Group actions on projective varieties and chains of rational curves on Fano varieties

渡辺 究

早稲田大学大学院基幹理工学研究科 数学応用数理専攻 楫研究室

2009/12/11

出版済み

- Kiwamu Watanabe, Classification of polarized manifolds admitting homogeneous varieties as ample divisors, Mathematische Annalen 342:3 (2008), pp. 557-563.
- Wiwamu Watanabe, Actions of linear algebraic groups of exceptional type on projective varieties, Pacific Journal of Mathematics 239:2 (2009), pp. 391-395.

プレプリント

• Kiwamu Watanabe, Lengths of chains of minimal rational curves on Fano manifolds, June 2009, submitted.

学位申請論文の構成

題目

Group actions on projective varieties and chains of rational curves on Fano varieties (射影多様体への群作用とファノ多様体上の有理曲線の鎖)

- 第 1 章: Overview of homogeneous variety and results of projective geometry.
- 第 2 章: Classification of polarized manifolds admitting homogeneous varieties as ample divisors.
- 第 3 章: Actions of linear algebraic groups of exceptional type on projective varieties.
- 第 4 章: Lengths of chains of minimal rational curves on Fanomanifolds.

学位申請論文の構成

題目

Group actions on projective varieties and chains of rational curves on Fano varieties (射影多様体への群作用とファノ多様体上の有理曲線の鎖)

- 第 1 章: Overview of homogeneous variety and results of projective geometry.
- 第 2 章: Classification of polarized manifolds admitting homogeneous varieties as ample divisors.
- 第 3 章: Actions of linear algebraic groups of exceptional type on projective varieties.
- 第 4 章: Lengths of chains of minimal rational curves on Fanomanifolds.

Homogeneous Variety

Definition

射影多様体 X に対し,

X: 等質 $\Leftrightarrow \exists G$: X に推移的に作用する群多様体.

Example

● Pⁿ: 射影空間,

② Qn: 2次超曲面,

③ $G(k,\mathbb{C}^N)$: グラスマン多様体,

④ A: アーベル多様体

Homogeneous Variety

Definition

射影多様体 X に対し,

X: 等質 $\Leftrightarrow \exists G$: X に推移的に作用する群多様体.

Example

● ℙⁿ: 射影空間,

② Qⁿ: 2 次超曲面,

③ $G(k,\mathbb{C}^N)$: グラスマン多様体,

● A: アーベル多様体.

Homogeneous Variety

Definition

射影多様体 X に対し,

X: 等質 $\Leftrightarrow \exists G$: X に推移的に作用する群多様体.

Example

● ℙⁿ: 射影空間,

❷ Qⁿ: 2次超曲面,

③ $G(k,\mathbb{C}^N)$: グラスマン多様体,

● A: アーベル多様体.

Example

 $* \mathbb{P}^n$,

 $* G(r,\mathbb{C}^{n+1})$,

Example

$$* \mathbb{P}^n,$$
 $\bullet \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ$
 $\omega_1 \longrightarrow \omega_2 \longrightarrow \omega_{n-1} \longrightarrow \omega_n$
 $* G(r, \mathbb{C}^{n+1}),$

 $*G(7,C^{-1}),$

Example

$$* \mathbb{P}^{n},$$

$$\bullet \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ$$

$$\omega_{1} \quad \omega_{2} \quad \cdots \longrightarrow \omega_{n-1} \quad \omega_{n}$$

$$* G(r, \mathbb{C}^{n+1}),$$

$$\circ \longrightarrow \circ \longrightarrow \cdots \longrightarrow \bullet \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ$$

$$\omega_{1} \quad \omega_{2} \quad \cdots \longrightarrow \omega_{r} \quad \cdots \longrightarrow \omega_{n-1} \quad \omega_{n}$$

$$: A_{n}(\omega_{r})$$

Example

Kiwamu Watanabe, *Classification of polarized manifolds admitting homogeneous varieties as ample divisors*, Mathematische Annalen 342:3 (2008), pp. 557-563. (第2章に対応)

Definition

(X,L): 偏極多様体 $\Leftrightarrow X$: 非特異射影多様体 $/\mathbb{C}$, L: X 上の豊富な直線束

Kiwamu Watanabe, Classification of polarized manifolds admitting homogeneous varieties as ample divisors, Mathematische Annalen 342:3 (2008), pp. 557-563. (第2章に対応)

Definition

(X,L): 偏極多様体

 $\Leftrightarrow X$: 非特異射影多様体 $/\mathbb{C}$, L: X 上の豊富な直線束.

Problem

等質多様体 A を線形系 |L| のメンバーとして含む偏極多様体 (X,L) を分類せよ.

Problem (Special case)

非特異射影多様体 $X\subset \mathbb{P}^N$ のうち,ある超平面切断 $A=X\cap H$ が等質多様体になるものを分類せよ.

Problem

等質多様体 A を線形系 |L| のメンバーとして含む偏極多様体 (X,L) を分類せよ.

Problem (Special case)

非特異射影多様体 $X\subset \mathbb{P}^N$ のうち,ある超平面切断 $A=X\cap H$ が等質多様体になるものを分類せよ.

- (A. J. Sommese. '76) $A \cong \mathbb{P}^n \ (n \ge 2) \Rightarrow (X, L) \cong (\mathbb{P}^{n+1}, \mathscr{O}(1)).$

- ① (A. J. Sommese. '76) $A \cong \mathbb{P}^n \ (n \geq 2) \Rightarrow (X, L) \cong (\mathbb{P}^{n+1}, \mathcal{O}(1)).$
- ② (A. J. Sommese. '76) $\neg \exists (X, L) \text{ s.t. } A \in |L|: \mathcal{P} \checkmark$ ル多様体 $(\dim A \geq 2)$.
- ③ (藤田 '81) $\neg\exists (X,L) \text{ s.t. } A \in |L| : グラスマン多様体 } G(r,\mathbb{C}^n) \text{ with } (n,r) \neq (n,1), (n,n-1), (4,2).$

- ① (A. J. Sommese. '76) $A \cong \mathbb{P}^n \ (n \geq 2) \Rightarrow (X, L) \cong (\mathbb{P}^{n+1}, \mathscr{O}(1)).$
- ② (A. J. Sommese. '76) $\neg \exists (X, L) \text{ s.t. } A \in |L|$: アーベル多様体 $(\dim A \geq 2)$.

- **1** (A. J. Sommese. '76) $A \cong \mathbb{P}^n \ (n \geq 2) \Rightarrow (X, L) \cong (\mathbb{P}^{n+1}, \mathcal{O}(1)).$
- ② (A. J. Sommese. '76) $\neg \exists (X, L) \text{ s.t. } A \in |L|: \mathcal{P}$ ベル多様体 $(\dim A \geq 2)$.
- ③ (藤田 '81) $\neg\exists (X,L) \text{ s.t. } A\in |L| : \mbox{ } \not\mbox{ } \mbox{ } \mbo$

(X,L) を先の Problem のものとし , $\dim A \geq 2$ を仮定する. そのとき , (X,L) は以下のいずれか:

```
(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1)),
```

```
(3) (\mathbb{P}(\mathcal{E}), H(\mathcal{E})), ただし,\mathcal{E} は曲線 C (\mathbb{P}^1 もしくは楕円曲線)_ の豊富なベクトル束,\mathcal{L} は C 上の豊富な直線束で次の完全列を
```

満たす:

$$0 \to \mathcal{O}_C \to \mathcal{E} \to \mathcal{L}^{\oplus n} \to 0.$$

$$(4) (\mathbb{P}^l \times \mathbb{P}^l, \mathcal{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1,1)),$$

(5)
$$(G(2,\mathbb{C}^{2l}),\mathscr{O}_{\text{Plücker}}(1)),$$

(6)
$$(E_6(\omega_1), \mathcal{O}_{E_6(\omega_1)}(1)).$$

- (1) $(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(i)), i = 1, 2,$
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1)),$
- (3) ($\mathbb{P}(\mathcal{E})$, $H(\mathcal{E})$), ただし, \mathcal{E} は曲線 C (\mathbb{P}^1 もしくは楕円曲線)」の豊富なベクトル束, \mathcal{L} は C 上の豊富な直線束で次の完全列を選択する。

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- $(4) \,\, (\mathbb{P}^l imes \mathbb{P}^l, \mathscr{O}_{\mathbb{P}^l imes \mathbb{P}^l} (1,1))$,
- (5) $(G(2, \mathbb{C}^{2l}), \mathcal{O}_{\text{Plücker}}(1)),$
- (6) $(E_6(\omega_1), \mathcal{O}_{E_6(\omega_1)}(1))$.

- (1) $(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(i)), i = 1, 2,$
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1)),$
- (3) ($\mathbb{P}(\mathcal{E})$), $H(\mathcal{E})$), ただし, \mathcal{E} は曲線 C (\mathbb{P}^1 もしくは楕円曲線)上の豊富なベクトル束, \mathcal{L} は C 上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- $(4) (\mathbb{P}^l \times \mathbb{P}^l, \mathcal{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1,1)),$
- $(5) (G(2,\mathbb{C}^{2l}), \mathscr{O}_{\text{Plücker}}(1)),$
- (6) $(E_6(\omega_1), \mathcal{O}_{E_6(\omega_1)}(1)).$

- (1) $(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(i))$, i = 1, 2,
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1)),$
- (3) $(\mathbb{P}(\mathcal{E}),H(\mathcal{E}))$, ただし, \mathcal{E} は曲線 C $(\mathbb{P}^1$ もしくは楕円曲線)上の豊富なベクトル束, \mathcal{L} は C 上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- $(4) (\mathbb{P}^l \times \mathbb{P}^l, \mathcal{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1,1)),$
- (5) $(G(2,\mathbb{C}^{2l}), \mathcal{O}_{\text{Plücker}}(1)),$
- (6) $(E_6(\omega_1), \mathcal{O}_{E_6(\omega_1)}(1))$.

- (1) $(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(i)), i = 1, 2,$
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1)),$
- (3) $(\mathbb{P}(\mathcal{E}),H(\mathcal{E}))$, ただし, \mathcal{E} は曲線 C $(\mathbb{P}^1$ もしくは楕円曲線)上の豊富なベクトル束, \mathcal{L} は C 上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- (4) $(\mathbb{P}^l \times \mathbb{P}^l, \mathscr{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1,1))$,
- (5) $(G(2,\mathbb{C}^{2l}),\mathcal{O}_{\text{Plücker}}(1)),$
- (6) $(E_6(\omega_1), \mathcal{O}_{E_6(\omega_1)}(1)).$

- (1) $(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(i))$, i = 1, 2,
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1)),$
- (3) $(\mathbb{P}(\mathcal{E}), H(\mathcal{E}))$, ただし, \mathcal{E} は曲線 C $(\mathbb{P}^1$ もしくは楕円曲線)上の豊富なベクトル束, \mathcal{L} は C 上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- (4) $(\mathbb{P}^l \times \mathbb{P}^l, \mathscr{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1,1))$,
- (5) $(G(2,\mathbb{C}^{2l}),\mathscr{O}_{\text{Plücker}}(1))$,
- (6) $(E_6(\omega_1), \mathcal{O}_{E_6(\omega_1)}(1)).$

- (1) $(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(i)), i = 1, 2,$
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1)),$
- (3) $(\mathbb{P}(\mathcal{E}),H(\mathcal{E}))$, ただし, \mathcal{E} は曲線 C $(\mathbb{P}^1$ もしくは楕円曲線)上の豊富なベクトル束, \mathcal{L} は C 上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- $(4) (\mathbb{P}^l \times \mathbb{P}^l, \mathscr{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1,1)),$
- (5) $(G(2,\mathbb{C}^{2l}),\mathscr{O}_{\text{Plücker}}(1))$,
- (6) $(E_6(\omega_1), \mathscr{O}_{E_6(\omega_1)}(1)).$

- (1) $(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(i), \mathbb{P}^n \text{ resp. } Q^n), i = 1, 2,$
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1), Q^n),$
- (3) ($\mathbb{P}(\mathcal{E})$, $H(\mathcal{E})$, $C \times \mathbb{P}^{n-1}$), ただし, \mathcal{E} は曲線 C (\mathbb{P}^1 もしくは楕円曲線)上の豊富なベクトル束, \mathcal{L} は C 上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- (4) $(\mathbb{P}^l \times \mathbb{P}^l, \mathscr{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1,1), \mathbb{P}(T_{\mathbb{P}^l}))$,
- (5) $(G(2,\mathbb{C}^{2l}), \mathscr{O}_{\text{Plücker}}(1), C_l(\omega_2) = LG(2,\mathbb{C}^{2l})),$
- (6) $(E_6(\omega_1), \mathscr{O}_{E_6(\omega_1)}(1), F_4(\omega_4)).$

- (1) $(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(i), \mathbb{P}^n \text{ resp. } Q^n), i = 1, 2,$
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1), Q^n),$
- (3) $(\mathbb{P}(\mathcal{E}), H(\mathcal{E}), C \times \mathbb{P}^{n-1})$, ただし, \mathcal{E} は曲線C $(\mathbb{P}^1$ もしくは楕円曲線)上の豊富なベクトル束, \mathcal{L} はC上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- (4) $(\mathbb{P}^l \times \mathbb{P}^l, \mathscr{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1,1), \mathbb{P}(T_{\mathbb{P}^l}))$,
- (5) $(G(2,\mathbb{C}^{2l}), \mathscr{O}_{\text{Plücker}}(1), C_l(\omega_2) = LG(2,\mathbb{C}^{2l})),$
- (6) $(E_6(\omega_1), \mathscr{O}_{E_6(\omega_1)}(1), F_4(\omega_4)).$

- (1) $(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(i), \mathbb{P}^n \text{ resp. } Q^n), i = 1, 2,$
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1), Q^n),$
- (3) $(\mathbb{P}(\mathcal{E}), H(\mathcal{E}), C \times \mathbb{P}^{n-1})$, ただし, \mathcal{E} は曲線C $(\mathbb{P}^1$ もしくは楕円曲線)上の豊富なベクトル束, \mathcal{L} はC上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- (4) $(\mathbb{P}^l \times \mathbb{P}^l, \mathscr{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1,1), \mathbb{P}(T_{\mathbb{P}^l}))$,
- (5) $(G(2,\mathbb{C}^{2l}), \mathscr{O}_{\text{Plücker}}(1), C_l(\omega_2) = LG(2,\mathbb{C}^{2l})),$
- (6) $(E_6(\omega_1), \mathscr{O}_{E_6(\omega_1)}(1), F_4(\omega_4)).$

- (1) $(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(i), \mathbb{P}^n \text{ resp. } Q^n), i = 1, 2,$
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1), Q^n),$
- (3) ($\mathbb{P}(\mathcal{E})$, $H(\mathcal{E})$, $C \times \mathbb{P}^{n-1}$), ただし, \mathcal{E} は曲線 C (\mathbb{P}^1 もしくは楕円曲線) 上の豊富なベクトル束, \mathcal{L} は C 上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- (4) $(\mathbb{P}^l \times \mathbb{P}^l, \mathscr{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1,1), \mathbb{P}(T_{\mathbb{P}^l}))$,
- (5) $(G(2,\mathbb{C}^{2l}), \mathcal{O}_{\text{Pliicker}}(1), C_l(\omega_2) = LG(2,\mathbb{C}^{2l})),$
- (6) $(E_6(\omega_1), \mathscr{O}_{E_6(\omega_1)}(1), F_4(\omega_4)).$

- (1) $(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(i), \mathbb{P}^n \text{ resp. } Q^n), i = 1, 2,$
- (2) $(Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1), Q^n)$,
- (3) $(\mathbb{P}(\mathcal{E}), H(\mathcal{E}), C \times \mathbb{P}^{n-1})$, ただし, \mathcal{E} は曲線C $(\mathbb{P}^1$ もしくは楕円曲線)上の豊富なベクトル束, \mathcal{L} はC上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- (4) $(\mathbb{P}^l \times \mathbb{P}^l, \mathscr{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1, 1), \mathbb{P}(T_{\mathbb{P}^l}))$,
- (5) $(G(2,\mathbb{C}^{2l}), \mathscr{O}_{\text{Plücker}}(1), C_l(\omega_2) = LG(2,\mathbb{C}^{2l})),$
- (6) $(E_6(\omega_1), \mathcal{O}_{E_6(\omega_1)}(1), F_4(\omega_4)).$

- (1) $(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(i), \mathbb{P}^n \text{ resp. } Q^n), i = 1, 2,$
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1), Q^n),$
- (3) $(\mathbb{P}(\mathcal{E}), H(\mathcal{E}), C \times \mathbb{P}^{n-1})$, ただし, \mathcal{E} は曲線C $(\mathbb{P}^1$ もしくは楕円曲線)上の豊富なベクトル束, \mathcal{L} はC 上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- (4) $(\mathbb{P}^l \times \mathbb{P}^l, \mathscr{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1,1), \mathbb{P}(T_{\mathbb{P}^l}))$,
- (5) $(G(2,\mathbb{C}^{2l}), \mathscr{O}_{\text{Plücker}}(1), C_l(\omega_2) = LG(2,\mathbb{C}^{2l})),$
- (6) $(E_6(\omega_1), \mathcal{O}_{E_6(\omega_1)}(1), F_4(\omega_4)).$

- (1) $(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(i), \mathbb{P}^n \text{ resp. } Q^n), i = 1, 2,$
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1), Q^n),$
- (3) $(\mathbb{P}(\mathcal{E}), H(\mathcal{E}), C \times \mathbb{P}^{n-1})$, ただし, \mathcal{E} は曲線C $(\mathbb{P}^1$ もしくは楕円曲線)上の豊富なベクトル束, \mathcal{L} はC上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- (4) $(\mathbb{P}^l \times \mathbb{P}^l, \mathscr{O}_{\mathbb{P}^l \times \mathbb{P}^l}(1,1), \mathbb{P}(T_{\mathbb{P}^l}))$,
- (5) $(G(2,\mathbb{C}^{2l}), \mathscr{O}_{\text{Plücker}}(1), C_l(\omega_2) = LG(2,\mathbb{C}^{2l})),$
- (6) $(E_6(\omega_1), \mathcal{O}_{E_6(\omega_1)}(1), F_4(\omega_4)).$

- (1) $(\mathbb{P}^{n+1}, \mathscr{O}_{\mathbb{P}^{n+1}}(i), \mathbb{P}^n \text{ resp. } Q^n), i = 1, 2,$
- $(2) (Q^{n+1}, \mathcal{O}_{Q^{n+1}}(1), Q^n),$
- (3) ($\mathbb{P}(\mathcal{E})$, $H(\mathcal{E})$, $C \times \mathbb{P}^{n-1}$), ただし, \mathcal{E} は曲線 C (\mathbb{P}^1 もしくは楕円曲線) 上の豊富なベクトル束, \mathcal{L} は C 上の豊富な直線束で次の完全列を満たす:

$$0 \to \mathscr{O}_C \to \mathscr{E} \to \mathscr{L}^{\oplus n} \to 0.$$

- (4) $(\mathbb{P}^{l} \times \mathbb{P}^{l}, \mathscr{O}_{\mathbb{P}^{l} \times \mathbb{P}^{l}}(1, 1), \mathbb{P}(T_{\mathbb{P}^{l}}))$,
- (5) $(G(2,\mathbb{C}^{2l}), \mathscr{O}_{\text{Plücker}}(1), C_l(\omega_2) = LG(2,\mathbb{C}^{2l})),$
- (6) $(E_6(\omega_1), \mathcal{O}_{E_6(\omega_1)}(1), F_4(\omega_4)).$

証明の鍵

鍵

- 豊富な因子として現れる等質多様体 A の絞り込み .
 - NS-condition (藤田 '82)
 - Merkulov and Schwachhöfer ('99)
- - 偏極多様体や射影幾何学の結果

証明の鍵

鍵

- 豊富な因子として現れる等質多様体 A の絞り込み .
 - NS-condition(藤田'82).
 - Merkulov and Schwachhöfer ('99).
- 与えられた A に対する X の構造決定 .
 - 偏極多様体や射影幾何学の結果

証明の鍵

鍵

- 豊富な因子として現れる等質多様体 A の絞り込み .
 - NS-condition(藤田 '82).
 - Merkulov and Schwachhöfer ('99) .
- - 偏極多様体や射影幾何学の結果

証明の鍵

鍵

- 豊富な因子として現れる等質多様体 A の絞り込み .
 - NS-condition (藤田 '82).
 - Merkulov and Schwachhöfer ('99) .
- - 偏極多様体や射影幾何学の結果.

Definition (藤田 '82)

X は NS-condition を満たす $\Leftrightarrow H^q(X,T_X[-L])=0$ for $\forall L$: 豊富な直線束, q=0,1.

Proposition (藤田 '82)

NS-condition を満たす多様体は非特異多様体の豊富な因子として含まれない.

Proposition

X を等質多様体 $(\dim X \geq 2)$ とすると以下は同値:

- X は NS-condition を満たさない
- ② X は以下のいずれか:
 - (a) \mathbb{P}^n , (b) Q^n , (c) $C \times \mathbb{P}^{n-1}$, C は \mathbb{P}^1 もしくは楕円曲線,
 - (d) $\mathbb{P}(T_{\mathbb{P}^l})$, (e) $C_l(\omega_2)$, (f) $F_4(\omega_4)$.

Definition (藤田 '82)

X は NS-condition を満たす $\Leftrightarrow H^q(X,T_X[-L])=0$ for $\forall L$: 豊富な直線束, q=0,1.

Proposition (藤田 '82)

NS-condition を満たす多様体は非特異多様体の豊富な因子として含まれない.

Proposition

X を等質多様体 $(\dim X > 2)$ とすると以下は同値:

- X は NS-condition を満たさない
- ② X は以下のいずれか:
 - (a) \mathbb{P}^n , (b) Q^n , (c) $C \times \mathbb{P}^{n-1}$, C は \mathbb{P}^1 もしくは楕円曲線,
 - (d) $\mathbb{P}(T_{\mathbb{P}^l})$, (e) $C_l(\omega_2)$, (f) $F_4(\omega_4)$

Definition (藤田 '82)

X は NS-condition を満たす $\Leftrightarrow H^q(X,T_X[-L])=0$ for $\forall L$: 豊富な直線束, q=0,1.

Proposition (藤田 '82)

NS-condition を満たす多様体は非特異多様体の豊富な因子として含まれない.

Proposition

X を等質多様体 $(\dim X \ge 2)$ とすると以下は同値:

- X は NS-condition を満たさない.
- ② X は以下のいずれか:
 - (a) \mathbb{P}^n , (b) Q^n , (c) $C \times \mathbb{P}^{n-1}$, C は \mathbb{P}^1 もしくは楕円曲線,
 - (d) $\mathbb{P}(T_{\mathbb{P}^l})$, (e) $C_l(\omega_2)$, (f) $F_4(\omega_4)$.

$A \cong F_4(\omega_4)$ のとき

- \sim L: 非常に豊富 , i.e., $\phi_{|L|}:X \to \mathbb{P}^N$: 埋め込み .
- $\rightsquigarrow A = X \cap H \subset X \subset \mathbb{P}^N.$

Definition

- $X \subset \mathbb{P}^N$: n 次元非退化非特異射影多樣体
- X: Severi 多様体 $\Leftrightarrow 3n = 2(N-2)$ かつ $\operatorname{Sec}(X) \neq \mathbb{P}^N$.

Theorem (Zak)

Severi 多様体は以下のいずれかと射影同値:

- ① $v_2(\mathbb{P}^2) \subset \mathbb{P}^5$: Veronese 曲面.
- ② $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$: Segre 多樣体.
- ② $G(\mathbb{P}^1,\mathbb{P}^5) \subset \mathbb{P}^{14}$: Grassmann 多樣体.
- $E_6(\omega_1) \subset \mathbb{P}^{26}$: E_6 多樣体.

$A\cong F_4(\omega_4)$ のとき

 \sim L: 非常に豊富 , i.e., $\phi_{|L|}:X \to \mathbb{P}^N$: 埋め込み .

 $\rightarrow A = X \cap H \subset X \subset \mathbb{P}^N.$

Definition

 $X \subset \mathbb{P}^N$: n 次元非退化非特異射影多樣体

X: Severi 多様体 $\Leftrightarrow 3n = 2(N-2)$ かつ $\operatorname{Sec}(X) \neq \mathbb{P}^N$.

Theorem (Zak)

Severi 多様体は以下のいずれかと射影同値

- ① $v_2(\mathbb{P}^2) \subset \mathbb{P}^5$: Veronese 曲面
- ② $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$: Segre 多樣体.
- ③ $G(\mathbb{P}^1,\mathbb{P}^5) \subset \mathbb{P}^{14}$: Grassmann 多樣体.
- **④** $E_6(\omega_1) \subset \mathbb{P}^{26}$: E_6 多樣体.

$A \cong F_4(\omega_4)$ のとき

 \sim L: 非常に豊富 , i.e., $\phi_{|L|}:X \to \mathbb{P}^N$: 埋め込み .

 $\rightsquigarrow A = X \cap H \subset X \subset \mathbb{P}^N.$

Definition

 $X \subset \mathbb{P}^N$: n 次元非退化非特異射影多樣体

X: Severi 多様体 $\Leftrightarrow 3n = 2(N-2)$ かつ $\operatorname{Sec}(X) \neq \mathbb{P}^N$.

Theorem (Zak)

Severi 多様体は以下のいずれかと射影同値:

- ① $v_2(\mathbb{P}^2) \subset \mathbb{P}^5$: Veronese 曲面.
- ② $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$: Segre 多樣体.
- ③ $G(\mathbb{P}^1,\mathbb{P}^5) \subset \mathbb{P}^{14}$: Grassmann 多樣体.
- \bullet $E_6(\omega_1) \subset \mathbb{P}^{26}$: E_6 多樣体.

$A \cong F_4(\omega_4)$ のとき

 \sim L: 非常に豊富 , i.e., $\phi_{|L|}:X \to \mathbb{P}^N$: 埋め込み .

 $\rightsquigarrow A = X \cap H \subset X \subset \mathbb{P}^N.$

Definition

 $X \subset \mathbb{P}^N$: n 次元非退化非特異射影多樣体

X: Severi 多様体 $\Leftrightarrow 3n = 2(N-2)$ かつ $\operatorname{Sec}(X) \neq \mathbb{P}^N$.

Theorem (Zak)

Severi 多様体は以下のいずれかと射影同値.

- ① $v_2(\mathbb{P}^2) \subset \mathbb{P}^5$: Veronese 曲面.
- ② $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$: Segre 多樣体.
- ③ $G(\mathbb{P}^1,\mathbb{P}^5) \subset \mathbb{P}^{14}$: Grassmann 多樣体.
- $E_6(ω_1) \subset \mathbb{P}^{26}$: E_6 多様体

$A\cong F_4(\omega_4)$ のとき

 \sim L: 非常に豊富 , i.e., $\phi_{|L|}:X o \mathbb{P}^N$: 埋め込み .

 $\rightsquigarrow A = X \cap H \subset X \subset \mathbb{P}^N$.

Definition

 $X \subset \mathbb{P}^N$: n 次元非退化非特異射影多樣体

X: Severi 多様体 $\Leftrightarrow 3n = 2(N-2)$ かつ $\operatorname{Sec}(X) \neq \mathbb{P}^N$.

Theorem (Zak)

Severi 多様体は以下のいずれかと射影同値:

- ① $v_2(\mathbb{P}^2) \subset \mathbb{P}^5$: Veronese 曲面.
- ② $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$: Segre 多樣体.
- ③ $G(\mathbb{P}^1,\mathbb{P}^5) \subset \mathbb{P}^{14}$: Grassmann 多樣体.
- \bullet $E_6(\omega_1) \subset \mathbb{P}^{26}$: E_6 多樣体.

$A\cong F_4(\omega_4)$ のとき

 \sim L: 非常に豊富 , i.e., $\phi_{|L|}:X o \mathbb{P}^N$: 埋め込み .

 $\rightsquigarrow A = X \cap H \subset X \subset \mathbb{P}^N$.

Definition

 $X \subset \mathbb{P}^N$: n 次元非退化非特異射影多樣体

X: Severi 多様体 $\Leftrightarrow 3n = 2(N-2)$ かつ $\operatorname{Sec}(X) \neq \mathbb{P}^N$.

Theorem (Zak)

Severi 多様体は以下のいずれかと射影同値:

- ① $v_2(\mathbb{P}^2) \subset \mathbb{P}^5$: Veronese 曲面.
- ② $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$: Segre 多樣体.
- ③ $G(\mathbb{P}^1,\mathbb{P}^5) \subset \mathbb{P}^{14}$: Grassmann 多樣体.
- **4** $E_6(\omega_1) \subset \mathbb{P}^{26}$: E_6 多樣体.

研究成果

等質多様体を豊富な因子として含む偏極多様体の分類

- ① 今まで知られていた結果 (藤田, Sommese 等)の一般化。
- ② 他の分類問題への応用が期待される

研究成果

等質多様体を豊富な因子として含む偏極多様体の分類

- 今まで知られていた結果 (藤田, Sommese 等)の一般化.
- ◎ 他の分類問題への応用が期待される

研究成果

等質多様体を豊富な因子として含む偏極多様体の分類

- 今まで知られていた結果(藤田, Sommese等)の一般化.
- ② 他の分類問題への応用が期待される.

Kiwamu Watanabe, Actions of linear algebraic groups of exceptional type on projective varieties, Pacific Journal of Mathematics 239:2 (2009), pp. 391-395. (第3章に対応)

Problem

X: 射影多樣体,

G: X に作用する単純線型代数群

このとき,対(X,G)を分類せよ

Kiwamu Watanabe, Actions of linear algebraic groups of exceptional type on projective varieties, Pacific Journal of Mathematics 239:2 (2009), pp. 391-395. (第3章に対応)

Problem

X: 射影多樣体,

G: X に作用する単純線型代数群.

このとき,対(X,G)を分類せよ.

- ① (満渕, '79) G = SL(n), X: n 次元.
- ② (梅村-向井, '83) G = SL(2), X: 3 次元概等質.
- (中野, '89)G: 単純線型代数群, X: 3次元
- (S. Kebekus, '00) X: 3次元特異.
- (M. Andreatta, '01)G: 単純線型代数群 X: 高次元

- ① (両渕, 79) G = SL(n), X: n 次元.
- ② (梅村-向井, '83) G = SL(2), X: 3次元概等質.
- ③ (中野, '89)G: 単純線型代数群, X: 3次元
- ① (S. Kebekus, '00) X: 3次元特異.
- (M. Andreatta, '01)G: 単純線型代数群 X: 高次元

- ① (満渕, 7 9) G = SL(n), X: n 次元.
- G = SL(2), X: 3 次元概等質.
- ③ (中野, '89)G: 単純線型代数群, X: 3次元.
- (S. Kebekus, '00) X: 3 次元特異.
- ⑤ (M. Andreatta, '01)○ 貸納線型代数群 X· 高次元

- G = SL(n), X: n 次元.
- ② (栂村-向开, (83)) G = SL(2), X: 3 次元概等質.
- ③ (平野, '89) G: 単純線型代数群, X: 3次元
- (S. Kebekus, '00) X: 3次元特異.
- (M. Andreatta, '01)G: 単純線型代数群, X: 高次元

- ① (海渕, 79) G = SL(n). X: n 次元.
- G = SL(2), X: 3 次元概等質
- ③ (甲野, 189) G: 単純線型代数群, X: 3次元
- (S. Kebekus, '00) X: 3 次元特異.
- (M. Andreatta, '01)
 - G: 単純線型代数群, X: 高次元.

- (満渕, '79)G = SL(n), X: n 次元.
- ② (梅村-向井, '83)
 G = SL(2), X: 3次元概等質.
- ③ (中野, '89)G: 単純線型代数群, X: 3次元.
- 4 (S. Kebekus, '00) X: 3 次元特異.
- X:3 次兀特兵. **○** (M. Androette '01
- (M. Andreatta, '01)G: 単純線型代数群, X: 高次元.

Andreatta's Work

Definition

 $r_G := \min \{ \dim G/P \mid P \subset G :$ 放物型部分群 $\}.$

Proposition (M. Andreatta, '01)

- (1) $n \geq r_G$,
- (2) もし $n=r_G$ なら,Xは次のいずれかに同型
- \mathbb{P}^n , Q^n , $E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$, $G_2(\omega_1)$ or $G_2(\omega_2)$.
- 特に, X は有理等質多様体.

Andreatta's Work

Definition

 $r_G := \min \{ \dim G/P \mid P \subset G :$ 放物型部分群 $\}.$

Proposition (M. Andreatta, '01)

- (1) $n \geq r_G$,
- (2) もし $n=r_G$ なら、X は次のいすれかに同型 $\mathbb{P}^n,\ Q^n,\ E_6(\omega_1),\ E_7(\omega_1),\ E_8(\omega_1),\ F_4(\omega_1),\ F_4(\omega_4),\ G_2(\omega_1)$ \circ
- 特に X は有理等質多様体

Andreatta's Work

Definition

 $r_G := \min \{ \dim G/P \mid P \subset G : 放物型部分群 \}.$

Proposition (M. Andreatta, '01)

- (1) $n \geq r_G$,
- (2) もし $n=r_G$ なら, X は次のいずれかに同型

$$\mathbb{P}^n$$
, Q^n , $E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$, $G_2(\omega_1)$ or $G_2(\omega_2)$.

特に, X は有理等質多様体.

Theorem (M. Andreatta, '01)

- $(1) \mathbb{P}^n$,
- (2) Q^{n} ,
- (3) $Y \times Z$, ただし, $Y: \mathbb{P}^{n-1}$ or Q^{n-1} , Z: 非特異曲線,
- (4) $\mathbb{P}(\mathscr{O}_Y \oplus \mathscr{O}_Y(m))$, ただし, Y:(3) と同じ, m>0,
- $(5) \mathbb{P}(T_{\mathbb{P}^2}),$
- (6) $C_2(\omega_1 + \omega_2)$.

- $(1) \mathbb{P}^6$
- $(2) Q^6,$
- (3) $E_6(\omega_1)$,
- $(4) G_2(\omega_1 + \omega_2),$
- (5) $Y \times Z$, $t \in U$, $Y : E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$
- $G_2(\omega_1)$ or $G_2(\omega_2)$, Z: 非特異曲線
- (6) $\mathbb{P}(\mathscr{O}_Y \oplus \mathscr{O}_Y(m))$, ただし, Y:(5) と同じ, m>0

- (1) \mathbb{P}^6 ,
- $(2) Q^6,$
- (3) $E_6(\omega_1)$,
- (4) $G_2(\omega_1 + \omega_2)$,
- (5) $Y \times Z$, ただし, $Y : E_6(\omega_1), E_7(\omega_1), E_8(\omega_1), F_4(\omega_1), F_4(\omega_4)$
- $G_2(\omega_1)$ or $G_2(\omega_2)$, Z: 非特異曲線
- (6) $\mathbb{P}(\mathscr{O}_Y \oplus \mathscr{O}_Y(m))$, ただし, Y:(5) と同じ, m>0

- (1) \mathbb{P}^6 ,
- (2) Q^6 ,
- (3) $E_6(\omega_1)$
- $(4) G_2(\omega_1 + \omega_2),$
- (5) $Y \times Z$, $t \not \in U$, $Y : E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$
- $G_2(\omega_1)$ or $G_2(\omega_2)$, Z: 非特異曲線
- (6) $\mathbb{P}(\mathscr{O}_Y \oplus \mathscr{O}_Y(m))$, ただし, Y:(5) と同じ, m>0

- G: 例外型かつ $n = r_G + 1$ なら, X は以下のいずれか:
- (1) \mathbb{P}^6 ,
- (2) Q^6 ,
- (3) $E_6(\omega_1)$,
- $(4) G_2(\omega_1 + \omega_2),$
- (5) $Y \times Z$, $t \in U$, $Y : E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$
- $G_2(\omega_1)$ or $G_2(\omega_2)$, Z: 非特異曲線
- (6) $\mathbb{P}(\mathscr{O}_Y \oplus \mathscr{O}_Y(m))$, ただし, Y:(5) と同じ, m>0

- G: 例外型かつ $n = r_G + 1$ なら, X は以下のいずれか:
- $(1) \mathbb{P}^6$,
- (2) Q^6 ,
- (3) $E_6(\omega_1)$,
- (4) $G_2(\omega_1 + \omega_2)$,
- (5) $Y \times Z$, ただし, $Y : E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$
- $G_2(\omega_1)$ or $G_2(\omega_2)$, Z: 非特異曲線
- (6) $\mathbb{P}(\mathscr{O}_Y \oplus \mathscr{O}_Y(m))$, ただし, Y:(5) と同じ, m>0

- $(1) \mathbb{P}^6$,
- $(2) Q^6$,
- (3) $E_6(\omega_1)$,
- (4) $G_2(\omega_1 + \omega_2)$,
- (5) $Y \times Z$, ただし, Y: $E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$,
- $G_2(\omega_1)$ or $G_2(\omega_2)$, Z: 非特異曲線,

- $(1) \mathbb{P}^6$,
- (2) Q^6 ,
- (3) $E_6(\omega_1)$,
- (4) $G_2(\omega_1 + \omega_2)$,
- (5) $Y \times Z$, ただし , Y: $E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$,
- $G_2(\omega_1)$ or $G_2(\omega_2)$, Z: 非特異曲線,
- (6) $\mathbb{P}(\mathscr{O}_Y \oplus \mathscr{O}_Y(m))$, ただし, Y:(5) と同じ, m>0.

- G: 例外型かつ $n = r_G + 1$ なら, X は以下のいずれか:
- (1) \mathbb{P}^6 , G_2
- (2) Q^6 , G_2
- (3) $E_6(\omega_1)$, F_4
- (4) $G_2(\omega_1 + \omega_2)$,
- (5) $Y \times Z$, ただし , Y: $E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$,
- $G_2(\omega_1)$ or $G_2(\omega_2)$, Z: 非特異曲線,
- (6) $\mathbb{P}(\mathscr{O}_Y \oplus \mathscr{O}_Y(m))$, ただし, Y:(5) と同じ, m>0.

証明方針

Lemma (梅村-向井, '83)

- ① $\exists \phi: X \rightarrow Z$: 端射線の収縮射,
- ② ϕ が G 同値になるように G は Z に作用する.

方針

 $\phi: X \to Z \subset G$ 軌道の関係 $\leadsto X$ の構造決定

 $\underline{\mathsf{Example}} \colon \dim X > \dim Z > 0$ かつ $G \curvearrowright Z$:自明のとき、 $G \curvearrowright F = (\mathrm{fiber\ of\ } \phi) \colon$ 非自明 . $\exists Gp \subset F \colon$ 閉軌道. $n-1 = r_G \leq \dim Gp \leq \dim F \leq n-1.$

 $\sim (\dim F, \dim Z) = (n-1,1)$ and F: G-等質

 $\rightsquigarrow X \cong F \times Z$.

証明方針

Lemma (梅村-向井, '83)

- ① $\exists \phi: X \rightarrow Z$: 端射線の収縮射,
- ② ϕ が G 同値になるように G は Z に作用する.

方針

 $\phi: X \to Z と G$ 軌道の関係 $\leadsto X$ の構造決定

Example: $\dim X > \dim Z > 0$ かつ $G \curvearrowright Z$:自明のとき $G \curvearrowright F = (\text{fiber of } \phi)$: 非自明 . $\exists Gp \subset F$: 閉軌道. $n-1=r_G \leq \dim Gp \leq \dim F \leq n-1$.

 $\sim (\dim F, \dim Z) = (n-1,1)$ and F : G- 等質

 $\rightsquigarrow X \cong F \times Z$.

Lemma (梅村-向井, '83)

- $oldsymbol{0}$ $\exists \phi: X
 ightarrow Z$: 端射線の収縮射 ,
- ② ϕ が G 同値になるように G は Z に作用する.

方針

 $\phi: X \to Z と G$ 軌道の関係 $\leadsto X$ の構造決定

Example: $\dim X > \dim Z > 0$ かつ $G \curvearrowright Z$:自明のとき.

 $G \cap F = \text{(fiber of } \phi\text{):}$ 非自明.

 $\exists Gp \subset F$: 閉軌道

 $n-1 = r_G \le \dim Gp \le \dim F \le n-1.$

 \rightarrow $(\dim F, \dim Z) = (n-1,1)$ and F: G-等質

 $\rightsquigarrow X \cong F \times Z$.

Lemma (梅村-向井, '83)

- ullet $\exists \phi: X
 ightarrow Z$: 端射線の収縮射 ,
- ② ϕ が G 同値になるように G は Z に作用する.

方針

 $\phi: X \to Z と G$ 軌道の関係 $\leadsto X$ の構造決定

Example: $\dim X > \dim Z > 0$ かつ $G \curvearrowright Z$:自明のとき.

 $\overline{G \curvearrowright F} = (\text{fiber of } \phi)$: 非自明.

 $\exists Gp \subset F$: 閉軌道

 $n-1 = r_G \le \dim Gp \le \dim F \le n-1.$

 \sim $(\dim F, \dim Z) = (n-1,1)$ and F: G-等質

 $\rightsquigarrow X \cong F \times Z$.

Lemma (梅村-向井, '83)

- ullet $\exists \phi: X
 ightarrow Z$: 端射線の収縮射 ,
- ② ϕ が G 同値になるように G は Z に作用する.

方針

 $\phi: X \to Z と G$ 軌道の関係 $\leadsto X$ の構造決定

Example: $\dim X > \dim Z > 0$ かつ $G \curvearrowright Z$:自明のとき.

 $G \curvearrowright F = (\text{fiber of } \phi)$: 非自明.

 $\exists Gp \subset F$: 閉軌道.

 $n-1=r_G \leq \dim Gp \leq \dim F \leq n-1.$ $\rightarrow (\dim F, \dim Z)=(n-1,1)$ and F:G-等質

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Lemma (梅村-向井, '83)

- ullet $\exists \phi: X
 ightarrow Z$: 端射線の収縮射 ,
- ② ϕ が G 同値になるように G は Z に作用する.

方針

 $\phi: X \to Z \subset G$ 軌道の関係 $\leadsto X$ の構造決定

Example: $\dim X > \dim Z > 0$ かつ $G \curvearrowright Z$:自明のとき.

 $G \curvearrowright F = (\text{fiber of } \phi)$: 非自明 .

 $\exists Gp \subset F$: 閉軌道.

 $n - 1 = r_G \le \dim Gp \le \dim F \le n - 1.$

 \rightarrow $(\dim F, \dim Z) = (n-1,1)$ and F: G-等質

 $\leadsto X \cong F \times Z$

Lemma (梅村-向井, '83)

- ① $\exists \phi: X \rightarrow Z$: 端射線の収縮射,
- ② ϕ がG 同値になるようにG はZ に作用する.

方針

 $\phi: X \to Z \subset G$ 軌道の関係 $\leadsto X$ の構造決定

Example: $\dim X > \dim Z > 0$ かつ $G \curvearrowright Z$:自明のとき .

 $G \curvearrowright F = (\text{fiber of } \phi)$: 非自明 .

 $\exists Gp \subset F$: 閉軌道.

 $n - 1 = r_G \le \dim Gp \le \dim F \le n - 1.$

 $\rightsquigarrow (\dim F, \dim Z) = (n-1,1)$ and F: G-等質.

 $\leadsto X \cong F \times Z$

Lemma (梅村-向井, '83)

- ① $\exists \phi: X \rightarrow Z$: 端射線の収縮射,
- ② ϕ が G 同値になるように G は Z に作用する.

方針

 $\phi: X \to Z \subset G$ 軌道の関係 $\leadsto X$ の構造決定

Example: $\dim X > \dim Z > 0$ かつ $G \curvearrowright Z$:自明のとき.

 $G \curvearrowright F = (\text{fiber of } \phi)$: 非自明.

 $\exists Gp \subset F$: 閉軌道.

$$n-1=r_G \le \dim Gp \le \dim F \le n-1.$$

$$\rightsquigarrow (\dim F, \dim Z) = (n-1,1)$$
 and $F: G$ -等質.

$$\rightsquigarrow X \cong F \times Z$$
.

$\rho(X) = 1$ のとき.

 $\sim X$: Fano 多樣体, Pic $X \cong \mathbb{Z}$.

X: G-等質でない.

 $\exists H = Gp \subset X$: 閉軌道.

 $n - 1 = r_G \le \dim H < n.$

H: 以下のいずれかと同型:

 $E_6(\omega_1), E_7(\omega_1), E_8(\omega_1), F_4(\omega_1), F_4(\omega_4), G_2(\omega_1), G_2(\omega_2).$

Pic $X \cong \mathbb{Z} \rightsquigarrow H$: X 上の豊富な因子

 $(X,H)\cong (E_6(\omega_1),F_4(\omega_4)),(\mathbb{P}^6,Q^5) \text{ or } (Q^6,Q^5)$

ho(X)=1 のとき、ightarrow X: Fano 多様体, Pic $X\cong \mathbb{Z}$. X: G-等質でない、 $\exists H=Gp\subset X$: 閉軌道. $n-1=r_G\leq \dim H< n$. H: 以下のいずれかと同型:

```
ho(X)=1 のとき、
ightarrow X: Fano 多様体、Pic X\cong \mathbb{Z}. X: G-等質でない、\exists H=Gp\subset X: 閉軌道、n-1=r_G\leq \dim H< n. H: 以下のいずれかと同型:E_6(\omega_1),E_7(\omega_1),E_8(\omega_1),F_4(\omega_1),F_4(\omega_4),G_2(\omega_1),G_2(\omega_2) Pic X\cong \mathbb{Z} \sim H: X 上の豊富な因子。
```

```
ho(X)=1 のとき、
ho(X)=1 のとき、
ho(X)=1 のとき、
ho(X)=1 のとき、
ho(X)=1 の 多様体、
ho(X)=1 の 
h
```

```
\rho(X) = 1 のとき.
```

X: G-等質でない.

 $\exists H = Gp \subset X$: 閉軌道.

 $n - 1 = r_G \le \dim H < n.$

H: 以下のいずれかと同型:

 $E_6(\omega_1), E_7(\omega_1), E_8(\omega_1), F_4(\omega_1), F_4(\omega_4), G_2(\omega_1), G_2(\omega_2).$

Pic $X \cong \mathbb{Z} \sim H$: X 上の豊富な因子

 $(X,H)\cong (E_{6}(\omega_{1}),F_{4}(\omega_{4})),(\mathbb{P}^{6},Q^{5}) \text{ or } (Q^{6},Q^{5})$

```
\rho(X) = 1 のとき.
```

X: G-等質でない.

 $\exists H = Gp \subset X$: 閉軌道.

 $n - 1 = r_G < \dim H < n.$

H: 以下のいずれかと同型:

 $E_6(\omega_1), E_7(\omega_1), E_8(\omega_1), F_4(\omega_1), F_4(\omega_4), G_2(\omega_1), G_2(\omega_2).$

Pic $X\cong \mathbb{Z} \leadsto H\colon X$ 上の豊富な因子

 $(X,H)\cong (E_6(\omega_1),F_4(\omega_4)),(\mathbb{P}^6,Q^5)$ or (Q^6,Q^5)

```
\rho(X) = 1 のとき.
```

X: G-等質でない.

 $\exists H = Gp \subset X$: 閉軌道.

 $n - 1 = r_G < \dim H < n.$

H: 以下のいずれかと同型:

 $E_6(\omega_1), E_7(\omega_1), E_8(\omega_1), F_4(\omega_1), F_4(\omega_4), G_2(\omega_1), G_2(\omega_2).$

Pic $X \cong \mathbb{Z} \rightsquigarrow H$: X 上の豊富な因子

 $(X,H) \cong (E_6(\omega_1), F_4(\omega_4)), (\mathbb{P}^6, Q^5) \text{ or } (Q^6, Q^5)$

 $\rho(X) = 1$ のとき.

 $\sim X$: Fano 多樣体, Pic $X \cong \mathbb{Z}$.

X: G-等質でない.

 $\exists H = Gp \subset X$: 閉軌道.

 $n - 1 = r_G < \dim H < n.$

H: 以下のいずれかと同型:

 $E_6(\omega_1), E_7(\omega_1), E_8(\omega_1), F_4(\omega_1), F_4(\omega_4), G_2(\omega_1), G_2(\omega_2).$

Pic $X \cong \mathbb{Z} \rightsquigarrow H$: X 上の豊富な因子.

 $(X,H)\cong (E_6(\omega_1),F_4(\omega_4)),(\mathbb{P}^6,Q^5) \text{ or } (Q^6,Q^5)$

$$\rho(X)=1$$
 のとき.

X: G-等質でない.

 $\exists H = Gp \subset X$: 閉軌道.

 $n-1 = r_G \le \dim H < n$.

H: 以下のいずれかと同型:

 $E_6(\omega_1), E_7(\omega_1), E_8(\omega_1), F_4(\omega_1), F_4(\omega_4), G_2(\omega_1), G_2(\omega_2).$

Pic $X \cong \mathbb{Z} \rightsquigarrow H$: X 上の豊富な因子.

 $(X,H) \cong (E_6(\omega_1), F_4(\omega_4)), (\mathbb{P}^6, Q^5) \text{ or } (Q^6, Q^5).$

研究成果

 $n=r_G+1$ なる例外型代数群の作用をもつ射影多様体の分類.

- ① Andreatta の結果と合わせると, $n=r_G+1$ なる代数群の作用をもつ射影多様体の完全な分類を得る.
- ② 先の偏極多様体の結果の応用例

研究成果

 $n=r_G+1$ なる例外型代数群の作用をもつ射影多様体の分類.

- **①** Andreatta の結果と合わせると, $n=r_G+1$ なる代数群の作用をもつ射影多様体の完全な分類を得る.
- ② 先の偏極多様体の結果の応用例

研究成果

 $n=r_G+1$ なる例外型代数群の作用をもつ射影多様体の分類.

- ① Andreatta の結果と合わせると, $n=r_G+1$ なる代数群の作用をもつ射影多様体の完全な分類を得る.
- ② 先の偏極多様体の結果の応用例.

Definition

Fano 多様体 ⇔ 豊富な反標準因子をもつ非特異射影多様体.

Problem (Special Case 1)

 $X \subset \mathbb{P}^N$ を Picard 数 1 の Fano 多様体とする.もし X が line で覆われるなら,X 上の一般の 2 点は何本の line で結べるか?

Definition

Fano 多様体 ⇔ 豊富な反標準因子をもつ非特異射影多様体.

Problem (Special Case 1)

 $X \subset \mathbb{P}^N$ を Picard 数 1 の Fano 多様体とする.もし X が line で覆われるなら,X 上の一般の 2 点は何本の line で結べるか?

Definition

Fano 多様体 ⇔ 豊富な反標準因子をもつ非特異射影多様体.

Problem (Special Case 1)

 $X \subset \mathbb{P}^N$ を Picard 数 1 の Fano 多様体とする.もし X が line で覆われるなら, X 上の一般の 2 点は何本の line で結べるか?

Definition

Fano 多様体 ⇔ 豊富な反標準因子をもつ非特異射影多様体.

Problem (Special Case 1)

 $X \subset \mathbb{P}^N$ を Picard 数 1 の Fano 多様体とする.もし X が line で覆われるなら, X 上の一般の 2 点は何本の line で結べるか?

2
$$X = Q^n \ (n \ge 3) =$$

$$2 X = Q^n \ (n \ge 3) \Rightarrow$$

$$2 X = Q^n \ (n \ge 3) \Rightarrow l = 2.$$

$$2 X = Q^n \ (n \ge 3) \Rightarrow l = 2.$$

$$X = G(2, \mathbb{C}^6) \subset \mathbb{P}^{14} \Rightarrow$$

$$2 X = Q^n \ (n \ge 3) \Rightarrow l = 2.$$

$$3 X = G(2, \mathbb{C}^6) \subset \mathbb{P}^{14} \Rightarrow l = 2.$$

$$2 X = Q^n \ (n \ge 3) \Rightarrow l = 2.$$

$$X = G(2, \mathbb{C}^6) \subset \mathbb{P}^{14} \Rightarrow l = 2.$$

$$x,y \in G(2,\mathbb{C}^6)$$
: 一般

$$2 X = Q^n \ (n \ge 3) \Rightarrow l = 2.$$

$$X = G(2, \mathbb{C}^6) \subset \mathbb{P}^{14} \Rightarrow l = 2.$$

$$x,y \in G(2,\mathbb{C}^6)$$
: 一般

$$\longleftrightarrow L_x, L_y \subset \mathbb{C}^6: 2 \text{ } \chi \overline{\pi}.$$

- $2 X = Q^n \ (n \ge 3) \Rightarrow l = 2.$
- $X = G(2, \mathbb{C}^6) \subset \mathbb{P}^{14} \Rightarrow l = 2.$

$$x,y\in G(2,\mathbb{C}^6)$$
: 一般

$$\longleftrightarrow L_x, L_y \subset \mathbb{C}^6$$
: 2 次元.

$$V := \langle L_x, L_y \rangle \subset \mathbb{C}^6$$
: 4次元.

2
$$X = Q^n \ (n \ge 3) \Rightarrow l = 2.$$

$$X = G(2, \mathbb{C}^6) \subset \mathbb{P}^{14} \Rightarrow l = 2.$$

$$x,y \in G(2,\mathbb{C}^6)$$
: 一般

$$\longleftrightarrow L_x, L_y \subset \mathbb{C}^6$$
: 2 次元.

$$V := \langle L_x, L_y \rangle \subset \mathbb{C}^6$$
: 4 次元.

$$x,y\in G(2,V)\subset G(2,\mathbb{C}^6)$$
 and $G(2,V)\cong Q^4$.

$$2 X = Q^n \ (n \ge 3) \Rightarrow l = 2.$$

$$X = G(2, \mathbb{C}^6) \subset \mathbb{P}^{14} \Rightarrow l = 2.$$

$$x,y \in G(2,\mathbb{C}^6)$$
: 一般

$$\longleftrightarrow L_x, L_y \subset \mathbb{C}^6$$
: 2 次元.

$$V := \langle L_x, L_y \rangle \subset \mathbb{C}^6$$
: 4次元.

$$x,y\in G(2,V)\subset G(2,\mathbb{C}^6)$$
 and $G(2,V)\cong Q^4$.

よって,
$$l = 2$$
.

 $X\subset\mathbb{P}^N$: line で覆われない Picard 数 1 の Fano 多様体 . (e.g. $i_X=1$) X は conic で覆われるとする.

Problem (Special Case 2)

X 上の一般の 2 点を結ぶためには何本の conic が必要か?

 $(e.g. (N) \subset \mathbb{P}^N$: 次数 N の一般の超曲面.)

 $X\subset \mathbb{P}^N$: line で覆われない Picard 数1 の Fano 多様体 .

(e.g. $i_X = 1$)

X は conic で覆われるとする.

Problem (Special Case 2)

X 上の一般の 2点を結ぶためには何本の ${\sf conic}$ が必要か ${\it ?}$

 $(e.g. (N) \subset \mathbb{P}^N$: 次数 N の一般の超曲面.)

 $X\subset \mathbb{P}^N$: line で覆われない Picard 数1の Fano 多様体.

(e.g.
$$i_X = 1$$
)

X は conic で覆われるとする.

Problem (Special Case 2)

X 上の一般の 2 点を結ぶためには何本の conic が必要か?

(e.g. $(N) \subset \mathbb{P}^N$: 次数 N の一般の超曲面.)

- \diamond 定数でない射 $f: \mathbb{P}^1 \to X$ に対し, $f(\mathbb{P}^1)$: 有理曲線.
- \diamond RatCurves $^n(X) := \{X \ \bot \mathcal{O}$ 有理曲線 $\}$ normalization.

 $\operatorname{Pic}(X) \cong \mathbb{Z}[H]$ (H は豊富) と仮定.

既約成分 $\mathcal{K} \subset \operatorname{RatCurves}^n(X)$ に対し,

 $\diamond d_{\mathscr{K}} := H.C$ for $[C] \in \mathscr{K}$: \mathscr{K} の次数

 \diamond \mathcal{K} : dominating irr comp \Leftrightarrow $\bigcup_{[C] \in \mathcal{K}} C = X$.

Definition

 \mathscr{K} : minimal rational component \Leftrightarrow 次数最小の dom irr comp.

- ① X: line で覆われる $\Rightarrow \mathcal{K}$: line の族
- ② X: line で覆われないが conic で覆われる $\Rightarrow \mathscr{K}$: conic の族

- \diamondsuit 定数でない射 $f: \mathbb{P}^1 \to X$ に対し, $f(\mathbb{P}^1)$: 有理曲線.
- \diamond RatCurves $^n(X) := \{X \, \bot \mathcal{O}$ 有理曲線 $\}$ normalization.

 $\operatorname{Pic}(X) \cong \mathbb{Z}[H]$ (H は豊富) と仮定.

既約成分 $\mathcal{K} \subset \text{RatCurves}^*(A)$ に対し、 $\Diamond d_{\mathcal{K}} := H.C \text{ for } [C] \in \mathcal{K} : \mathcal{K}$ の次数

 \diamond \mathcal{K} : dominating irr comp $\Leftrightarrow \bigcup_{[C] \in \mathcal{K}} C = X$.

Definition

 \mathcal{H} : minimal rational component \Leftrightarrow 次数最小の dom irr comp.

- ① X: line で覆われる $\Rightarrow \mathcal{K}$: line の族
- ② X: line で覆われないが conic で覆われる $\Rightarrow \mathscr{K}$: conic の族

- \diamondsuit 定数でない射 $f: \mathbb{P}^1 \to X$ に対し, $f(\mathbb{P}^1)$: 有理曲線.
- \diamond RatCurves $^n(X) := \{X \, \bot \mathcal{O}$ 有理曲線 $\}$ normalization.

 $Pic(X) \cong \mathbb{Z}[H]$ (H は豊富) と仮定.

既約成分 $\mathcal{K} \subset \operatorname{RatCurves}^n(X)$ に対し,

- $\diamond d_{\mathscr{K}} := H.C$ for $[C] \in \mathscr{K}$: \mathscr{K} の次数
- $\diamond \ \mathcal{K} \colon \operatorname{dominating irr comp} \Leftrightarrow \bigcup_{[C] \in \mathcal{K}} C = X.$

Definition

 \mathcal{K} : minimal rational component \Leftrightarrow 次数最小の dom irr comp.

- ① X: line で覆われる $\Rightarrow \mathcal{K}$: line の族
- ② X: line で覆われないが conic で覆われる \Rightarrow \mathscr{K} : conic の族

- \diamondsuit 定数でない射 $f: \mathbb{P}^1 \to X$ に対し, $f(\mathbb{P}^1)$: 有理曲線.
- \diamond RatCurves $^n(X) := \{X \, \bot \mathcal{O}$ 有理曲線 $\}$ normalization.

 $Pic(X) \cong \mathbb{Z}[H]$ (H は豊富) と仮定.

既約成分 $\mathcal{K} \subset \operatorname{RatCurves}^n(X)$ に対し、

- $\diamond d_{\mathscr{K}} := H.C$ for $[C] \in \mathscr{K}$: \mathscr{K} の次数
- $\diamond \ \mathcal{K} \colon \operatorname{dominating irr comp} \Leftrightarrow \bigcup_{[C] \in \mathcal{K}} C = X.$

Definition

 \mathcal{K} : minimal rational component \Leftrightarrow 次数最小の dom irr comp.

- ① X: line で覆われる $\Rightarrow \mathcal{K}$: line の族
- ② X: line で覆われないが conic で覆われる $\Rightarrow \mathcal{K}$: conic の族

- \diamondsuit 定数でない射 $f: \mathbb{P}^1 \to X$ に対し, $f(\mathbb{P}^1)$: 有理曲線.
- \diamond RatCurves $^n(X) := \{X \, \, \textbf{上の有理曲線} \, \}^{\text{normalization}}$.

 $Pic(X) \cong \mathbb{Z}[H]$ (H は豊富) と仮定.

既約成分 $\mathcal{K} \subset \operatorname{RatCurves}^n(X)$ に対し,

- $\diamond d_{\mathscr{K}} := H.C$ for $[C] \in \mathscr{K}$: \mathscr{K} の次数
- $\diamond \ \mathcal{K} \colon \operatorname{dominating irr comp} \Leftrightarrow \bigcup_{[C] \in \mathcal{K}} C = X.$

Definition

光: minimal rational component ⇔ 次数最小の dom irr comp.

- ① X: line で覆われる $\Rightarrow \mathcal{K}$: line の族.
- ② X: line で覆われないが conic で覆われる $\Rightarrow \mathcal{K}$: conic の族.

Problem

Problem (Hwang-Kebekus '05)

X 上の一般の 2 点は何本の \mathcal{K} -curve により結べるか?

 $l_{\mathscr{K}}:=$ the min length of connected chains of general \mathscr{K} -curves joining two gen pts.

Example

- ③ $X = (N) \subset \mathbb{P}^N$: 次数 N の一般の超曲面 $\Rightarrow \mathcal{K} = \{\text{conics in } (N)\}.$

Example

- $2 X = Q^n \Rightarrow \mathcal{K} = \{ \text{lines in } Q^n \}, l_{\mathcal{K}} = 2.$
- ③ $X = (N) \subset \mathbb{P}^N$: 次数 N の一般の超曲面 $\Rightarrow \mathcal{K} = \{\text{conics in } (N)\}.$

Example

- $2 X = Q^n \Rightarrow \mathscr{K} = \{ \text{lines in } Q^n \}, l_{\mathscr{K}} = 2.$
- ③ $X = (N) \subset \mathbb{P}^N$: 次数 N の一般の超曲面 $\Rightarrow \mathcal{K} = \{\text{conics in } (N)\}.$

Motivation [Nadel '91, Kollár-Miyaoka-Mori '92] Boundedness of Fano manifolds

Theorem (Nadel '91, Kollár-Miyaoka-Mori '92)

任意の $n \in \mathbb{N}$ に対し、Picard 数 1 の n 次元 Fano 多様体の変形類は高々有限個。

Theorem (Nadel, Kollár-Miyaoka-Mori

 $l_{\mathcal{K}} \leq n$

Theorem

 $0 < (-K_X)^n \le (n(n+1))^n$

Motivation [Nadel '91, Kollár-Miyaoka-Mori '92]

Boundedness of Fano manifolds

Theorem (Nadel '91, Kollár-Miyaoka-Mori '92)

任意の $n \in \mathbb{N}$ に対し, Picard 数 1 の n 次元 Fano 多様体の変形類は高々有限個.

Theorem (Nadel, Kollár-Miyaoka-Mori)

 $l_{\mathcal{K}} \leq n$

Theorem

 $0 < (-K_X)^n \le (n(n+1))^n.$

Motivation [Nadel '91, Kollár-Miyaoka-Mori '92] Boundedness of Fano manifolds

Theorem (Nadel '91, Kollár-Miyaoka-Mori '92)

任意の $n \in \mathbb{N}$ に対し, Picard 数 1 の n 次元 Fano 多様体の変形類は高々有限個.

Theorem (Nadel, Kollár-Miyaoka-Mori)

 $l_{\mathscr{K}} \leq n$

Theorem

 $0 < (-K_X)^n \le (n(n+1))^n$

Motivation [Nadel '91, Kollár-Miyaoka-Mori '92] Boundedness of Fano manifolds

Theorem (Nadel '91, Kollár-Miyaoka-Mori '92)

任意の $n \in \mathbb{N}$ に対し, Picard 数 1 の n 次元 Fano 多様体の変形類は高々有限個.

Theorem (Nadel, Kollár-Miyaoka-Mori)

$$l_{\mathscr{K}} \leq n$$

Theorem

$$0 < (-K_X)^n \le (n(n+1))^n.$$

<u>Definition</u> i_X : X の Fano 指数 $\Leftrightarrow -K_X = i_X H$.

Theorem (Hwang-Kebekus '05, Ionescu-Russo '07)

X: n 次元 prime Fano $eq \mathbb{P}^n$ が $i_X > rac{2}{3}n$ を満たすならば, $l_\mathscr{K} = 2$.

 $\underline{\mathsf{Definition}}\ X$: prime Fano $\Leftrightarrow H$: 非常に豊富.

Definition i_X : X の Fano 指数 $\Leftrightarrow -K_X = i_X H$.

Theorem (Hwang-Kebekus '05, Ionescu-Russo '07)

X: n 次元 prime Fano $eq \mathbb{P}^n$ が $i_X > rac{2}{3}n$ を満たすならば, $l_\mathscr{K} = 2$.

Definition X: prime Fano $\Leftrightarrow H$: 非常に豊富.

- \bullet $n \leq 5$,
- ② coindex $(X) := n + 1 i_X \le 3$,
- \bigcirc X: prime and $i_X = \frac{2}{3}n$,

<u>Definition</u> i_X : X の Fano 指数 $\Leftrightarrow -K_X = i_X H$.

Theorem (Hwang-Kebekus '05, Ionescu-Russo '07)

X: n 次元 prime Fano $eq \mathbb{P}^n$ が $i_X > rac{2}{3}n$ を満たすならば, $l_\mathscr{K} = 2$.

 $\underline{\mathsf{Definition}}\ X$: prime Fano $\Leftrightarrow H$: 非常に豊富.

- **1** $n \le 5$,
- ② coindex $(X) := n + 1 i_X \le 3$,
- X: prime and $i_X = \frac{2}{3}n_1$
- lacktriangleright X が二重被覆の構造をもち line で覆われるとき

<u>Definition</u> i_X : X の Fano 指数 $\Leftrightarrow -K_X = i_X H$.

Theorem (Hwang-Kebekus '05, Ionescu-Russo '07)

X: n 次元 prime Fano $eq \mathbb{P}^n$ が $i_X > rac{2}{3}n$ を満たすならば, $l_\mathscr{K} = 2$.

 $\underline{\mathsf{Definition}}\ X$: prime Fano $\Leftrightarrow H$: 非常に豊富.

- **1** $n \le 5$,
- ② $coindex(X) := n + 1 i_X \le 3$,
- \bullet X: prime and $i_X = \frac{2}{3}n$,
- X が二重被覆の構造をもち line で覆われるとき

<u>Definition</u> i_X : X の Fano 指数 $\Leftrightarrow -K_X = i_X H$.

Theorem (Hwang-Kebekus '05, Ionescu-Russo '07)

X: n 次元 prime Fano $eq \mathbb{P}^n$ が $i_X > rac{2}{3}n$ を満たすならば, $l_\mathscr{K} = 2$.

 $\underline{\mathsf{Definition}}\ X$: prime Fano $\Leftrightarrow H$: 非常に豊富.

- **1** $n \le 5$,
- ② $coindex(X) := n + 1 i_X \le 3$,
- $3 X: \text{ prime and } i_X = \frac{2}{3}n,$
- X が二重被覆の構造をもち line で覆われるとき

Definition i_X : X の Fano 指数 $\Leftrightarrow -K_X = i_X H$.

Theorem (Hwang-Kebekus '05, Ionescu-Russo '07)

X: n 次元 prime Fano $eq \mathbb{P}^n$ が $i_X > rac{2}{3} n$ を満たすならば, $l_\mathscr{K} = 2$.

 $\underline{\mathsf{Definition}}\ X$: prime Fano $\Leftrightarrow H$: 非常に豊富.

- **1** $n \le 5$,
- ② $coindex(X) := n + 1 i_X \le 3$,
- **3** X: prime and $i_X = \frac{2}{3}n$,
- X が二重被覆の構造をもち line で覆われるとき.

Definition i_X : X の Fano 指数 $\Leftrightarrow -K_X = i_X H$.

Theorem (Hwang-Kebekus '05, Ionescu-Russo '07)

X: n 次元 prime Fano $eq \mathbb{P}^n$ が $i_X > rac{2}{3}n$ を満たすならば, $l_\mathscr{K} = 2$.

 $\underline{\mathsf{Definition}}\ X$: prime Fano $\Leftrightarrow H$: 非常に豊富.

- **1** $n \le 5$,
- ② $coindex(X) := n + 1 i_X \le 3$,
- **3** X: prime and $i_X = \frac{2}{3}n$,
- X が二重被覆の構造をもち line で覆われるとき.

Notation

X: n 次元 Fano 多樣体 s.t. $\operatorname{Pic}(X) \cong \mathbb{Z} \ (n \geq 3)$,

 $\mathscr{K} \subset \operatorname{RatCurves}^n(X)$: min rat comp,

 $l_{\mathscr{K}}$: the min length of connected chains of general \mathscr{K} -curves joining two gen pts.

Basic Property

一般の $[C] \in \mathcal{K}$ に対し, $f^*T_X \cong \mathscr{O}_{\mathbb{P}^1}(2) \oplus \mathscr{O}_{\mathbb{P}^1}(1)^p \oplus \mathscr{O}_{\mathbb{P}^1}^{n-1-p}$, ただし, $f: \mathbb{P}^1 \to X$ は C の正規化.

 $p = i_X d_{\mathscr{K}} - 2 \ (0 \le p \le n - 1)$

Notation

X: n 次元 Fano 多樣体 s.t. $\operatorname{Pic}(X)\cong \mathbb{Z}\ (n\geq 3)$, $\mathscr{K}\subset\operatorname{RatCurves}^n(X)$: min rat comp, $l_{\mathscr{K}}$: the min length of connected chains of general \mathscr{K} -curves joining two gen pts.

Basic Property

一般の $[C] \in \mathcal{K}$ に対し, $f^*T_X \cong \mathscr{O}_{\mathbb{P}^1}(2) \oplus \mathscr{O}_{\mathbb{P}^1}(1)^p \oplus \mathscr{O}_{\mathbb{P}^1}^{n-1-p}$, ただし, $f: \mathbb{P}^1 \to X$ は C の正規化.

$$p = i_X d_{\mathcal{K}} - 2 \ (0 \le p \le n - 1).$$

$$p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2.$$

$$(n, p) = (5, 1) \Rightarrow l_{\mathcal{K}} = 3.$$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2		4	3		5	4		
3	1		4	2		5	3		
3	0		4	1		5	2		
			4	0		5	1		
						5	0		

$$p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2.$$

$$(n, p) = (5, 1) \Rightarrow l_{\mathcal{K}} = 3.$$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2		4	3		5	4		
3	1		4	2		5	3		
3	0		4	1		5	2		
			4	0		5	1		
						5	0		

$$p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2.$$

$$(n, p) = (5, 1) \Rightarrow l_{\mathcal{K}} = 3.$$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2		4	3		5	4		\mathbb{P}^n
3	1		4	2		5	3		
3	0		4	1		5	2		
			4	0		5	1		
						5	0		

$$p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2.$$

$$(n, p) = (5, 1) \Rightarrow l_{\mathcal{K}} = 3.$$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1		4	2		5	3		
3	0		4	1		5	2		
			4	0		5	1		
						5	0		

$$p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2.$$

$$(n, p) = (5, 1) \Rightarrow l_{\mathcal{K}} = 3.$$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1		4	2		5	3		
3	0		4	1		5	2		
			4	0		5	1		
						5	0		

$$p = n - 3 > 0 \Rightarrow l_{\mathscr{K}} = 2.$$

 $(n, p) = (5, 1) \Rightarrow l_{\mathscr{K}} = 3.$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1		4	2		5	3		Q^n
3	0		4	1		5	2		
			4	0		5	1		
						5	0		

$$p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2.$$

$$(n, p) = (5, 1) \Rightarrow l_{\mathcal{K}} = 3.$$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1	2	4	2	2	5	3	2	Q^n
3	0		4	1		5	2		
			4	0		5	1		
						5	0		

$$p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2.$$

 $(n, p) = (5, 1) \Rightarrow l_{\mathcal{K}} = 3.$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1	2	4	2	2	5	3	2	Q^n
3	0		4	1		5	2		
			4	0		5	1		
						5	0		

$$p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2.$$

$$(n, p) = (5, 1) \Rightarrow l_{\mathcal{K}} = 3.$$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1	2	4	2	2	5	3	2	Q^n
3	0		4	1		5	2		
			4	0		5	1		
						5	0		$p = 0 \Rightarrow l_{\mathcal{K}} = n$

$$p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2.$$

 $(n, p) = (5, 1) \Rightarrow l_{\mathcal{K}} = 3.$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1	2	4	2	2	5	3	2	Q^n
3	0	3	4	1		5	2		
			4	0	4	5	1		
						5	0	5	$p = 0 \Rightarrow l_{\mathcal{K}} = n$

$$p = n - 3 > 0 \Rightarrow l_{\mathscr{K}} = 2.$$

 $(n, p) = (5, 1) \Rightarrow l_{\mathscr{K}} = 3.$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1	2	4	2	2	5	3	2	Q^n
3	0	3	4	1		5	2		
			4	0	4	5	1		
						5	0	5	$p = 0 \Rightarrow l_{\mathscr{K}} = n$

$$p = n - 3 > 0 \Rightarrow l_{\mathscr{K}} = 2.$$

$$(n, p) = (5, 1) \Rightarrow l_{\mathscr{K}} = 3.$$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1	2	4	2	2	5	3	2	Q^n
3	0	3	4	1		5	2		
			4	0	4	5	1		
						5	0	5	$p = 0 \Rightarrow l_{\mathscr{K}} = n$

$$p = n - 3 > 0 \Rightarrow l_{\mathscr{K}} = 2.$$

$$(n, p) = (5, 1) \Rightarrow l_{\mathscr{K}} = 3.$$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1	2	4	2	2	5	3	2	Q^n
3	0	3	4	1	2	5	2		
			4	0	4	5	1		
						5	0	5	$p = 0 \Rightarrow l_{\mathscr{K}} = n$

$$p = n - 3 > 0 \Rightarrow l_{\mathscr{K}} = 2.$$

$$(n, p) = (5, 1) \Rightarrow l_{\mathscr{K}} = 3.$$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1	2	4	2	2	5	3	2	Q^n
3	0	3	4	1	2	5	2	2	
			4	0	4	5	1		
						5	0	5	$p = 0 \Rightarrow l_{\mathscr{K}} = n$

Table of $l_{\mathscr{K}}$ $(n \leq 5)$

Theorem 1 (W)

$$p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2.$$

$$(n, p) = (5, 1) \Rightarrow l_{\mathcal{K}} = 3.$$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1	2	4	2	2	5	3	2	Q^n
3	0	3	4	1	2	5	2	2	
			4	0	4	5	1	3	
						5	0	5	$p = 0 \Rightarrow l_{\mathcal{K}} = n$

Table of $l_{\mathscr{K}}$ $(n \leq 5)$

Theorem 1 (W)

$$p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2.$$

 $(n, p) = (5, 1) \Rightarrow l_{\mathcal{K}} = 3.$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1	2	4	2	2	5	3	2	Q^n
3	0	3	4	1	2	5	2	2	
			4	0	4	5	1	3	
						5	0	5	$p = 0 \Rightarrow l_{\mathcal{K}} = n$

Table of $l_{\mathscr{K}}$ $(n \leq 5)$

Theorem 1 (W)

$$p = n - 3 > 0 \Rightarrow l_{\mathscr{K}} = 2.$$

 $(n, p) = (5, 1) \Rightarrow l_{\mathscr{K}} = 3.$

n	p	$l_{\mathscr{K}}$	n	p	$l_{\mathscr{K}}$	$\mid n \mid$	p	$l_{\mathscr{K}}$	
3	2	1	4	3	1	5	4	1	\mathbb{P}^n
3	1	2	4	2	2	5	3	2	Q^n
3	0	3	4	1	2	5	2	2	
			4	0	4	5	1	3	
						5	0	5	$p = 0 \Rightarrow l_{\mathscr{K}} = n$

特に, $n \leq 5$ なら, $l_{\mathcal{X}}$ は (n, p) にのみ依存する.

$\operatorname{coindex}(X) \le 3$

coindex(X)	X	$l_{\mathscr{K}}$
0	\mathbb{P}^n	1
1	Q^n	$\mid 2 \mid$
2	del Pezzo 3-fold	
2	del Pezzo n -fold $(n > 3)$	

$\operatorname{coindex}(X) \leq 3$

coindex(X)	X	$l_{\mathscr{K}}$
0	\mathbb{P}^n	1
1	Q^n	$\mid 2 \mid$
2	del Pezzo 3-fold	
2	del Pezzo n -fold $(n > 3)$	

Remark 1: $\operatorname{coindex}(X) = 2 \Rightarrow p = n - 3$.

$\operatorname{coindex}(X) \le 3$

coindex(X)	X	$l_{\mathscr{K}}$
0	\mathbb{P}^n	1
1	Q^n	$\mid 2 \mid$
2	del Pezzo 3-fold	
2	$ del \ Pezzo \ n\text{-}fold \ (n > 3) $	

Remark 1: $\operatorname{coindex}(X) = 2 \Rightarrow p = n - 3$.

Remark 2: $p = 0 \Rightarrow l_{\mathcal{K}} = n$.

$\operatorname{coindex}(X) \leq 3$

$\operatorname{coindex}(X)$	X	$l_{\mathscr{K}}$
0	\mathbb{P}^n	1
1	Q^n	$\mid 2 \mid$
2	del Pezzo 3-fold	3
2	$ del \ Pezzo \ n\text{-}fold \ (n > 3) $	

Remark 1: $\operatorname{coindex}(X) = 2 \Rightarrow p = n - 3$.

Remark 2: $p = 0 \Rightarrow l_{\mathcal{K}} = n$.

$\operatorname{coindex}(X) \le 3$

coindex(X)	X	$l_{\mathscr{K}}$
0	\mathbb{P}^n	1
1	Q^n	$\mid 2 \mid$
2	del Pezzo 3-fold	3
2	$del\ Pezzo\ n\text{-}fold\ (n>3)$	

Remark 1: $\operatorname{coindex}(X) = 2 \Rightarrow p = n - 3$.

Remark 2: $p = 0 \Rightarrow l_{\mathscr{K}} = n$.

Thm 1: $p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2$.

$\operatorname{coindex}(X) \le 3$

coindex(X)	X	$l_{\mathscr{K}}$
0	\mathbb{P}^n	1
1	Q^n	$\mid 2 \mid$
2	del Pezzo 3-fold	3
2	$del\ Pezzo\ n\text{-}fold\ (n>3)$	2

Remark 1: $\operatorname{coindex}(X) = 2 \Rightarrow p = n - 3$.

Remark 2: $p = 0 \Rightarrow l_{\mathcal{K}} = n$.

Thm 1: $p = n - 3 > 0 \Rightarrow l_{\mathcal{K}} = 2$.

Theorem 2 (W)

 $\operatorname{coindex}(X) = 3, n \geq 6 \Rightarrow l_{\mathscr{K}} = 2$ except the case X = LG(3,6): 6-dim Lagrangian Grassmann.

$$LG(3,6):=\{[V]\in G(3,6)|\omega(V,V)=0\},\ \omega$$
: symple form on \mathbb{C}^6 .

Theorem 2 (W)

 $\operatorname{coindex}(X)=3, n\geq 6 \Rightarrow l_{\mathscr{K}}=2$ except the case X=LG(3,6): 6-dim Lagrangian Grassmann.

$$LG(3,6):=\{[V]\in G(3,6)|\omega(V,V)=0\},\ \omega$$
: symple form on \mathbb{C}^6 .

n	$l_{\mathscr{K}}$
$n \ge 7$	2
6	2 or 3
5	3
4	4
3	3

Theorem 2 (W)

 $\operatorname{coindex}(X) = 3, n \geq 6 \Rightarrow l_{\mathscr{H}} = 2$ except the case X = LG(3,6): 6-dim Lagrangian Grassmann.

$$LG(3,6):=\{[V]\in G(3,6)|\omega(V,V)=0\},\ \omega$$
: symple form on \mathbb{C}^6 .

n	$l_{\mathscr{K}}$
$n \ge 7$	2
6	2 or 3
5	3
4	4
3	3

 $n \geq 4 \Rightarrow p = n - 4$. よって , $l_{\mathscr{K}}$ は一般に (n,p) のみでは定まらない.

X: prime and $i_X = \frac{2}{3}n$

Theorem (W)

X: prime Fano, $i_X = \frac{2}{3}n$. そのとき以下の場合を除いて $l_{\mathscr{K}} = 2$:

- ② (2) ∩ (2) ⊂ \mathbb{P}^5 : 2つの 2次超曲面の完全交叉.
- ③ $G(2,5)\cap (1)^3\subset \mathbb{P}^6$: G(2,5) の 3次元の線形切断.
- \bullet LG(3,6): Lagrangian Grass.
- **6** G(3,6): Grass.
- E₇(ω₁): E₇型の27次元有理等質多様体.

上記例外の場合, $l_{\mathcal{K}} = 3$.

X: prime and $i_X = \frac{2}{3}n$

Theorem (W)

X: prime Fano, $i_X = \frac{2}{3}n$. そのとき以下の場合を除いて $l_{\mathscr{K}} = 2$:

- ② $(2) \cap (2) \subset \mathbb{P}^5$: 2つの 2次超曲面の完全交叉.
- ③ $G(2,5)\cap (1)^3\subset \mathbb{P}^6$: G(2,5) の 3次元の線形切断.
- LG(3,6): Lagrangian Grass.
- **6** G(3,6): Grass.
- **③** $S_5 := \mathbb{F}_5(Q^{10})^+$: 15 次元 spinor 多樣体.

上記例外の場合, $l_{\mathcal{K}} = 3$.

Definition

- $oldsymbol{X}\subset \mathbb{P}^N$: conic-connected $\Leftrightarrow X$ 上の一般の 2 点は X 上のconic により結ばれる.
- ② $SX := \bigcup_{x \neq y \in X} \langle x, y \rangle$: X の割線多様体.

Remark: $\dim SX \leq 2n + 1$.

Definition

 $X \subset \mathbb{P}^N$: defective $\Leftrightarrow \dim SX < 2n + 1$.

Corollary (W)

X: prime Fano, $i_X = \frac{2}{3}n$ かつ $n \geq 6$. このとき以下は同値.

- **2** $l_{\mathcal{K}} = 3$.
- ③ $X \subset \mathbb{P}(H^0(X, \mathscr{O}_X(H)))$: conic-connected でない.
- ⑤ $X \subset \mathbb{P}(H^0(X, \mathcal{O}_X(H)))$ は次のいずれかに射影同値 $LG(3,6), G(3,6), S_5$ or $E_7(\omega_1)$.

Corollary (W)

X: prime Fano, $i_X = \frac{2}{3}n$ かつ $n \geq 6$. このとき以下は同値.

- **2** $l_{\mathcal{K}} = 3$.
- ③ $X \subset \mathbb{P}(H^0(X, \mathscr{O}_X(H)))$: conic-connected でない.
- $oldsymbol{S}$ $X\subset \mathbb{P}(H^0(X,\mathscr{O}_X(H)))$ は次のいずれかに射影同値 $LG(3,6),\ G(3,6),\ S_5 \ or \ E_7(\omega_1).$

Property	$i_X > \frac{2}{3}n$	$i_X = \frac{2}{3}n$	$i_X = \frac{2}{3}n$
$l_{\mathscr{K}}$	2	2	3
Conic-connectedness	Yes	Yes	No
Defectiveness of the sec var	Yes	Yes	No

 $i_X = \frac{2}{3}n$ は conic-connectedness や割線多様体の defectiveness からみても境界になっている.

Property	$i_X > \frac{2}{3}n$	$i_X = \frac{2}{3}n$	$i_X = \frac{2}{3}n$
$l_{\mathscr{K}}$	2	2	3
Conic-connectedness	Yes	Yes	No
Defectiveness of the sec var	Yes	Yes	No

 $i_X = \frac{2}{3}n$ は conic-connectedness や割線多様体の defectiveness からみても境界になっている.

研究成果

以下の場合に対し, Fano 多様体の length を求めた.

- \bullet dim $X \leq 5$,
- \bigcirc coindex $(X) \leq 3$,
- **③** X: prime かつ $i_X = \frac{2}{3} \dim X$,

- 等質多様体を豊富な因子として含む偏極多様体の分類.
- ② $n=r_G+1$ なる例外型代数群の作用をもつ射影多様体の分類 $n=r_G+1$ なる例外型代数群の作用をもつ射影多様体の分類 $n=r_G+1$
- ③ 以下の場合に対し,ファノ多様体の length を求めた.
 - $\mathbf{0} \quad \dim X \leq 5$
 - \circ coindex $(X) \leq 3$,
 - ③ X: prime かつ $i_X = \frac{2}{3} \dim X$,
 - X: 2 重被覆の構造をもち,次数1の有理曲線で覆われる

- 等質多様体を豊富な因子として含む偏極多様体の分類.
- ② $n=r_G+1$ なる例外型代数群の作用をもつ射影多様体の分類.
- 以下の場合に対し、ファノ多様体の length を求めた。
 - \bullet dim X < 5,

 - ③ X: prime かつ $i_X = \frac{2}{3} \dim X$,
 - X:2重被覆の構造をもち,次数1の有理曲線で覆われる

- 等質多様体を豊富な因子として含む偏極多様体の分類.
- ② $n=r_G+1$ なる例外型代数群の作用をもつ射影多様体の分類.
- る 以下の場合に対し、ファノ多様体の length を求めた。
 - $\mathbf{0} \dim X < 5$
 - \circ coindex $(X) \leq 3$,
 - **③** X: prime かつ $i_X = \frac{2}{3} \dim X$,
 - ullet X: 2 重被覆の構造をもち,次数1の有理曲線で覆われる.

- 等質多様体を豊富な因子として含む偏極多様体の分類.
- ② $n=r_G+1$ なる例外型代数群の作用をもつ射影多様体の分類.
- る 以下の場合に対し,ファノ多様体の length を求めた.
 - $\bullet \quad \dim X \leq 5 ,$
 - \circ coindex $(X) \leq 3$,
 - **③** X: prime かつ $i_X = \frac{2}{3} \dim X$,