公聴会(渡辺究)

1 学位申請論文の構成

<u>表題</u>: Group actions on projective varieties and chains of rational curves on Fano varieties (射影多様体への群作用とファノ多様体上の有理曲線の鎖)

第1章: Overview of homogeneous variety and results of projective geometry

第2章: Classification of polarized manifolds admitting homogeneous varieties as ample divisors

第3章: Actions of linear algebraic groups of exceptional type on projective varieties

第4章: Lengths of chains of minimal rational curves on Fano manifolds

以下,基礎体は全て複素数体 ℂとする.

2 Classification of polarized manifolds admitting homogeneous varieties as ample divisors

Definition 2.1. (X, L): sm polarized var $\Leftrightarrow X$: sm proj var, L: ample line bundle on X.

Problem 2.2. Classify sm polarized var (X, L) s.t. $\exists A \in |L|$: homogeneous var.

Theorem 2.3. Let (X, L) be as in the above problem. Assume that dim $A \ge 2$. Then (X, L) is one of the following:

(i) $(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(i)), i = 1, 2;$ (ii) $(Q^{n+1}, \mathscr{O}_{Q^{n+1}}(1));$ (iii) $(\mathbb{P}(\mathcal{E}), H(\mathcal{E})), \mathcal{E}$ is an ample vector bundle on a smooth curve C with g(C) = 0 or 1 and \mathscr{L}

(11)($\mathbb{P}(\mathcal{E})$, $H(\mathcal{E})$), \mathcal{E} is an ample vector bundle on a smooth curve C with g(C) = 0 or 1 and \mathcal{L} an ample line bundle on C with a exact sequence:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0;$$

 $(\mathrm{iv})(\mathbb{P}^m \times \mathbb{P}^m, \mathscr{O}_{\mathbb{P}^m \times \mathbb{P}^m}(1, 1)); (\mathrm{v})(G(2, \mathbb{C}^{2m}), \mathscr{O}_{\mathrm{Plücker}}(1)); (\mathrm{vi})(E_6(\omega_1), \mathscr{O}_{E_6(\omega_1)}(1)).$

3 Actions of linear algebraic groups of exceptional type on projective varieties

Problem 3.1. X: sm proj var, G: simple linear algebraic group acting on X. Then classify such pairs (X, G).

Definition 3.2. $r_G := \min\{\dim G/P \mid P \subset G: \text{ parabolic subgroup}\}.$

Theorem 3.3. X: a sm proj var of dim n, G: a simple linear algebraic group of exceptional type acting on X. Assume that $n = r_G + 1$. Then X is one of the following: (i) \mathbb{P}^6 , (ii) Q^6 , (iii) $E_6(\omega_1)$, (iv) $G_2(\omega_1 + \omega_2)$, (v) $Y \times Z$, where Y is $E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$, $G_2(\omega_1)$ or $G_2(\omega_2)$ and Z is a sm proj curve, (vi) $\mathbb{P}(\mathscr{O}_Y \oplus \mathscr{O}_Y(m))$, where Y is as in (5) and m > 0.

4 Lengths of chains of minimal rational curves on Fano manifolds

Definition 4.1. Fano var \Leftrightarrow sm proj var whose anticanonical divisor is ample.

Remark (Definition): $\mathscr{O}_X(K_X) \cong \bigwedge^n \Omega_X, \ \mathscr{O}_X(-K_X) \cong \bigwedge^n T_X.$

X: a Fano *n*-fold with $\operatorname{Pic}(X) \cong \mathbb{Z}[H]$ $(n \geq 3)$, where *H* is ample, $\mathscr{K} \subset \operatorname{RatCurves}^{n}(X)$: a minimal rational component, that is, a dominating irreducible component whose degree is minimal among such components, i_X : Fano index $\Leftrightarrow -K_X = i_X H$, $\operatorname{coindex}(X) := n + 1 - i_X$: coindex.

Problem 4.2. How many \mathcal{K} -curves are needed to join two general points on X?

 $l_{\mathscr{K}}$: the minimal length of connected chains of general \mathscr{K} -curves joining two general points.

The speaker computed the lenghts in the following four cases: (i) $n \leq 5$, (ii) $\operatorname{coindex}(X) \leq 3$, (iii) X: prime and $i_X = \frac{2}{3}n$, (iv) X admits a double cover structure and is covered by lines.

Basic Property 4.3. For general $[C] \in \mathcal{K}$, $f^*T_X \cong \mathscr{O}_{\mathbb{P}^1}(2) \oplus \mathscr{O}_{\mathbb{P}^1}(1)^p \oplus \mathscr{O}_{\mathbb{P}^1}^{n-1-p}$, where $f : \mathbb{P}^1 \to X$ is the normalization of C. We have $p = i_X d_{\mathscr{K}} - 2$. In particular, $0 \le p \le n-1$.

Theorem 4.4. (i) If p = n - 3 > 0, then $l_{\mathcal{K}} = 2$.

(ii) If (n, p) = (5, 1), then $l_{\mathscr{K}} = 3$.

n	p	$l_{\mathscr{K}}$	$\mid n$	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$
3	2	1	4	3	1	5	4	1
3	1	2	4	2	2	5	3	2
3	0	3	4	1	2	5	2	2
			4	0	4	5	1	3
						5	0	5

Theorem 4.5. Let X be a prime Fano manifold with $i_X = \frac{2}{3}n$. Then $l_{\mathscr{K}} = 2$ except the following cases:

- (i) (3) $\subset \mathbb{P}^4$ a hypersurface of degree 3.
- (ii) $(2) \cap (2) \subset \mathbb{P}^5$ a complete intersection of two hyperquadrics.
- (iii) $G(2,\mathbb{C}^5)\cap (1)^3\subset \mathbb{P}^6$ a 3-dimensional linear section of $G(2,\mathbb{C}^5)$.
- (iv) $LG(3, \mathbb{C}^6)$ a Lagrangian Grassmann.
- (v) $G(3, \mathbb{C}^6)$ a Grassmann.
- (vi) $S_5 := \mathbb{F}_5(Q^{10})^+$ a 15-dimensional spinor variety.
- (vii) $E_7(\omega_1)$ a 27-dimensional rational homogeneous manifold of type E_7 .

Furthermore in the above exceptional cases, $l_{\mathscr{K}} = 3$.