the assertion
follows. g

PROOF OF PROPOSITION 1.10. For an irreducible component Z of &**(X), we
take m to be the largest integer such that p, x > m for any z € Z, and take e to
be the smallest integer such that Z C Loc.(X). Let z € Z be a general point. From
Lemma 1.11(c), we have p, x = m. From Lemma 1.12, we have deg(X.) = e. Note
that (deg(X) —m)/e = deg(m,|,) > 1 due to Lemma 1.11(a).

Let Z’ be an irreducible component of Loc.(X) containing Z, and let m’ be the
largest integer such that u.. x > m’ for any 2’ € Z'. For general 2’ € Z’, Lemma 1.11(c)
implies that p,, x = m’. Since m’ < m, it follows from Lemma 1.11(a) that

deg(m.|x) = (deg X —m/)/e > (deg X —m)/e > 1.
Hence Z' C &'*(X), which implies Z = Z'. O

1.3. Determinantal ideal defining Loc.(X) set-theoretically for X of any
codimension. Let X C PV be a non-degenerate projective variety of codimension
> 2, and assume that X is not a cone. For an irreducible subvariety Z C PV and for
an integer e, we define 7(Z, ¢) as the integer satisfying that h°(PN¥=1 Iy (e)) = 7#(Z, e)
for general z € Z. We also set r(e) := h°(PN, Tx(e)).

Recall that, from Lemma 1.12, the locus Loc,,(X) with an integer e, is a closed
subset of PV. Now, we show the following generalized result of Theorem 1.7.

Theorem 1.13. Let X C PV be as above, let e be an integer, and let { Z; 20:1 be the
irreducible components of Loce,(X). Then we have

Loce, (X) = U ﬂZr(e)—F(ZJ‘,e)-‘rl(A(e))'

1<5<jo eeN

In addition, there exists integers 7, and ey with 1 < j; < jo and e; > 0 such that
Loce, (X) is equal to (V,s,, Zr(e)—r(2;,.)+1(A(€)).
Remark 1.14. The integer 7(Z, e) is obtained as follows: Note that the Euler sequence
0= Qby = V@ Opv(—1) = Opy — 0 with V := H(PY,0(1)) induces P(V) x
PN --» P(Qfn (1)), a rational map of projective bundles over PV which gives the
projection

T PN~ P(V) - PV~ P(Qhn (1) @ K(2))
for each z € PV. Let us consider ¢ : S¢(Qpy(1)) — S¢(V) @y Opn, a injective ho-
momorphism of e-th symmetric products. We regard H°(PY,Jx(e)) as a subspace of
Se(V), and set g% = o L(HO(PY,Jx(e)) ® Opn). Then J% @ k(z) is isomorphic to
HO(PN=1 Jx.(e)) for each z € PV. Applying the semi-continuity theorem to the sheaf
J%|z on Z, we find 7(Z, e) satisfying that h°(PN¥=1 Jy_(e)) is greater than or equal to
7(Z,e) for any z € Z and is equal to 7(Z, e) for general z € Z.

Proposition 1.15. Let X C PV be as above, let e € N, and let v := r(e). For an
integer T, we have

Zr-ri(Ae)) = {z € PV | RO(PY71,Tx (e)) > 7 }.
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PROOF. We show the inclusion “27. Let z € PV satisfy h°(PV~1 Ty (e)) > 7.
Then we find 7 polynomials fi, fo, ..., fr € TEHY(PN=1 Jx_(e)) € H(PY,Ix(e)) which
are linearly independent. Here, the hypersurface in PV defined by f, is a cone with
vertex z. Thus Lemma 1.3 implies that A(e)(fs)]. = 0 for each 1 < s < 7. It follows
that the matrix A(e)|, is of rank < r — 7, as in the proof of Theorem 1.7. Hence
2 € Zy_i+1(A(e)). Conversely, “C” can be shown in a similar way. O

Corollary 1.16. Let Z C PN be an irreducible subvariety, and let 7 := 7(Z,e). Then
we have Z C Z,_r11(A(e)).

Lemma 1.17. Let Z C PV be an irreducible subvariety. (a) Then there exists a
numeric polynomial P such that P = Px_ for general z € Z, where Px_ s the Hilbert
polynomial of the subvariety X, C PN~ (b) In addition, #(Z,e) = h° (PN 1, O(e)) —
P(e) fore> 0.

PROOF. (a) As in Remark 1. 14 regarding X as a subvariety of P(V'), we have the
rational map 7 : X X Z --» P(Qp ( )|z) which glves the projection 7., : X\ {2z} —

P! for each z € Z. Let X := im(r) C P(Qly(1)|7) and let ¢ : X — Z be the
projection. Then we have ¢ '(2) = X, for each z € Z. By [49, p57, Prop.], there
exists an open subset Zy C Z such that the morphism ¢~!(Zy) — Z; is flat. Thus we
have a polynomial P such that P = Px_ for each z € Zj.

(b) From (a), the polynomial Q(e) := h°(PY~1, O(e)) — P(e) € Q[e] is equal to
X(Ix.(e)) for any z € Z;. Thus, from [49, pl01, Thm.|, there exists an integer m
depending only on () such that X, is m-regular in the sense of Castelnuovo-Mumford
for any z € Zy. Then Q(e) = (PN~ Jx. (e)) for any e > m — 1 and for any z € Zj.
On the other hand, for each integer e, we have a general point z € Z such that
7(Z,e) = h°(PN~1,Jx.(e)). As a result, we have Q(e) = 7(Z,e) forany e > m—1. O

PrOOF OF THEOREM 1.13. We set Z} := .oy Zr(e)—r(2;,¢)+1(A(e)). From Corol-
lary 1.16, we have that Z; C Z}. Conversely, let us take a point z € Z;. Then, from
Proposition 1.15, we have h°(PN~! Iy _(e)) = 7(Z;, e) for e > 0. From Lemma 1.17(a),
there exists a polynomial P; such that P; = Px, for general w € Z;. For e > 0,
it follows Px_(e) = h°(PV~1 O(e)) — h°(PN~1 Jx.(e)), and hence Lemma 1.17(b) im-
plies Px,(e) < Pj(e) = Px,(e). Thus deg(X,) < deg(X,) < eg. Therefore we have
7} C Loce,(X), and the first assertion follows.

Let j; be an integer such that Pj,(e) > Pj(e) for 1 < j < jo and e > 0. Then there
exists an integer e; such that Pj,(e) > Pj(e ) and 7(Zj,,e) < 7(Z;,e) for 1 < j < jo
and e > e, due to Lemma 1.17(b). We set Z" := ﬂe>el r(e)— ,,(Z“ e+1(A(e)). Then
Proposition 1.15 implies that Z” contains Z} with 1 < j < jo. Hence it follows
Loce,(X) C Z". Next, we take z € Z”. Then h°(PN~1,Jx_(e)) = 7(Z;,e) for e > e;.
Thus, in the same way as above, by taking general w € Z;, we have deg(X,) <

deg(X,) < ep. This implies Z” = Loc,, (X). O

N

Corollary 1.16 and the following two related lemmas will be applied in the proof of
Theorem 2.2.
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Lemma 1.18. Let Y C PY be a projective variety of degree e, and let fi, fa, ..., fs, be
a basis of HY(PY,Jy(e)). ThenY coincides with (.2, (fs = 0) C PV, the intersection
of hypersurfaces defined by f,.

ProoF. We immediately have Y C (2°,(fs = 0). Conversely, let z € PV \ Y.
We take a general linear subspace L C PV \ Cone,(Y") of dimension N — dim(Y") — 2.
Then we have x ¢ Coner(Y). Since L is general, Coner(Y) is a hypersurface of degree
e, and hence its defining polynomial is contained in H°(PY,Jy(e)). Thus it follows

N2, (fs = 0) C Coner(Y), which implies that = ¢ (22, (fs = 0). O

Lemma 1.19. Let Y C P¥ be a cone with the mazimal vertex M := Vert(Y'), and let
{ F5 }°, be hypersurfaces in PV such that M C (:°, Vert(Fy) and Y = (", Fs. Then
M = ﬂ 1 Vert(Fy).

PROOF. Let z € (22, Vert(F;). For any y € Y and for each s, since y € Fj, the line
yz is contained in F. This implies yz C Y, which means z € M. Thus the assertion
follows. O

2. Linearity of the total Segre locus

2.1. Example of a non-linear total Segre locus. The following example shows
that the linearity of &**(X) does not hold in general if the characteristic p is small.

Example 2.1 ([19]). Let ¢ be a prime number, and let X C P? be a space ratio-

nal curve of degree ¢* defined by hy = z¢ — mfﬁ, Uand hy = xf — 21257, which is
parametrized by a morphism P' — P3 : (s,1) — (s,s%,s°,1). Then the following

holds:

(a) Suppose that either p # ¢ or p = 0. Then we have &°"*(X) = {(1,0,0,0) }.
Moreover we have &™(X) = {(0,0,0,1) } if £ > 3.

(b) Suppose p = £. Then &°**(X) is equal to a non-linear curve (r3 = whry—att =
0). Moreover &™*(X) is equal to the non-linear curve X if £ > 3.

(c) If £ = 2, then it follows &™(X) = () in arbitrary characteristic.

PROOF. By using our method (§1), We determine the locus &°**(X) in the cases
(a-b). Let z € PV \ X be a point. It follows from deg(X) = ¢? and Lemma 1.11(a) that
we have deg(X,) = ¢ if and only if z € &°"*(X). This implies that &°"*(X) is equal to
the closure of Loc,(X) \ X, where we already calculated Loc,(X) in Example 1.9.

(a) Suppose p # £. Then we have Loc,(X) = {(1,0,0,0),(0,0,1,0)}. Since
(0,0,1,0) € X, it follows &°"(X) = {(1,0,0,0) }.

(b) Suppose p = £. Then we have Loc,(X) = (z3 = abzy — 2™ = 0), which is
irreducible and not contained in X; hence G°"(X) = Loc,(X).

In a similar way, we can calculate the defining ideal of G (X)) in the case (a). In
the case (b), since dim(G°™(X)) = 1, we have X, = 7,(&°"(X)) C P? for general
z € X. Since deg(m, (G (X))) = £+ 1, we have X = &™(X) if £ > 3. O

2.2. Proof of linearity of the total Segre locus. Let X C PV be a non-
degenerate projective variety of codimension > 2. We denote by Str(X) c PV the
intersection of all the embedded tangent spaces to X at smooth points. Here each
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point of Str(X) is called a strange point of X. We have z € Str(X) if and only if either
z € Vert(X) or 7, is inseparable. Hence Str(X) is a linear subspace of dimension
< dim(X) contained in &**(X).

Theorem 2.2. Assume that X is not a cone, let eg € N, and let Z be an irreducible
closed subset of &% X), such that Z ¢ Str(X) and that deg(X,) = eg for general
z € Z. Suppose either p > eq or p = 0. Then there exists a (dim(X) + 1)-dimensional
variety Y C PN of degree eq which contains X and satisfies

Z C Vert(Y) C &4 X).

In particular, if Z is an irreducible component of &*°Y(X), then Z is linear, and more-
over is equal to Vert(Y).

For the proof, we maintain the following notations. We fix a general point z €
Z \ Str(X) such that RO (PN~ Jx. (e)) = 7(Z,e) for each e < ey, where 7#(Z, ) is the
integer stated in Remark 1.14. Let us consider the cone

Y := Cone,(X) c PV

and the maximal vertex M := Vert(Y'), where we have deg(Y") = ey.

We denote by S(PY) the homogeneous coordinate ring of PV, by I(V) the homoge-
neous ideal of a subvariety V', and by I(V')4 the set of polynomials of degree d in I(V).
We denote by lex the lexicographical order of monomials, and by mdeg = mdeg,,
the multidegree of a polynomial ([14, Ch. 2, §2, Def. 3 and 7]).

Before giving the detail, in an example below, we see how our proof of “Z C M”
works:

Example 2.3. Let X C P? be the curve defined by h; and hy given in Example 2.1.
We set f = hy. For z = (1,0,0,0), we have Y = Cone,(X) = (f = 0) C P3. Suppose
p > ¢ and suppose that Z C &°"(X) is an irreducible component containing z. Then
we can show that Z is contained in (hence is equal to) M = Vert(Y) = {z}, in the
following way.

We have that Z is contained in Locy(X), since so is G°*(X) as in the proof of
Example 2.1. Here, Theorem 1.7 implies that Loc,(X) is equal to Zy(As—1), the zero
set of 2 x 2 minors of A,_;. For the index (£ — 1)wy = mdeg(h2) — wy, we have
D—1)wof = 0 and Dy_1yw,he = lxg. Thus, for each ¢ € I,_;, we have a 2 x 2 minor of
Ap1,

D;f D;hy D;f  Dihsy
Dy—1ywof D—1ywoha| ‘ 0 lxy | Dif - to-

It follows D;f - lxy € I(Z). Since xg ¢ I(Z), we obtain D;f € I(Z). Therefore it
follows from Lemma 1.3 that we have Z C M.

In order to prove Theorem 2.2, it is essential to show the following result.

Proposition 2.4. For each point w € PV \'Y, there erists a hypersurface F C PN
defined by f € i, I1(Yar) such that w ¢ F and Z C Vert(F).



2. LINEARITY OF THE TOTAL SEGRE LOCUS 61

Remark 2.5. A polynomial f is contained in 7};,I(Yys) if and only if F' = (f =
0) C PV is a cone which contains X and satisfies M C Vert(F). In other word,
i I (V) = I(X) N7y S(PY=™71) ) where m := dim M.

First, we show two preparation lemmas.

Lemma 2.6. Let F' C PV be a hypersurface of degree e < eq defined by a polynomial
femIYy), and let hyyq, ..., h. € I(X). be polynomials giving a basis of the quo-
tient space 1(X)./m1(X.)e, where r = h°(PYN JIx(e)) and by 7 := h°(PN~1 Jx_(e)).

Suppose that there exist multi-indices t7y1,...,%. € I._1 such that the column vector
E="[D;., Di., D;,]

satisfies the following condition:

(39) det (E . [h;+1 h7—‘+2 N hr}) ¢ I(Z) and E - f =0.

Then we have Z C Vert(F).

PROOF. By the choice of z € Z, it follows from e < ¢y that we have 7 = 7(Z, e).
Since f ¢ miI(X,)e, we can regard { f, hri1,...,h, } as a subset of a basis of I(X)..
We set ¢ to be the determinant of the matrix E - [hﬂl hiio ... hr}. For each
1€ I,_q,since £ - f =0, we have

Dif-§:det<{%ﬂ'[f hiv1 hipa ... hT])a

which is a (r — 74 1) x (r — 7+ 1) minor of A(e) = A._;. Thus Corollary 1.16 implies
that D;f - & € I(Z). Since £ ¢ 1(Z), we obtain D;f € I(Z). Hence, from Lemma 1.3,
we have Z C Vert(F). O

By changing coordinates (zg, 1, ...,2zy) on PV, we may assume z = (1,0,...,0).
We denote by deg(h, zo) the degree of h for one variable z.

Lemma 2.7. Let h be a homogeneous polynomial of degree e.

(a) Leti € I._y be a multi-index. Then the linear polynomial D;h has the variable
xg (i-e., Dih & (21,...,2Nn)), only if i <jx mdeg(h) — wqy. In particular,
if h is monic, then Dmdeg(h)—w P 15 expressed as deg(h, zo) - xo + g with g €
(.Tl, e ,JJN).

(b) Recall that z = (1,0,...,0) satisfies that z ¢ Str(X) and that 7,|x is not
birational onto its image. Assume deg(h,xo) = 1. Then h is equal to xoh' + h"
with some W', h" € T¥1(X,).

PROOF. (a) If D;h has the variable g, then the polynomial h has the monomial
7o - 2, which means that 4 + wy <jex mdeg(h).

(b) Let H C PY be the hypersurface of degree e defined by h. Since deg(h, zy) = 1,
we have y, y = e — 1. Hence m,,, is birational, and moreover, for each point x € PN,
it follows that either the intersection 7, *(z) N (H \ { 2z }) consists of one point, or the
line 7 !(z) is contained in H. Suppose that Y ¢ H. Then 7, '(z) ¢ H for general
r € X, and then 7 (z)N(X\{ 2z }) consists of one point since so is 7, ()N (H\{ z }).
Thus ., is purely inseparable, which implies z € Str(X), a contradiction. Hence Y
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is contained in H. Since I(Y) = S(PV) - 7I(X.) and since deg(h,z¢) = 1, we obtain

that
h = E (P10 + @j2)th; = ( E :SOJJ%')?UO + < E :%',2%)
J j j

with ;1,92 € TES(PN71) and ¢, € 7:I(X.); hence the assertion follows.

Now we come to the proof of the proposition, where recall that Y := Cone,(X) C
PV a cone of degree ey with maximal vertex M.

PROOF OF PROPOSITION 2.4. Let w € PV be a point with w ¢ Y (equivalently,
w ¢ M and wy ¢ Ya). Then, from Lemma 1.18, there exists a polynomial f €
7 I(Yar)e, such that w ¢ F (equivalently, wyr € Fy), where F := (f =0) C PV.

Let e < ey be the smallest integer such that there exists a polynomial f € 73, 1(Yas)e
satisfying w ¢ F. We take such a polynomial f of degree e. In the following steps (i-ii),
by modifying f € m%,1(Ya)e with keeping the property w ¢ F', we will find polynomials
hi#i1,...,h, and indices %741, ..., , satisfying the property (39) in Lemma 2.6.

By changing coordinates (zg, z1,...,2x) on PV, we may assume that
z=(1,0,...,0) and M = (211 = =ax =0) in PV
with m = dim M. Here a polynomial h is contained in 73,S(PY¥~™"1) if and only if
h is of multidegree <jx deg(h) - wyy1. By changing coordinates (z,,41,...,2y) on
PN=m=1 we may assume that

Wy = ($m+2 = =ITN = 0) in ]P)N_m_l.

Since wyy ¢ Fiyy, we have mdeg(f) = ew,,11.

Step (i) Let hiy1,...,h, € I(X). be homogeneous polynomials which give a ba-
sis of the quotient space I(X)./n*I(X.)., where r := h%(PY,Jx(e)) and by 7 :=
RO(PN—1 Jx_ (e)). Since h; ¢ 7w:1(X.), we have deg(h;,79) > 0. By replacing h;,
we can assume that hzyq, ..., h, are monic polynomials satisfying the following strictly
descending sequence:

(40) mdeg(hri1) >iex mdeg(hria) >1ex -+ + >1ex mdeg(h,).
Now we set i, := mdeg(hs) — wop, and set the column vector
E = t[Dmdeg(h?:+1)7w0 Dmdeg(h,:.;_g)fwo T Dmdeg(hr)fwo} .

Then the determinant

5 = det (E . [h;_,.l h;+2 cee hri|)
is equal to
deg(hst1,20) - 2o + 4 f f i
* deg(hrt2,20) - o + 4 f f
................................................... deg(hr_l’xo)onrﬁﬁ :
* deg(hr, o) - w0 + 1
where linear polynomials (f) are in (z1,...,2y), and (*) are in (xg,...,zy). This

is because, it follows from mdeg(hs11) >iex mdeg(hrtz) that Dmdeg(n,1)—woPite €
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(x1,...,2n) as in Lemma 2.7(a); similarly, each polynomial in the part (£) is contained

in (z1,...,2N). )
Thus ¢ is equal to az| " + & with

a :=deg(hri1,zo) - deg(hria, xo) - - - deg(h,—_1, xo) - deg(h,., zo)

and ¢ € (x1,...,2nN), where we obtain o # 0 by e < eg and by the assumption of
the characteristic p. Since £ ¢ I(z) = (x1,...,2zy) and since I(Z) C I(z), we have
£ ¢ 1(2).

Step (ii) Next, let r; be the largest integer with 7+ 1 < 7 < r such that the
following inequality holds:

mdeg(hn) Sex Wo + (6 - 1)wm+1-

Then, since f € 7}, S(PY~™"1) (i.e., f does not have the variables zq, ..., ,,), we find
that Dideg(hi)—wof = 0 for @ < 1. In order to obtain Dydeg(ni)—w,f = 0 for i > ry, by
Lemma 1.5, we need to show

(41) coefmdeg(h)—wo-+e, (f) = 0

for each 0 < j < N, where we denote by coef;(f) the coefficient of monomial 2% in
f. Since f € 73, S(PY~™"1), we immediately have that (41) holds for j < m. In the
following, by modifying f and h; with ¢ > 71, we find a new polynomial which satisfies
(41) for j > m.

For ¢ > rq, since mdeg(h;) <jex wo + (€6 — 1)wyni1, we have deg(h;, z9) < 1, which
implies deg(h;, 7o) = 1. Thus Lemma 2.7(b) implies that h; is equal to xoh} + b} with
some hl, h! € 7¥1(X.). Here the multidegree of h; and zoh! coincide. By removing A/

for ¢ > ry, we can assume that
hi = .Toh; with h; € W:I(XZ) (Z > 7'1).

Then, polynomials hzi1,...,h, and new polynomials h, +1...,h, give a basis of
I(X)./m:1(X.)., and satisfies the condition (40). Therefore € ¢ I(Z) still holds.

For each i > ry, since h; is of multidegree <jex wo + (€ — 1)wy,y1, it follows that
R} is of multidegree <jex (€ — )wpy1, ice., b € wi,S(PY=™=1). This leads to h] €
7y I(Ya)e—1 as in Remark 2.5. By the assumption of the degree e, the point w is
contained in the hypersurface of degree e — 1 in PV defined by &/, that is to say,
mdeg(h)) <iex (6 — 1)wp 1.

Let { gk }1<k<k, be a maximal subset of { 2, }mi1<j<n,m+1<i<r Which satisfies the
following strictly descending sequence:

mdeg(g;) >iex mdeg(ga) >iex -+ >1ex mdeg (g, )-

Here g is contained in 7},1(Yy), since so is h, with r1 +1 < i <r. In addition,
it follows that mdeg(gix) <iex €wmi1- Inductively, we set ¢g := f and set ¢ =
Pr-1 — coefmdeg(gy) (Pr—1) - g for each k with 0 <k < ko.

We replace f with ¢g,. Then we still have f € 73,1(Yar). and mdeg(f) = ewp 1,
ie., w ¢ F. Moreover, we have coefdeg(q,)(f) = 0 for any 1 < k < ko. This implies
that (41) holds for any ¢ > r; and j > m, since the multi-index mdeg(h;) —wo+w; =
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mdeg(h;) + w; is given by the multidegree of some g;. Thus Dydeg(h,)—w,/ = 0 for
1 >r1. As a result, we have F - f = 0.
Now, the assumption of Lemma 2.6 is satisfied. Hence Z C Vert(F). g

PrOOF OF THEOREM 2.2. For general o € M, we have that u, x < p. x due to
Lemma 1.11(c). Since deg(X,) = deg(Y;) = ey, Lemma 1.11(a) implies deg(m,,) =
(deg(X) — pox)/e0 = deg(my,) > 1, that is, 2 € &"(X). Hence we have M C
GtOt(X).

From Proposition 2.4, there exist polynomials { fs }:°, C m},1(Yas) such that Y =
N2, Fs and that Z C Vert(Fy) for every s, where Fy := (fs = 0) C PY. Then, it
follows from Lemma 1.19 that we have Z C M. 0

Here, we have the following result, which is a specific version of Theorem III.

Theorem 2.8. Let X C PV be as in Theorem III, and let n := dim(X) < N — 1.

(a) Assume either p > deg(X) or p = 0. Then every irreducible component Z of
G X) is a linear subspace of dimension < n. Moreover, the component Z
coincides with the mazimal vertez of an (n + 1)-dimensional cone containing
X, except when X satisfies G°"(X) = and & (X) = Vert(X).

(b) Now let p > 0 be arbitrary. Let Z C PN be a linear subspace not contained in
X, and assume dim(Z) > dim(ZNVert(X))+2, where we regard dim(()) = —1.
Suppose that X lies on an (n + 1)-dimensional cone with vertex Z. Then we
have Z C &°"(X). In addition, if Z is the mazimal vertex of the cone, then
Z coincides with an irreducible component of G°"(X).

Lemma 2.9 (cf. [10, Lemma 4(v)]). Let X C PV be a cone with maximal vertex
M = Vert(X). Then &' (X) is equal to the closure of 7y, (&*(Xy)).

PROOF. Let z € PN\ M. Then p,x = p,,.x, and deg(X) = deg(Xys). Let
M' c PN be the linear subspace spanned by M and z. Since M, C Vert(X,) and
(X.)am, = Xy, we have deg(X,) = deg(Xy). Hence it follows from Lemma 1.11(a)
that deg(m,) = deg(.,,y, ). In particular, 7., is birational if and only if 7, ~is
SO. U

PrROOF OF THEOREM 2.8. (a) From Lemma 2.9, we may assume that X is not
a cone. Now we show Str(X) = (), as follows: Suppose z € Str(X). Then it follows
that p > 0 and that ., is inseparable. Since deg(7.,) = p and p > deg(X), we
have deg(m,,) = deg(X). Then X, C PN~! is linear, which contradicts that X is
non-degenerate and of codimension > 2.

Therefore, the result follows from Proposition 1.10 and Theorem 2.2.

(b) Let Z C P be a linear subspace not contained in X with

dim(Z) > dim(Vert(X) N Z) + 2.

Let Y be the (n 4 1)-dimensional cone with vertex Z such that X C Y. For general
z € Z\ X, we have a line L C Z such that z € L and L N Vert(X) = (). Here we find
that X, =Y, C PV~ is a cone with vertex v, := L,.
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Suppose that 7, : X — X, is birational. Then there exists an open subset
U, ¢ X, such that U := 7TZ_‘)1<(U1) — U, is bijective. For general line M; C X,
containing vy, the subvariety

M: =71 (M,NnU,) CX

zlx
is a line, because of z ¢ X. Since L intersects M for infinitely many lines M;, and
since #(LNX) < oo, we find a point v € LN X such that v € M for general M; hence
X is a cone with vertex v, which contradicts LN Vert(X) = ). Hence z € &°**(X). O

Remark 2.10. For the locus G°"(X), we can show the linearity under an assumption
weaker than p > deg(X), as follows: Let e < deg(X) be the largest integer such
that e | deg(X). Since deg(X) = deg(m.|,) - deg(X.) and deg(m.|,) > 1 for general
z € G°"(X), we have G°*(X) C Loc.(X). Thus, from Theorem 2.2, the linearity of
G°"(X) holds in the case p > e.

Remark 2.11. The linearity of &**(X) implies that of &°"*(X), since we find that
every irreducible component Z of &°"(X) is equal to an irreducible component of
S*(X), as follows: Let Z’ be an irreducible component of &%**(X) containing Z.
Then, since Z is not contained in X, so is Z’. Hence a general point z € Z' satisfies
that z ¢ X and that 7, is not birational. Thus Z’ C &°"(X), which implies Z = Z".

In the following, we check the sharpness of Theorem 2.8(b). Here, Example 2.12(a)
shows that the assumption of inequality “dim(Z) > dim(Vert(X)NZ)+2" is necessary.
And (b) shows that, for a linear subspace Z C X satisfying that X lies on an (n + 1)-
dimensional cone with vertex Z, the inclusion “Z C &™(X)” does not hold in general.

Example 2.12. (a) Let X C PV be an n-dimensional cone with vertex z, and let
z € PN\ X be a point such that 7./, is birational. Then the line Z := Tz is equal to
a vertex of the (n + 1)-dimensional cone Cone,(X), and is not contained in G°*(X).

(b) Let X = (wor; — 23 = 2103 — 1oxy = xoTy — Tox3 = 0) C P! a surface
of degree 3 parametrized by P? --» P* : (1,s,t) — (1,s% s,t,st). Then the line
Z = (xg = x1 = 9 = 0) C X is equal to the maximal vertex of the 3-dimensional cone
(roz1 — 5 = 0), and is not contained in &™*(X).
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