
Group actions on projective varieties

and

chains of rational curves on Fano varieties

射影多様体への群作用と
ファノ多様体上の有理曲線の鎖

早稲田大学大学院　基幹理工学研究科

数学応用数理専攻　代数幾何学研究

渡辺　究

2010年 2月



Acknowledgments

I would like to express my deepest gratitude to my supervisor Professor
Hajime Kaji for helpful advice and continued encouragement. His comments
and suggestions were of inestimable value for my study. Many parts of this
thesis came from his questions. Without numerous discussions with him and
his useful advice, this thesis could not be written up.

I would also like to thank Professor Hidetoshi Maeda for leading me into
the study of Algebraic Geometry. My study of Algebraic Geometry was
started from the meeting with him.

I would be also very grateful to Professor Takao Fujita for helpful com-
ments on polarized varieties and Professor Hiromichi Takagi, who read the
draft of Chapter III carefully and gave useful advice. Also I would be grate-
ful to Professor Kazuhiro Konno for telling me about some results related to
Chapter III at the conference held at RIMS on 2-5 July 2007.

I am also indebted to members of Professor Kaji laboratory, who had
lots of seminars with me, gave useful comments and have encouraged me.
Furthermore I also thank to all staffs of the Department of Mathematics,
Waseda University for their helps. Special thanks go to my friends for their
encouragement.

Finally, I would also like to express my gratitude to my family for their
moral support and warm encouragement.

Kiwamu WATANABE
Department of Mathematics

Graduate school of fundamental science and engineering
Waseda University

4-1 Ohkubo 3-chome
Shinjuku-ku

Tokyo 169-8555
Japan

E-mail: kiwamu0219@fuji.waseda.jp

2



Contents

1 Introduction 5

2 Overview of homogeneous variety and results of projective
geometry 13

2.1 Lie algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Homogeneous Varieties . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Secants of varieties . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Classification of polarized manifolds admitting homogeneous
varieties as ample divisors 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . 26

4 Actions of linear algebraic groups of exceptional type on pro-
jective varieties 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . 33

5 Lengths of chains of minimal rational curves on Fano mani-
folds 37

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Deformation theory of rational curves and varieties of minimal
rational tangents . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Varieties of minimal rational tangents in the cases p = n − 3
and (n, p) = (5, 1) . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Spanning dimensions of loci of chains . . . . . . . . . . . . . . 42

5.5 Lengths of Fano manifolds of dimension ≤ 5 . . . . . . . . . . 44

5.6 Lengths of Fano manifolds of coindex 3 . . . . . . . . . . . . . 46

3



5.7 Lengths of Fano manifolds admitting the structures of double
covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4



Chapter 1

Introduction

In this thesis, we study homogeneous varieties and chains of rational curves
on Fano varieties. By a homogeneous variety we mean a projective variety
acted by a group variety transitively. Projective spaces, smooth quadric hy-
persurfaces and abelian varieties are typical examples of it. Homogeneous
varieties often appear in many different fields of mathematics such as differ-
ential geometry, Lie theory and representation theory. Moreover these have
attracted attention over the years in physics. On the other hand, a smooth
projective variety is called a Fano variety if its anticanonical divisor is ample.
According to the minimal model program, it is conjectured that any algebraic
variety is birationally equivalent to a minimal model or a Mori fiber space
which is a fibration with the general fiber being a (possibly singular) Fano va-
riety. From this viewpoint, Fano varieties play important roles in birational
geometry. Moreover rational homogeneous varieties are Fano varieties.

This thesis consists of four chapters. Chapter 1 is devoted to an overview
of homogeneous varieties and some known results of projective geometry. We
start with a review of the correspondence between homogeneous varieties and
marked Dynkin diagrams. We also survey Zak’s works on projective geometry
such as linear normality theorem and a classification of Severi varieties. The
results appearing here play important roles in all of later chapters.

In Chapter 2, we study homogeneous varieties from the viewpoint of po-
larized varieties. By a polarized variety we mean a pair (X,L) consisting of a
complete variety X and an ample line bundle L on it. One of the important
problems in the study of polarized varieties is to classify the pairs (X,L) such
that the linear system |L| has a member A with preassigned properties. For
instance, when A is the n-dimensional projective space Pn (n ≥ 2), (X,L) is
isomorphic to (Pn+1,O(1)). If A is an n-dimensional smooth quadric hyper-
surface Qn (n ≥ 3), then (X,L) is isomorphic to (Pn+1,O(2)) or (Qn+1,O(1)).
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As is seen from these examples, the structure of X is imposed a strong re-
striction by the one of A. In this chapter, we deal with the following problem.

Problem 1.0.1. Classify smooth polarized varieties (X,L) admitting a ho-
mogeneous variety A as a member of the complete linear system |L|.

Remark that A. J. Sommese [Som76] studied the case where A is an
abelian variety and T. Fujita [Fuj80I, Fuj81I, Fuj82] the case where A is a
Grassmann variety. K. Konno [Kon88] solved it under the assumption that
X and A are rational homogeneous varieties. As a natural generalization of
these results, we consider the above problem.

Note that a 1-dimensional homogeneous variety is a projective line or an
elliptic curve. So when the dimension of A is 1, an answer to the problem
is derived from known results. For example, it follows from classifications
of polarized varieties whose sectional genera are 0 and 1. So we may make
the assumption that the dimension of homogeneous member A is at least 2.
Then we provide a complete answer of the above problem.

Theorem 1.0.2. Let (X,L) be a smooth polarized variety such that the linear
system |L| has a homogeneous member A. Assume that dim A ≥ 2. Then
(X,L) is one of the following:

(i) (Pn+1,OPn+1(1)).

(ii) (Pn+1,OPn+1(2)).

(iii) (Qn+1, OQn+1(1)).

(iv) (Pl × Pl,OPl×Pl(1, 1)), 2l = n + 1.

(v) (G(2, C2l),OPlücker(1)), 4l − 4 = n + 1.

(vi) (E6(ω1),OE6(ω1)(1)), φ|OE6(ω1)(1)| : E6(ω1) ↪→ P26 is the projectivization
of the highest weight vector orbit in the 27-dimensional irreducible rep-
resentation of a simple algebraic group of Dynkin type E6.

(vii) (P(E), H(E)), E is a vector bundle on P1 of rank n + 1 and a > 1 with
a non-splitting exact sequence:

0 → OP1 → E → OP1(a)⊕n → 0,

where H(E) is the tautological line bundle on P(E).
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(viii) (P(E), H(E)), E is a vector bundle on an elliptic curve E of rank n+1
and L an ample line bundle on E with a non-splitting exact sequence:

0 → OE → E → L ⊕n → 0.

Our proof consists of two parts. First we prove that most homogeneous
varieties cannot be ample divisors in any smooth variety, using a result of
Fujita. The assertion of the Fujita’s result is a smooth variety satisfying the
NS-condition cannot be an ample divisor in any smooth variety. Here we say
X satisfies the NS-condition if Hq(X,TX [−L]) = 0 for any ample line bundle
L on X and q = 0, 1. So we show most homogeneous varieties satisfy the
NS-condition in Proposition 3.2.3.

Second we determine all the possibilities of X for a fixed A which does
not satisfy NS-condition. In this part, we shall use some results introduced
in Chapter 1 such as a classication of Severi varieties. One of applications of
this theorem will appear in the next chapter.

Chapter 3 deals with a classification problem of varieties from the view-
point of actions of group varieties.

Let X be a smooth projective variety of dimension n and G a simple lin-
ear algebraic group acting regularly and non-trivially on X. The action of G
strongly influences the structure of X. For example, such X is uniruled, that
is, covered by rational curves. Hence it admits an extremal contraction in
the sense of the minimal model program. Furthermore any extremal contrac-
tion is G-equivalent. These properties were first pointed out by Mukai and
Umemura [MU83]. By investigating such contractions, they studied smooth
projective 3-folds with a dense SL(2)-orbit. After that, such 3-folds were
completely classified by T. Nakano [Nak89].

Let rG be the minimum of the dimension of the homogeneous variety
of a simple linear algebraic group G, that is, the minimum codimension of
the maximal parabolic subgroup of G. M. Andreatta [And01] proved that if
rG < n the only regular action of G on X is trivial, and if rG = n then X is
homogeneous. In this chapter, we consider the following.

Problem 1.0.3. Classify n-dimensional smooth projective varieties acted by
a simple linear algebraic group with n = rG + 1.

For this problem, Andreatta gave a classification under the assumption
that G is classical type. Since rSL(n) = n− 1, his result contains a classifica-
tion of smooth projective n-folds acted by SL(n) which was obtained by T.
Mabuchi [Mab79]. Now we may assume G is simply connected by replacing
G with its universal cover. In this setting, we give an answer to this problem
in the case where G is not classical type.
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Theorem 1.0.4. Let X be a smooth projective variety of dimension n and G
a simple, simply connected and connected linear algebraic group of exceptional
type acting regularly and non-trivially on X. Assume that n = rG + 1. Then
X is one of the following; the action of G is unique for each case:

(i) P6,

(ii) Q6,

(iii) E6(ω1),

(iv) G2(ω1 + ω2),

(v) Y × Z, where Y is E6(ω1), E7(ω1), E8(ω1), F4(ω1), F4(ω4), G2(ω1) or
G2(ω2) and Z is a smooth projective curve,

(vi) P(OY ⊕ OY (m)), where Y is as in (v) and m > 0.

As in the Andreatta’s paper, we study extremal contractions, G-orbits
and these relations. However our situation is rather complicated than An-
dreatta’s. In fact, G-orbits on X are very simple (for example a projective
space and a quadric) in the case where G is classical type, but they are not
in our case. So we need other arguments than Andreatta’s in several points.
When the Picard number of X is 1, we obtain a classification of X by using
Theorem 1.0.2. Hence this theorem is an application of Theorem 1.0.2.

As a consequence, by combining the Andreatta’s result, we obtain a com-
plete classification of n-dimensional smooth projective varieties acted by a
simple linear algebraic group with n = rG + 1.

In the last chapter, we discuss lengths of chains of rational curves on Fano
varieties.

In the remarkable work [Mor79], S. Mori proved a smooth projective va-
riety with ample tangent bundle is the projective space. It was called the
Hartshorne conjecture. Mori’s paper [Mor79] contains many important re-
sults of rational curves on Fano varieties. For example, it is the first paper
the bend-and-break lemmas appear. Moreover, by using bend-and-break lem-
mas and modulo p reduction, it was proved that a Fano variety is uniruled.
These results are the most fundamental and significant in the study of ratio-
nal curves on Fano varieties. His basic idea of the proof of the Hartshorne
conjecture is to study the family of rational curves of minimal degree. Based
on the idea, N. Mok, J. M. Hwang and others have been studied families of
rational curves of minimal degree on Fano varieties [Hwa01, KS06].
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For a Fano variety, a minimal rational component K is defined to be
a dominating irreducible component of the normalization of the parameter
space of rational curves whose degree is minimal among such components and
a variety of minimal rational tangents is the parameter space of the tangent
directions of K -curves at a general point.

On the other hand, chains of rational curves play an important role in the
study of Fano varieties. For instance, Kollár-Miyaoka-Mori [KMM92II] and
Nadel [Nad91] independently showed the boundedness of the degree of Fano
varieties of Picard number 1 by using chains of rational curves. Furthermore
it implies that there exists only finitely many deformation types of smooth
Fano varieties with fixed dimension.

On the basis of these results, this chapter is devoted to consider the
following problem.

Problem 1.0.5. How many general rational curves in the family K are
needed to join two general points on a Fano variety?

We denote by lK the minimal length of such chains of K -curves. For
example, it is easy to see that a projective space has lK = 1 and a smooth
quadric hypersurface has lK = 2. However for the other examples, it is not
easy to compute the length lK . In this direction, Hwang and S. Kebekus
[HK05] developed an infinitesimal method to study the lengths of Fano vari-
eties via the varieties of minimal rational tangents and computed the lengths
in some cases such as complete intersections, Hermitian symmetric spaces
and contact homogeneous spaces.

In this chapter, we compute the length lK in the cases where the dimen-
sion of a Fano variety X is at most 5, the coindex of a Fano variety is at most
3 and X equips with structure of a double cover. For instance, we show the
following.

Theorem 1.0.6 (Theorem 5.5.2, Theorem 5.5.7). Let X be a Fano n-fold
of Picard number 1, K a minimal rational component of X and p + 2 the
anti-canonical degree of rational curves in K . Then if p = n − 3 > 0, we
have lK = 2 and if (n, p) = (5, 1), we have lK = 3.

By combining this theorem and well-known or easy arguments, we obtain
the following table.

n p lK n p lK n p lK

3 2 1 4 3 1 5 4 1
3 1 2 4 2 2 5 3 2
3 0 3 4 1 2 5 2 2

4 0 4 5 1 3
5 0 5
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Theorem 1.0.7 (Theorem 5.6.4). Let X be a Fano variety of Picard num-
ber 1 with coindex 3 and K a minimal rational component of X. Assume
that n := dim X ≥ 6. Then lK = 2 except the case X is a 6-dimensional
Lagrangian Grassmannian LG(3, 6). In the case X = LG(3, 6), we have
lK = 3.

As a consequence, we obtain the following table.

X iX lK

Pn n + 1 1
Qn n 2

del Pezzo mfd. of dim. n n − 1 2
Mukai mfd. of dim. n ≥ 7 n − 2 2

Mukai mfd. of dim. 6 4 2 or 3

In Theorem 5.6.11, we give a classification of prime Fano n-folds satisfying
iX = 2

3
n and lK ̸= 2. These are extremal cases of Theorem 5.1.1. Except

the case n = 3, these varieties are deeply related to Severi varieties which
are classified by Zak [Zak93] (see Cororally 5.6.12). Furthermore, for prime
Fano manifolds, we discuss a relation among 2-connectedness by lines, conic-
connectedness and defectiveness of the secant varieties (Corollary 5.6.12 and
Remark 5.6.13).
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Notation and Convention

Throughout this paper we work over the complex number field C, and employ
the notation basically as in [Har71] or [Fuj90, Hwa01, Kol96]. In particular,
variety means an integral separated scheme of finite type over C and some-
times we deal with a projective variety as a complex analytic space. For a
vector bundle V , let V ∨ be the total space of the dual bundle of V and o the
zero section. Then P(V ) denotes the quotient space of V ∨− o by the natural
Gm-action via the scalar multiplication. P∗(V ) means P(V ∨).
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Chapter 2

Overview of homogeneous
variety and results of projective
geometry

2.1 Lie algebra

Briefly we recall basic facts of Lie algebra. For more detail on this chapter,
see [Bou68, FH99, Hum72, Hum75].

Let g be a complex semisimple Lie algebra and h it’s Cartan subalgebra.
For α ∈ h∨, we set

gα := {x ∈ g|[h, x] = α(h)x for any h ∈ h},

Φ := {α ∈ h∨|α ̸= 0, gα ̸= 0}.

Here α ∈ Φ is called a root (relative to h), gα a root space and Φ a root
system. Then we have the root decomposition

g = h ⊕
⊕
α∈Φ

gα.

We denote by < Φ >R the R-linear span of Φ. Then there exists a subset
∆ := {α1, . . . , αl} ⊂ Φ which satisfies

(i) α1, · · · , αl is a basis of the R-vector space < Φ >R,

(ii) for α =
∑

kiαi ∈ Φ (ki ∈ R), coefficients ki are all positive integers or
all negative ones.
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This ∆ is called a base of the root system Φ. In general, there are many
bases on Φ. So we fix one ∆. Then the roots in ∆ are called simple. We can
define a partial order on h∨. In fact, for λ, µ ∈ h∨, define

λ ≥ µ ⇔ λ − µ =
∑

kiαi with ki ≥ 0 and αi ∈ ∆.

When all coefficients of α ∈ Φ are positive (resp. negative), such root α is
called by positive (resp. negative). Also we denote by Φ+ the set of positive
roots.

Next we define an inner product on g called by Killing form. For u, v ∈ g,
we set ad(u)(v) := [u, v]. ad(u) : g → g is an endomorphism of the Lie
algebra g. By using this notation, Killing form <,>: g × g → g is defined
by < u, v >:= Trace(ad(u) ◦ ad(v)). As is well known, it is non-degenerate
(Cartan’s criterion). Hence we can identify h with h∨ via the Killing form.
For α ∈ Φ, one can set its coroot by α∨ := 2α

<α,α>
. Then we can obtain the

l × l matrix C := (cij), where cij :=< αi, αj
∨ >. We call it Cartan matrix of

g and cij Cartan integer. Remark that Cartan integers satisfy cijcji = 0, 1, 2
or 3. Here recall the Dynkin diagram associated to g:

Definition 2.1.1. Let g be a semisimple Lie algebra and ∆ := {α1, . . . , αl}
a base of its root system. We define the Dynkin diagram associated to g as
follows:

(i) Draw l nodes labelled by the simple roots {α1, . . . , αl} and call the node
labelled by αi i-th node.

(ii) The i-th node and j-th one are joined by cijcji edges.

(iii) If |cij| < |cji|, add an arrow from the j-th node to the i-th one.

The diagram does not depend on a choice of a base ∆.

A semisimple Lie algebra is characterized by its Dynkin diagram:

Theorem 2.1.2. Two semisimple Lie algebras are isomorphic to each other
if and only if these Dynkin diagrams are the same.

Proposition 2.1.3. A semisimple Lie algebra g is simple if and only if its
Dynkin diagram is connected.

Theorem 2.1.4. A Dynkin diagram of a simple Lie algebra is one of the
following.
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(Al) ◦
1

◦
2

· · · ◦
l − 1

◦
l

(Bl) ◦
1

◦
2

· · · ◦
l − 1

◦//

l

(Cl) ◦
1

◦
2

· · · ◦
l − 1

◦oo

l

(Dl) ◦
1

◦
2

· · · ◦
l − 2

◦oooooo l − 1

◦OOOOOO

l

(E6) ◦
1

◦
2

◦
3

◦ 6

◦
4

◦
5

(E7) ◦
1

◦
2

◦
3

◦
4

◦ 7

◦
5

◦
6

(E8) ◦
1

◦
2

◦
3

◦
4

◦
5

◦ 8

◦
6

◦
7

(F4) ◦
1

◦
2

◦//

3
◦
4

(G2) ◦
1

◦oo

2

Throughout whole thesis, we use this numbering of the simple roots.

2.2 Homogeneous Varieties

Definition 2.2.1. A projective variety X is homogeneous if there exists a
group variety which acts on X transitively.

Projective spaces, smooth quadric hypersurfaces and abelian varieties are
fundamental examples of a homogeneous variety. First, applying the results
reviewed in the previous section, recall a description of rational homogeneous
varieties.
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For a semisimple Lie algebra g, there exists a maximal solvable subalgebra
which is unique up to conjugate. It is called a Borel subalgebra of g. In
particular, we fix one as follows:

b := h ⊕ n, where n :=
⊕
α∈Φ+

gα.

A subalgebra p ⊂ g containing b is called parabolic. Let ∆p be a subset
of ∆. Then we set

p := b ⊕
⊕
α∈Φ+

p

g−α, where Φ+
p := span∆p ∩ Φ+.

Relate the set of simple roots ∆ \ ∆p to a parabolic subalgebra p as above.
Then it gives a one-to-one correspondence between parabolic subalgebras and
sets of nodes of Dynkin diagrams. As a consequence, any parabolic subalge-
bra is expressed by a marked Dynkin diagram, that is, a pair consisting of a
Dynkin diagram and a subset of its nodes.

On the other hand, let G be a simply-connected algebraic group associated
to g and P a subgroup of G associated to p. Then the quotient G/P is a
projective variety, which is called a rational homogeneous variety. By the
above correspondence, the following is obtained:

Theorem 2.2.2. Any rational homogeneous variety can be expressed by a
marked Dynkin diagram.

Definition 2.2.3. By abuse of notation, we denote the Dynkin type of G
simply by G. If ∆\∆p := {αi1 , · · · , αij}, we denote the rational homogeneous
variety G/P by G(ωi1 + · · · + ωij).

Remark 2.2.4. A projective variety X is a rational homogeneous variety if
and only if X is a homogeneous variety which is birational to a projective
space, that is, X is rational in the usual sense.

Theorem 2.2.5 ([BR61]). Any homogeneous variety splits uniquely as a
product of an abelian variety and a rational homogeneous variety.

Definition 2.2.6. (i) The Grassmannian of r-planes is defined by

G(r, Cm) := {[V ]|V is an r−dimensional subspace of Cm}.

This is a homogeneous variety acted by the special linear group SL(m, C)
transitively.
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(ii) For a non-degenerate symmetric bilinear form ω on Cm, the orthogonal
Grassmannian of isotropic r-planes is defined by

OG(r, Cm) := {[V ] ∈ G(r, Cm)|ω(V, V ) = 0}.

This is a homogeneous variety acted by the special orthogonal group
SO(m, C) transitively if m ̸= 2r. Remark that OG(r, C2r) has two
components and these are isomorphic to each other as abstract varieties.

(iii) For a non-degenerate skew-symmetric bilinear form ω on C2m, the La-
grangian Grassmannian of isotropic r-planes is defined by

LG(r, C2m) := {[V ] ∈ G(r, C2m)|ω(V, V ) = 0}.

This is a homogeneous variety acted by the symplectic group Sp(2m, C)
transitively.

Proposition 2.2.7. Any rational homogeneous variety of classical type is
one of the varieties appearing in the above Definition 2.2.6. More precisely,

(i) Al(ωr) is isomorphic to G(r, Cl+1),

(ii) Bl(ωr) is isomorphic to OG(r, C2l+1),

(iii) Cl(ωr) is isomorphic to LG(r, C2l),

(iv) Dl(ωr) is isomorphic to OG(r, C2l) if r ≤ l − 2,

(v) Dl(ωr) is isomorphic to one of components of OG(r, C2r) if r = l − 1
or l.

Example 2.2.8. (i) G2(ω2) is a Mukai variety, that is, a Fano variety of
coindex 3.

(ii) A2(ω1 + ω2) is isomorphic to P(TP2), where TP2 is the tangent bundle
of P2.

Proposition 2.2.9 ([BH58]). A rational homogeneous variety is a Fano va-
riety.

Moreover, the cohomology ring H∗(X, Z) and the total Chern class of
a rational homogeneous variety X can be expressed in terms of the root
system [BH58]. In particular, we can calculate the Fano index of rational
homogeneous varieties. The list of the Fano index of a rational homogeneous
variety of Picard number 1 is on [Sno89]. We have the following list:
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Proposition 2.2.10. Let X = G(ωr) be a rational homogeneous variety of
Picard number 1. Let n be the dimension of X and iX the Fano index of X.
Then the following holds.

(i) G = Al: n = r(n + 1 − r), iX = l + 1.

(ii) G = Bl: n = r(4l + 1 − 3r)/2,

iX =

{
2l − r (r < l)
2l (r = l)

(iii) G = Cl: n = r(4l + 1 − 3r)/2, iX = 2l − r + 1.

(iv) G = Dl: n = r(4l − 1 − 3r)/2,

iX =

{
2l − r − 1 (r < l − 1)
2l − 2 (r = l − 1, l)

(v) G = E6:

r 1 2 3 4 5 6

n 16 25 29 25 16 21
iX 12 9 7 9 12 11

(vi) G = E7:

r 1 2 3 4 5 6 7

n 27 42 50 53 47 33 42
iX 18 13 10 8 11 17 14

(vii) G = E8:

r 1 2 3 4 5 6 7 8

n 57 83 97 104 106 98 78 92
iX 29 19 14 11 9 13 23 17

(viii) G = F4:

r 1 2 3 4

n 15 20 20 15
iX 8 5 7 11
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(ix) G = G2:

r 1 2

n 5 5
iX 5 3

Proposition 2.2.11 ([Bot57]). The complex structure of a rational homoge-
neous variety is locally rigid.

Hence if Xt is a smooth deformation of the complex structure of a rational
homogeneous variety X, Xt is biholomorphic to X0 for sufficiently small t.

Remark 2.2.12. J. M. Hwang and N. Mok have studied the rigidity of
rational homogeneous varieties (see [HM05]). They showed the following:

Let π : χ → ∆ be a smooth and projective morphism from complex
manifold χ to the unit disk ∆. If the fiber Xt = π−1(t) is biholomorphic to
a rational homogeneous variety Y of Picard number 1 for any t ∈ ∆ − {0},
then X0 is also biholomorphic to Y .

2.3 Secants of varieties

We introduce some of F. Zak’s results. For details, see [Zak93].
Zak proved Hartshorne’s conjecture on linear normality:

Theorem 2.3.1. Let X ⊂ PN be a non-degenerate smooth projective variety
of dimension n. For 3n > 2(N−1), X is linearly normal, that is, the natural
map H0(PN ,OPN (1)) → H0(X, OX(1)) is surjective.

Definition 2.3.2. For varieties X,Y ⊂ PN , we define the join of X and
Y by the closure of the union of lines passing through distinct two points
x ∈ X and y ∈ Y and denote by S(X,Y ). In the special case that X = Y ,
Sec(X) := S1X := S(X,X) is called the secant variety of X. Furthermore
δX := 2 dim X + 1 − dim Sec(X) is called the secant defect of X ⊂ PN .

Remark 2.3.3. In general, it is easy to see the dimension of the secant
variety S1X is at most 2n + 1, where n := dim X. The expected dimension
of the secant variety S1X is 2n+1. When the dimension of S1X is less than
2n + 1, we say the secant variety S1X defective.

Theorem 2.3.1 is equivalent to the following:

Theorem 2.3.4. Let X ⊂ PN be a non-degenerate smooth projective variety
of dimension n. If 3n > 2(N − 2), then Sec(X) = PN .
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It is a natural question to classify projective varieties on the boundary of
the above theorem. For n = 2, F. Severi classified such varieties.

Definition 2.3.5. Let X ⊂ PN be a non-degenerate smooth projective va-
riety of dimension n. X is a Severi variety if it satisfies that 3n = 2(N − 2)
and Sec(X) ̸= PN .

As we remarked above, a classification of the 2-dimensional Severi variety
was studied by Severi. The 4-dimensional case was studied by T. Fujita and
J. Roberts ([FR81]). In general case, Zak proved the following:

Theorem 2.3.6. Each Severi variety is projectively equivalent to one of the
following:

(i) The Veronese surface v2(P2) ⊂ P5.

(ii) The Segre variety P2 × P2 ⊂ P8.

(iii) The Grassmann variety G(P1, P5) ⊂ P14.

(iv) The E6-variety E6(ω1) ⊂ P26.

In particular, Severi varieties are homogeneous.

Proposition 2.3.7. Let M(n, δ) be the maximal number N for which there
exists a non-degenerate smooth projective variety X ⊂ PN such that dim X =
n and δX = δ. Then we have M(n, δ) ≤ f([n/δ]), where f(k) = (k + 1)(n +
1) − k(k + 1)δ/2 − 1 and [n/δ] is the largest integer not exceeding n/δ.

For n, δ ∈ N, a non-degenerate smooth projective variety X ⊂ PN be
called an extremal variety if δX = δ and N = M(n, δ).

For δ > n/2, we have Sec(X) = PN. So each variety is extremal. When
we have δ = n/2, X is extremal if and only if X is a Severi variety.

Definition 2.3.8. Let X ⊂ PN be an n-dimensional non-degenerate smooth
projective variety. We call X a Scorza variety if,

(i) Sec(X) ̸= PN ;

(ii) N = f([n/δ]), where f(k) = (k + 1)(n + 1)− k(k + 1)δ/2− 1 and [n/δ]
is the largest integer not exceeding n/δ.

Remark 2.3.9. X is a Scorza variety if and only if n ≥ 2δ > 0, N = f([n/δ]).

Theorem 2.3.10. Each Scorza variety is projectively equivalent to one of
the following:
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(i) The Veronese surface v2(PN).

(ii) The Segre variety P[n/2] × P[n/2].

(iii) The Grassmann variety G(P1, Pn/2+1).

(iv) The E6-variety E6(ω1).

In particular, Scorza varieties are homogeneous.
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Chapter 3

Classification of polarized
manifolds admitting
homogeneous varieties as ample
divisors

3.1 Introduction

By a polarized variety we mean a pair (X,L) consisting of a complete variety
X and an ample line bundle L on it.

One of the important problems in the study of polarized varieties is to
classify the pairs (X,L) such that the linear system |L| has a smooth mem-
ber A with preassigned properties. The purpose of this chapter is to study
the case where A is homogeneous, that is, where a group variety acts on A
transitively, such as abelian varieties, Grassmann varieties, and so on. Note
that A. J. Sommese [Som76] studied the case where A is an abelian variety,
T. Fujita [Fuj80I, Fuj81I, Fuj82] the case where A is a Grassmann variety,
and that the case of dim A = 1 is easily classified (see [Som76, Proposition II,
Remark I. B]).

Our result is

Theorem 3.1.1. Let (X,L) be a smooth polarized variety such that the linear
system |L| has a homogeneous member A. Assume that dim A ≥ 2. Then
(X,L) is one of the following:

(i) (Pn+1, OPn+1(1)).

(ii) (Pn+1, OPn+1(2)).
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(iii) (Qn+1, OQn+1(1)).

(iv) (Pl × Pl,OPl×Pl(1, 1)), 2l = n + 1.

(v) (G(2, C2l),OPlücker(1)), 4l − 4 = n + 1.

(vi) (E6(ω1),OE6(ω1)(1)), φ|OE6(ω1)(1)| : E6(ω1) ↪→ P26 is the projectivization
of the highest weight vector orbit in the 27-dimensional irreducible rep-
resentation of a simple algebraic group of Dynkin type E6.

(vii) (P(E), H(E)), E is a vector bundle on P1 of rank n + 1 and a > 1 with
a non-splitting exact sequence:

0 → OP1 → E → OP1(a)⊕n → 0,

where H(E) is the tautological line bundle on P(E).

(viii) (P(E), H(E)), E is a vector bundle on an elliptic curve E of rank n+1
and L an ample line bundle on E with a non-splitting exact sequence:

0 → OE → E → L ⊕n → 0.

The contents of this chapter are organized as follows: In section 5, we
prove that most homogeneous varieties cannot be ample divisors in any
smooth variety, using results of Fujita (see Proposition 3.2.2) and of S.
Merkulov and L. Schwachhöfer [MS99]. In section 6 we give a proof of the
main theorem, where one of the bottlenecks is to determine all the possibili-
ties of X for a fixed A: For example, an n-dimensional smooth hyperquadric
Qn is not only a very ample divisor on Pn+1 but also a hyperplane section of
a hyperquadric Qn+1.

3.2 Preliminaries

Definition 3.2.1 (Fujita, [Fuj82, Definition 1.4]). If Hq(X,TX [−L]) = 0 for
any ample line bundle L on a smooth variety X and q = 0, 1, we say that X
satisfies the NS-condition. Here TX is the tangent bundle of X.

Proposition 3.2.2 (Fujita, [Fuj82, Corollary 1.3]). If a smooth variety X
satisfies the NS-condition, then X cannot be an ample divisor in any smooth
variety.

Proposition 3.2.3. Let X be a homogeneous variety with dim X ≥ 2. Then
the following are equivalent:
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(i) X does not satisfy the NS-condition.

(ii) X is one of the following:

(a) Pn, (b) Qn, (c) P(TPl), (d) Cl(ω2),

(e) F4(ω4), (f) P1 × Pn−1, (g) E × Pn−1 with an elliptic curve E.

Proof. Let X be a homogeneous variety which splits as a product of an
abelian variety X1 and a rational homogeneous variety X2.

If X is an abelian variety with dimX ≥ 2, X satisfies the NS-condition
(see [Fuj82, Proposition 2.2]).

Next we assume that X is a non-trivial product of an abelian variety X1

and a rational homogeneous variety X2. Then we have Pic(X) ∼= Pic(X1) ×
Pic(X2) (see [Har71, III, Exercises 12.6]); hence we may assume that any
ample line bundle on X is of the form p∗1(L1) ⊗ p∗2(L2), where pi are natural
projections and L1 (resp. L2) is an ample line bundle on X1 (resp. X2).

By using the Künneth formula, we have

h1(X,TX [p∗1(−L1) ⊗ p∗2(−L2)])

= h1(X, p∗1(TX1 [−L1]) ⊗ p∗2(−L2)) + h1(X, p∗1(−L1) ⊗ p∗2(TX2 [−L2]))

= h1(X1,
⊕

[−L1]) · h0(X2, [−L2]) + h0(X1,
⊕

[−L1]) · h1(X2, [−L2])

+ h1(X1, [−L1]) · h0(X2, TX2 [−L2]) + h0(X1, [−L1]) · h1(X2, TX2 [−L2])

= h1(X1, [−L1]) · h0(X2, TX2 [−L2]).

h0(X,TX [p∗1(−L1) ⊗ p∗2(−L2)])

= h0(X, p∗1(TX1 [−L1]) ⊗ p∗2(−L2)) + h0(X, p∗1(−L1) ⊗ p∗2(TX2 [−L2]))

= h0(X1,
⊕

[−L1]) · h0(X2, [−L2]) + h0(X1, [−L1]) · h0(X2, TX2 [−L2])

= 0.

If dim X1 ≥ 2, X1 satisfies the NS-condition. Hence, so does X.
Next, consider the case where dim X1 = 1, that is, X1 is an elliptic curve

E. Note that h0(X2, TX2 [−L2]) ̸= 0 for some ample line bundle L2 on X2

if and only if X2
∼= Pn−1. This follows from a result of Mori-Sumihiro (see

[MS78] and [Sno89, Theorem 6.5]), one of J. M. Wahl [Wah83] or one of S.
Merkulov and L. Schwachhöfer [MS99, Theorem B].

The above argument infers that X does not satisfy the NS-condition if
and only if X is a product of an elliptic curve E and a projective space under
the condition that X is a non-trivial product of an abelian variety and a
rational homogeneous variety.
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Finally assume that X is a rational homogeneous variety. Then we see
that X does not satisfy the NS-condition if and only if X is one of the cases
(a)-(f) in Proposition 5.1.2 by [MS99, Theorem B].

Lemma 3.2.4. Let (X,L) be a smooth polarized variety such that the linear
system |L| has a rational homogeneous member A. Assume that Pic(A) ∼=
Z[LA] and dim A ≥ 2. Then L is very ample.

Proof. Let (X,L) be a smooth polarized variety which satisfies the condition
of this lemma. Then LA is a very ample line bundle on A (see [Sno89, Theo-
rem 6.5]). Let φ := φ|LA| : A ↪→ PN be a closed embedding determined by the
complete linear system |LA|. Using [Ste84, P226 Remark and Theorem 1],
we see φ(A) ⊂ PN is factorial, that is, the homogeneous coordinate ring of
φ(A) is a unique factorization domain. Since a UFD is integrally closed, LA

is projectively normal. So LA is simply generated.
On the other hand, H0(X,L) → H0(A,LA) is surjective since X is a Fano

variety. Hence L is simply generated by [Fuj90, Corollary 2.5]. This directly
leads us to the conclusion that L is very ample (see [Fuj90, P27]).

Lemma 3.2.5 ([Zak93, P114]). Let X ⊂ PN be a smooth variety and H ⊂ PN

a general hyperplane. Then δX∩H = 0 if δX = 0, and δX∩H = δX − 1
otherwise. Here δX (resp. δX∩H) is the secant defect of X (resp. X ∩ H),
that is, δX := 2 dim X + 1 − dim Sec(X), where Sec(X) is the secant variety
of X in PN .

Proposition 3.2.6 ([Zak93, Chapter VI], Theorem 2.3.10). G(2, Cm
2

+2) is
the only m-dimensional Scorza variety with the secant defect δ = 4 for m ≥ 8.

3.3 Proof of the Main Theorem

Proof. Let (X,L) be a smooth polarized variety such that the linear sys-
tem |L| has a homogeneous member A. Assume that dim A ≥ 2. Using
Proposition 3.2.2 and 3.2.3, we see that A is one of the varieties listed (ii)
in Proposition 3.2.3. Hence it is sufficient to consider the cases where A is
isomorphic to Pn, Qn in Pn+1, P(TPl), Cl(ω2), F4(ω4), P1×Pn−1 and E×Pn−1.

If A ∼= Pn, we have (X,L) ∼= (Pn+1, OPn+1(1)) (see [Fuj90, Theorem 7.18]).
If A ∼= Qn with n ≥ 3, we have (X,L) ∼= (Pn+1, OPn+1(2)) or (Qn+1,OQn+1(1))
(see [Som76, Proposition VI and its Corollary]). If n = 2, we have Q2 ∼= P1×
P1. So let us consider the following case where A ∼= P1×Pn−1. If A ∼= P(TPl),
we have two natural projections pi from A to Pl (i = 1, 2). Therefore X
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has two bundle structures (see [BS95, Theorem 5.5.2 and 5.5.3]). Applying a
result of E. Sato [Sat85], we see X is isomorphic to Pa × Pb or P(TPl). Since
A is isomorphic to P(TPl), we have (X,L) ∼= (Pl × Pl, OPl×Pl(1, 1)).

Next we deal with the remaining cases where A is isomorphic to Cl(ω2),
F4(ω4), P1 × Pn−1 and E × Pn−1.
The case where A ∼= Cl(ω2).

Now A is a very ample divisor on X by Lemma 3.2.4. If l = 2, we have
C2(ω2) ∼= Q3. This is the case where A ∼= Qn. So we assume that l ≥ 3.

If (X,L) ∼= (G(2, C2l), OPlücker(1)), it is a well-known result that the linear
system |L| has Cl(ω2) as a smooth member (see [Sak85]). What we have
to show is the pair (G(2, C2l),OPlücker(1)) is the only case where the linear
system |L| has A ∼= Cl(ω2) as a smooth member.

Let X be a smooth variety containing A as a very ample divisor. Accord-
ing to [Sno89, 9.3], A ∼= Cl(ω2) is a Fano variety of dimA = 4l− 5 and index
2l − 2. By the Lefschetz theorem ([Fuj90, Theorem 7.1]), we have Pic(X) ∼=
Pic(A) ∼= Z. Furthermore, we see that OA(A) (respectively, OX(A)) is a very
ample generator of Pic(A) (respectively, Pic(X)) by [MS99, Theorem B]. Be-
cause it follows from the adjunction formula that X is a Fano variety, we
see H1(X, OX) = 0. So we get h0(X, OX(A)) = h0(A, OA(A)) + 1. By the
same argument, we see that h0(G(2, C2l),OPlücker(1)) = h0(A, OA(A)) + 1.
Therefore we have

h0(X, OX(A)) = h0(G(2, C2l),OPlücker(1)).

This implies that X and G(2, C2l) can be embedded into the same projec-
tive space PN1 , where N1 = h0(X, OX(A)) − 1 by OX(A) and OPlücker(1),
respectively.

Let δA (respectively, δX) be the secant defect of A (respectively, X), where
Sec(A) is the secant variety of A in PN2 and N2 = h0(A, OA(A)) − 1.

Assume that δX = 0. We have A = X∩H for some hyperplane H in PNX .
If H is a general hyperplane, δA = 0 (see Lemma 3.2.5 ). This contradicts
the fact that δA = 3. So H should not be a general hyperplane. We have a
smooth deformation At of A by moving hyperplanes in PN1 . Then each At is
isomorphic to A for all t near 0 since A is locally rigid (see Proposition 2.2.11).
So we obtain a general hyperplane H ′ such that X ∩ H ′ is isomorphic to A.
Consequently, we have a contradiction by the same argument as in the case
where H is a general hyperplane.

This argument implies that δX > 0. From this, it follows that δX = 4 (see
Lemma 3.2.5 ). Then we see that φ|OX(A)| : X ↪→ PN1 is a Scorza variety. By
Proposition 3.2.6, X is isomorphic to G(2, C2l).
The case where A ∼= F4(ω4).
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A is a very ample divisor on X by Lemma 3.2.4.
If (X,L) ∼= (E6(ω1), OE6(ω1)(1)), it is a well-known result that the linear

system |L| has F4(ω4) as a smooth member. What we have to show is the
pair (E6(ω1), OE6(ω1)(1)) is the only case where the linear system |L| has
A ∼= F4(ω4) as a smooth member.

Let X be a smooth variety containing A as a very ample divisor. Ac-
cording to [Sno89, 9.3], A ∼= F4(ω4) is a Fano variety of dimA = 15 and
index 11. The same argument as in the case where A ∼= Cl(ω2) implies that
X and E6(ω1) can be embedded into the same projective space P26. Now
dim Sec(A) < 25 (see [Zak93, P59]). Since A is locally rigid, we can assume
that A = X ∩ H for some general hyperplane H in P26 by the same argu-
ment as in the case where A ∼= Cl(ω2). Using Lemma 3.2.5 below, we have
dim Sec(X) ≤ 25. Therefore we see that Sec(X) ̸= P26. So X is a Severi
variety (see [Zak93, Chapter IV]). Hence X is isomorphic to E6(ω1) (see The-
orem 2.3.6).
The case where A ∼= P1 × Pn−1.

If A ∼= P1 × Pn−1, we have (X,L) ∼= (P(E), H(E)) for some ample vector
bundle E on P1, where a natural projection p1 : A → P1 is equal to the restric-
tion to A of the bundle projection π : P(E)→ P1 (see [BS95, Theorem 5.5.2
and 5.5.3]). Then we have an exact sequence 0 → OX → OX(A) → OA(A) →
0. This exact sequence is pushed down by π∗ to an exact sequence

0 → OP1 → E → π∗H (E) → 0.

This exact sequence does not split, because E is an ample vector bundle.
Furthermore, we have P1 ×Pn−1 ∼= A ∈ |H(E)|. So we obtain that π∗H(E) =
OP1(a)⊕n and a > 0.

In the case a = 1, we have

Ext1(OP1(1)⊕n,OP1) = Ext1(OP1 ,OP1(−1)⊕n) = H1(P1,OP1(−1)⊕n) = 0.

Hence we obtain that a > 1.
The case where A ∼= E × Pn−1.

The same argument as in the case where A ∼= P1 × Pn−1 implies that
(X,L) is isomorphic to (P(E), H(E)) satisfying the condition (viii) as in
Main Theorem 5.1.3.

Corollary 3.3.1. Let X be a projective bundle over a smooth curve C. As-
sume that X is homogeneous. Then X is isomorphic to P1 × Pn or E × Pn,
where E is an elliptic curve.
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Proof. Let E be a vector bundle on a smooth curve C and X = P(E) a
homogeneous variety. Then X splits as a product of an abelian variety and a
rational homogeneous variety. By a result of Fujita [Fuj80I, Example 4.21],
any projective bundle over a smooth curve is an ample divisor in some smooth
variety. So X is one of the cases (a)-(g) in Proposition 5.1.2. Hence X is
isomorphic to P1 ×Pn or E×Pn, where E is an elliptic curve by assumption.

Corollary 3.3.2. Let (X,L) be as in Theorem 3.1.1. Then X is a homoge-
neous variety if and only if (X,L) is isomorphic to one of polarized manifolds
(i) − (vi) in 3.1.1, P1 × Pn, or E × Pn, where E is an elliptic curve.
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Chapter 4

Actions of linear algebraic
groups of exceptional type on
projective varieties

4.1 Introduction

Let X be a smooth projective variety of dimension n and rG the minimum of
the dimension of a homogeneous variety of a simple linear algebraic group G,
that is, the minimum codimension of a maximal parabolic subgroup of G. M.
Andreatta [And01] proved that if rG < n the only regular action of G on X
is trivial, and if rG = n then X is homogeneous. He also gives a classification
of smooth projective varieties on which a simple linear algebraic group of
classical type acts regularly and non-trivially in the case where n = rG + 1.
Our main purpose of this chapter is to prove the following:

Theorem 4.1.1. Let X be a smooth projective variety of dimension n and G
a simple, simply connected and connected linear algebraic group of exceptional
type acting regularly and non-trivially on X. Assume that n = rG + 1. Then
X is one of the following; the action of G is unique for each case:

(i) P6,

(ii) Q6,

(iii) E6(ω1),

(iv) G2(ω1 + ω2),

(v) Y × Z, where Y is E6(ω1), E7(ω1), E8(ω1), F4(ω1), F4(ω4), G2(ω1) or
G2(ω2) and Z is a smooth projective curve,
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(vi) P(OY ⊕ OY (m)), where Y is as in (v) and m > 0.

Note that G-orbits on X are very simple (for example a projective space
and a quadric) in the case where G is classical type, but they are not in our
case. So we need other arguments than Andreatta’s in several points.

4.2 Preliminaries

Lemma 4.2.1 ([And01, Lemma 1.4, 1.5]). Let X be a smooth projective
variety on which a connected linear algebraic group G acts regularly and
non-trivially. Then X has an extremal contraction ϕ : X → Z which is
G-equivariant, and G acts regularly on Z.

Definition 4.2.2 ([And01, Definition 1.8]). Let G be a simple linear al-
gebraic group. We define rG to be the minimal codimension of parabolic
subgroups of G.

Example 4.2.3 ([And01, Example 1.0.1]). If G is an exceptional linear al-
gebraic group, we have rE6 = 16, rE7 = 27, rE8 = 57, rF4 = 15 and rG2 = 5.

Proposition 4.2.4 ([And01, Proposition 2.1]). Suppose that a connected re-
ductive linear algebraic group G acts effectively on a complete normal variety
Z. Then the followings are equivalent:

(i) There exists a fixed point z such that its projectivized tangent cone, that
is the variety Pz = Proj(

⊕
km

k
z/m

k+1
z ), is a G-homogeneous variety.

(ii) Z is a projective quasi-homogeneous cone over a homogeneous variety
with respect to G.

Proposition 4.2.5 ([And01, Lemma 2.2 and Proposition 3.1]). Let X be
a smooth projective variety of dimension n and G a simple, simply con-
nected, connected linear algebraic group acting regularly and non-trivially on
X. Then;

(i) n ≥ rG;

(ii) if moreover n = rG, then X is homogeneous;

(iii) if G is exceptional and n = rG + 1, X has no fixed points.
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Lemma 4.2.6 ([And01, Lemma 4.2]). Let X and Y be smooth projective
varieties on which a simple exceptional linear algebraic group G acts regularly
and non-trivially. Assume that rG = dim X − 1 = dim Y − 1. If X and Y
each have a dense open orbit which is G-isomorphic, then we have a G-
isomorphism X ∼= Y .

Proposition 4.2.7 (Theorem 3.1.1, [Wat08]). Let X be a smooth projective
variety and A a rational homogeneous variety G(ω), where G is exceptional.
If A is an ample divisor on X, (X,A) is isomorphic to (P6, Q5), (Q6, Q5) or
(E6(ω1), F4(ω4)).

Remark that a 5-dimensional smooth quadric Q5 is G2-homogeneous.

4.3 Proof of the Main Theorem

By Lemma 4.2.1 we have a G-equivariant extremal contraction of a ray
ϕ : X → Z.

Assume that ρ(X) ≥ 2.
The case where ϕ is birational. Let ϕ be birational and E the exceptional

locus of ϕ. Since rG is equal to n−1 and X has no fixed points, ϕ is a divisorial
contraction and E is contracted to a point z. Furthermore E is isomorphic
to E6(ω1)(= E6(ω5)), E7(ω1), E8(ω1), F4(ω1), F4(ω4), G2(ω1)(= Q5) and
G2(ω2). The conormal bundle of the exceptional divisor is NE/X

∗ ∼= O(k)
with 1 ≤ k ≤ i(E) − 1, where i(E) is the Fano index of E.

Applying Proposition 4.2.4, we see that X is a completion of an open orbit
G/K (see [Akh77]). Here K is the kernel of the character map ρ : P → C∗

associated to the homogeneous line bundle NE/X
∗ ∼= O(k), where P is the

parabolic subgroup which satisfies E ∼= G/P .
On the other hand, Xk = P(NE/X

∗ ⊕ O) is also a completion of an open
orbit G/K. By Lemma 4.2.6, X is isomorphic to Xk = P(NE/X

∗ ⊕ O).
The case where ϕ is a fibering type. Let ϕ be a contraction of fibering

type.
First we assume that the induced action of G on Z is trivial. In this

case, any fiber of ϕ is isomorphic to E6(ω1), E7(ω1), E8(ω1), F4(ω1), F4(ω4),
G2(ω1) or G2(ω2) and dim Z = 1. Since rational homogeneous varieties are
locally rigid, there is no ϕ which has both F4(ω1) and F4(ω4) (resp. G2(ω1)
and G2(ω2)) as fibers. So all fibers of ϕ are isomorphic to each other. Then
we have X = E6(ω1) × Z, E7(ω1) × Z, E8(ω1) × Z, F4(ω1) × Z, F4(ω4) × Z,
G2(ω1) × Z or G2(ω2) × Z. This follows from [Mab79, Theorem 1.2.1].

Second we assume that the induced action of G on Z is not trivial. Then
Z is isomorphic to E6(ω1), E7(ω1), E8(ω1), F4(ω1), F4(ω4), G2(ω1) or G2(ω2).
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It follows that all fibers have dimension one. Moreover, all fibers of ϕ are
isomorphic to each other. So ϕ is a conic bundle which fibers are isomorphic
to P1. Since the Brauer group of Z is trivial, X is P(E) with E a rank 2
vector bundle on Z.

The assumption that n = rG + 1 implies that the dimension of any orbit
of G in P(E) is at least n − 1. If P(E) is G-homogeneous, then P(E) has
another natural fibration structure P(E) → Z ′, where Z ′ is a G-homogeneous
variety whose Picard number is 1 (see [BE89, 2.4]). Since dim Z + 1 =
dim X > dim Z ′, (Z,Z ′) (or (Z ′, Z) ) is (E6(ω1), E6(ω5)), (F4(ω1), F4(ω4)) or
(G2(ω1), G2(ω2)) (see [Sno89, 9.3]). However, if (Z,Z ′) is (E6(ω1), E6(ω5))
or (F4(ω1), F4(ω4)), the fiber of P(E) → Z is not P1. Hence (Z,Z ′) is
(G2(ω1), G2(ω2)) and we have P(E) ∼= G2(ω1 + ω2).

If P(E) is not G-homogeneous, we have the G-orbit decomposition P(E) =
(
⊔

i∈IGxi) or P(E) = Gx ⊔ (
⊔

i∈IGxi), where x, xi ∈ P(E). Here, Gx is a G-
orbit of dimension n and Gxi is a rational homogeneous variety of dimension
n − 1 whose Picard number is 1. Since dim Gxi = dim Z, ϕGxi

: Gxi → Z
is a finite morphism. If the ramification divisor R of ϕGxi

is not empty, G
acts on R. But this contradicts homogeneity of Gxi. So ϕGxi

is étale. Hence
we see that ϕGxi

: Gxi → Z is isomorphic, because a Fano variety is simply
connected. So Gxi is a section of ϕ. Since any G-homogeneous vector bundle
has no a transitive action of G, we have ♯I ̸= 1. So P(E) has two sections
which do not intersect each other. Hence E is decomposable. The uniqueness
of action can be proved as above.

Assume that ρ(X) = 1. By using the list of parabolic subgroups of
codimension n corresponding to one node of the Dynkin diagram, we see that
X is not G-homogeneous. So X has a closed orbit H which is isomorphic
to E6(ω1), E7(ω1), E8(ω1), F4(ω1), F4(ω4), G2(ω1) or G2(ω2). ρ(X) = 1
implies X is a Fano variety. Furthermore, Pic(X) ∼= Z. Hence H is an ample
divisor of X. By Proposition 4.2.7, we see that (X,H) is (P6, Q5), (Q6, Q5)
or (E6(ω1), F4(ω4)).

These X satisfy the assumption of the Theorem. In fact, we see that
F4 ⊂ E6, G2 ⊂ SO(7) ⊂ SO(8). Here SO(k) means the special orthogonal
group.

At last, we shall prove the uniqueness of action. We only deal with the
case where X is E6(ω1). We can prove other cases as the same.

Let V27 be the irreducible representation space of E6 with highest weight
ω1. Then E6 acts on V27. If G whose Dynkin type is F4 acts on E6(ω1), we
obtain a 27-dimensional representation G → GL(V27). By the Weyl dimen-
sion theorem and our assumption, it is easy to see that V27 is a direct sum
of a 26-dimensional irreducible representation space V26 and a 1-dimensional
irreducible representation space V1. Furthermore, we see that irreducible rep-
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resentations G → GL(V26) and G → GL(V1) are unique. This implies that
the action of G on E6(ω1) is unique.
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Chapter 5

Lengths of chains of minimal
rational curves on Fano
manifolds

5.1 Introduction

For a Fano manifold, a minimal rational component K is defined to be
a dominating irreducible component of the normalization of the parameter
space of rational curves whose degree is minimal among such components and
a variety of minimal rational tangents is the parameter space of the tangent
directions of K -curves at a general point. Nowadays these two objects often
appear in the study of Fano manifolds [Hwa01, KS06]. On the other hand,
chains of rational curves also play an important role in the study of Fano
manifolds. For instance, Kollár-Miyaoka-Mori [KMM92II] and Nadel [Nad91]
independently showed the boundedness of the degree of Fano manifolds of
Picard number 1 by using chains of rational curves. From these viewpoints, it
is a natural question how many rational curves in the family K are needed
to join two general points. We denote by lK the minimal length of such
chains of general K -curves. In this direction, Hwang and Kebekus [HK05]
developed an infinitesimal method to study the lengths of Fano manifolds
via the varieties of minimal rational tangents. They also dealt with some
examples when the varieties of minimal rational tangents and those secant
varieties are simple, such as complete intersections, Hermitian symmetric
spaces and homogeneous contact manifolds. Furthermore the following was
obtained.

Theorem 5.1.1 ([HK05, IR07]). Let X be a prime Fano n-fold of Picard
number 1. If the Fano index iX satisfies n + 1 > iX > 2

3
n, then lK = 2.
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A Fano manifold is prime if the ample generator of the Picard group is
very ample. Our original motivation of this chapter is to compute the lengths
of Fano manifolds of coindex ≤ 3. By the above theorem, it is sufficient to
consider the cases where n ≤ 5, (n, iX) = (6, 4) and X is non-prime. Remark
that non-prime Fano manifolds of coindex ≤ 3 admit double cover structures
[Fuj80I, Fuj80II, Fuj81I, Muk89, Mel99]. First we show the following by using
the method of Hwang and Kebekus (Precise definitions of notations are given
in Section 2 and 4.):

Theorem 5.1.2 (Theorem 5.5.2, Theorem 5.5.7). Let X be a Fano n-fold
of Picard number 1, K a minimal rational component of X and p + 2 the
anti-canonical degree of rational curves in K . Then if p = n − 3 > 0, we
have lK = 2 and if (n, p) = (5, 1), we have lK = 3.

By combining this theorem and well-known or easy arguments, we obtain
the following table (see Remark 5.4.7, Theorem 5.5.4 and Theorem 5.5.8). In
particular, when n ≤ 5, lK depends only on (n, p).

n p lK n p lK n p lK

3 2 1 4 3 1 5 4 1
3 1 2 4 2 2 5 3 2
3 0 3 4 1 2 5 2 2

4 0 4 5 1 3
5 0 5

On the other hand, the following shows lK does not depend only on (n, p)
in general.

Theorem 5.1.3 (Theorem 5.6.4). Let X be a Fano manifold of Picard num-
ber 1 with coindex 3 and K a minimal rational component of X. Assume
that n := dim X ≥ 6. Then lK = 2 except the case X is a 6-dimensional
Lagrangian Grassmannian LG(3, 6). In the case X = LG(3, 6), we have
lK = 3.

As a consequence, we obtain the following table.

X iX lK

Pn n + 1 1
Qn n 2

del Pezzo mfd. of dim. n n − 1 2
Mukai mfd. of dim. n ≥ 7 n − 2 2

Mukai mfd. of dim. 6 4 2 or 3
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In Theorem 5.6.11, we give a classification of prime Fano n-folds satisfy-
ing iX = 2

3
n and lK ̸= 2. These are extremal cases of Theorem 5.1.1. Except

the case n = 3, these varieties are deeply related to Severi varieties which
were classified by Zak Theorem 2.3.6, [Zak93] (see Corollary 5.6.12). Further-
more, for prime Fano manifolds, we discuss a relation among 2-connectedness
by lines, conic-connectedness and defectiveness of the secant varieties (Corol-
lary 5.6.12 and Remark 5.6.13). In the last section, we investigate Fano
manifolds which equip with structures of double covers and are covered by
rational curves of degree 1, by a geometric argument without using varieties
of minimal rational tangents. In Proposition 5.7.1, we give a criterion for such
Fano manifolds to be 2-connected. Remark that all Fano manifolds dealt in
[HK05] as examples are prime. However our cases include some non-prime
Fano manifolds.

5.2 Deformation theory of rational curves and

varieties of minimal rational tangents

First we review some basic facts of deformation theory of rational curves
and the definition of varieties of minimal rational tangents. For detail, we
refer to [Hwa01, Kol96] and follow the conventions of them. In particular, a
smooth projective variety with ample anti-canonical divisor is called a Fano
manifold.

Throughout this chapter, unless otherwise noted, we always assume that
X is a Fano manifold of Pic(X) ∼= Z[OX(1)], where OX(1) is the ample
generator, and denote by RatCurvesn(X) the normalization of the space of
integral rational curves on X. We also assume n := dim X ≥ 3. We denote
by iX the Fano index of X which is the integer satisfying ωX

∼= OX(−iX),
where ωX is the canonical line bundle of X. We call n + 1 − iX the coindex
of X.

As is well-known, a Fano manifold is uniruled. It is equivalent to the
condition that there exists a free rational curve f : P1 → X. Here we
call a rational curve f : P1 → X free if f ∗TX is semipositive. An irreducible
component K of RatCurvesn(X) is called a minimal rational component if it
contains a free rational curve of minimal anti-canonical degree. We denote by
Kx the normalization of the subscheme of K parametrizing rational curves
passing through x. Since each member of K is numerically equivalent, we
can define the OX(1)-degree of K which is denoted by dK . We will use the
symbol p to denote iXdK −2. In this setting, the minimal rational component
K satisfies the following fundamental properties.
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Proposition 5.2.1 (see [Hwa01]). (i) For a general point x ∈ X, Kx is
a disjoint union of smooth projective varieties of dimension p.

(ii) For a general member [f ] of K , f∗TX
∼= O(2)⊕O(1)p ⊕On−1−p which

is called a standard rational curve. In particular, p ≤ n − 1.

For a general point x ∈ X, we define the tangent map τx : Kx → P∗(TxX)
by assigning the tangent vector at x to each member of Kx which is smooth
at x. We denote by Cx ⊂ P∗(TxX) the image of τx, which is called the variety
of minimal rational tangents at x.

Theorem 5.2.2 ([HM04, Keb02II]). The tangent map τx : Kx → Cx ⊂
P∗(TxX) is the normalization.

Theorem 5.2.3 ([CMS02, Keb02I]). If p = n − 1, namely Cx = P∗(TxX),
then X is isomorphic to Pn.

Theorem 5.2.4 ([HH08]). Let S = G/P a rational homogeneous variety
corresponding to a long simple root and Co ⊂ P∗(ToS) the variety of minimal
rational tangents at a reference point o ∈ S. Assume Co ⊂ P∗(ToS) and Cx ⊂
P∗(TxX) are isomorphic as projective subvarieties. Then X is isomorphic to
S.

Theorem 5.2.5 ([Miy04]). If X is a Fano manifold of n := dim X ≥ 3, the
following are equivalent.

(i) X is isomorphic to a smooth quadric hypersurface Qn.

(ii) The Picard number of X is 1 and the minimal value of the anti-canonical
degree of rational curves passing through a very general point x0 ∈ X
is equal to n.

Corollary 5.2.6. If p = n − 2, namely Cx ⊂ P∗(TxX) is a hypersurface, X
is isomorphic to Qn.

Proof. For a very general point x0 ∈ X, any rational curve passing through
x0 is free. Let C0 be a rational curve passing through x0 whose degree is
minimal among such rational curves and H ⊂ RatCurvesn(X) an irreducible
component containing [C0]. Then H is a dominating family. It implies
that the anticanonical degree of H is equal to one of K . Furthermore
the anticanonical degree of K is n from our assumption. Therefore X is
isomorphic to Qn by Theorem 5.2.5.
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5.3 Varieties of minimal rational tangents in

the cases p = n − 3 and (n, p) = (5, 1)

Proposition 5.3.1 ([Hwa01, Proposition 1.4, Proposition 1.5, Theorem 2.5],
[Hwa03, Proposition 2, Proposition 5], [Hwa07, Proposition 2.2]). Let X, K
and p be as in Section 2 and Cx the variety of minimal rational tangents
associated to K at a general point x ∈ X.

(i) The tangent map τx : Kx → Cx ⊂ P∗(TxX) is an immersion at [C] ∈
Kx if C is a standard rational curve on X.

(ii) If X ⊂ PN is covered by lines, the tangent map τx is an embedding.
In particular, Cx is a disjoint union of smooth projective varieties of
dimension p.

(iii) If 2p > n − 3 and Cx is smooth, Cx ⊂ P∗(TxX) is non-degenerate.

(iv) If Cx is reducible, it has at least three components.

(v) If Cx is a union of linear subspaces of dimension p > 0, each component
is disjoint.

(vi) Cx cannot be an irreducible linear subspace.

Proposition 5.3.2 ([HM98, Proposition 9]). Let X, K and Cx be as above,
P∗(Wx) the linear span of Cx, Tx ⊂ P∗(∧2Wx) the subvariety parametrizing
tangent lines of smooth locus of Cx and [ , ]x : ∧2Wx → TxX/Wx is the Frobe-
nius bracket tensor. Then Tx is contained in P∗(Ker([ , ]x)) ⊂ P∗(∧2Wx).

Lemma 5.3.3. If X ⊂ P∗(V ) is an irreducible hypersurface which is not
linear, then its variety of tangential lines TX ⊂ P∗(∧2V ) is non-degenerate.

Proof. Assume that TX ⊂ P∗(∧2V ) is degenerate. We denote by C(X) ⊂ V
the cone corresponding to X ⊂ P∗(V ). Then there exists a nonzero ω ∈ ∧2V ∗

such that C(X) is isotropic with respect to ω. We set Q := {v ∈ V |ω(v, w) =
0 for any w ∈ V }. ω induces a nonzero symplectic form on V/Q. For the
projection π : V → V/Q, it follows 2 dim π(C(X)) ≤ dim V/Q. Remark
that dim V − 1 = dim C(X). Therefore we have an inequality dim V/Q ≤ 2.
Since π(C(X)) is not V/Q and {0}, it implies that π(C(X)) ⊂ V/Q is a line.
Hence C(X) ⊂ V is a hyperplane. This contradicts the non-linearity of X.

Proposition 5.3.4 ([Hwa98, Proposition 2]). Let X, K , Cx, Wx be as in
Proposition 5.3.2 and W be the distribution defined by Wx for general x ∈ X.
Then W is integrable if and only if Wx coincides with TxX for general x ∈ X.
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Proposition 5.3.5 (cf. [Hwa03, Proposition 7]). Let X be a Fano n-fold
of Picard number 1 and K a minimal rational component of X with p =
n − 3 > 0. Then the variety of minimal rational tangents Cx ⊂ P∗(TxX) at
a general point x ∈ X is one of the following:

(i) a non-degenerate variety with no linear component, or

(ii) a disjoint union of at least three lines.

Proof. First assume that Cx has a linear component. Then every component
of Cx is linear. By Proposition 5.3.1, Cx is a disjoint union of at least three
linear subspaces. Let Cx,1 and Cx,2 be distinct components of Cx. Since
dim Cx,1 + dim Cx,2 − dim P∗(TxX) = n− 5, we have Cx,1 ∩Cx,2 ̸= ∅ if n ≥ 5.
This implies n = 4 and Cx is a disjoint union of at least three lines.

Second assume that Cx has no linear components. We will show that
Cx ⊂ P∗(TxX) is non-degenerate. Suppose Cx ⊂ P∗(TxX) is degenerate.
Let P∗(Wx) be the linear span of Cx and Tx ⊂ P∗(∧2Wx) be the subvariety
parametrizing tangent lines of smooth locus of Cx. By Proposition 5.3.2, we
have Tx ⊂ P∗(Ker([ , ]x)) ⊂ P∗(∧2Wx) where [ , ]x : ∧2Wx → TxX/Wx

is the Frobenius bracket tensor. Lemma 5.3.3 implies that Tx ⊂ P∗(∧2Wx)
is non-degenerate. Therefore P∗(Ker([ , ]x)) coincides with P∗(∧2Wx). Ap-
plying Frobenius Theorem, the distribution W defined by Wx is integrable.
However, this contradicts Proposition 5.3.4.

By the same argument, we can show the following:

Proposition 5.3.6. If (n, p) = (5, 1), then the variety of minimal ratio-
nal tangents Cx ⊂ P∗(TxX) at a general point x ∈ X satisfies one of the
following:

(i) a curve with no linear component whose linear span < Cx > has di-
mension at least 3, or

(ii) a disjoint union of at least three lines.

5.4 Spanning dimensions of loci of chains

Definition 5.4.1 ([HK05]). For a general point x ∈ X, we define

loc1(x) :=
∪

[C]∈Kx

C and lock+1(x) :=
∪

[C]∈Ky for general y∈lock(x)

C induc-

tively.
We denote the maximal value of the dimensions of irreducible components

of lock(x) by dk.
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Definition 5.4.2 ([HK05]). If there exists an integer l such that dl = dim X
but dl−1 < dim X, we say that X has length l with respect to K , or X is
l-connected by K . We denote by lK the length.

By our assumption that the Picard number of X is 1, we can define the
length.

Proposition 5.4.3 ([KMM92I], [KMM92II, Lemma 1.3], [Nad91] and [Kol96,
Corollary IV.4.14]). Under our assumption that X is a Fano manifold of Pi-
card number 1, lK ≤ dim X.

Definition 5.4.4. For varieties X,Y ⊂ PN , we define the join of X and
Y by the closure of the union of lines passing through distinct two points
x ∈ X and y ∈ Y and denote by S(X,Y ). In the special case that X = Y ,
S1X := S(X,X) is called the secant variety of X.

In [HK05], Hwang and Kebekus computed the first spanning dimension
d1 and gave a lower bound of the second d2 (resp. dk) under the assumption
Kx is irreducible for a general point x ∈ X by using the secant variety of the
variety of minimal rational tangents. However their proof works even if we
drop the assumption on the irreducibility of Kx.

Theorem 5.4.5 ([HK05, KS06]). Without the assumption that Kx is irre-
ducible for a general point x ∈ X,

(i) d1 = p + 1, dk ≤ k(p + 1),

(ii) d2 ≥ dim S1Cx + 1, if p > 0.

Proof. The former follows from Mori’s Bend and Break and an easy induction
on k. For the later, there is a proof on [KS06] which is easier than one on
[HK05].

Lemma 5.4.6. If p = 0, we have lK = n.

Proof. We have an inequality dk+1 ≤ dk + 1. In particular, dk ≤ k. By
combining Proposition 5.4.3, we obtain our assertion.

Remark 5.4.7. If X is a Fano 3-fold of Picard number 1 which is not iso-
morphic to P3 and Q3, then lK = 3. Hence in the 3-dimensional case, we
have the following table:

p iX X lK dK

2 4 P3 1 1
1 3 Q3 2 1
0 2 del Pezzo 3 1
0 1 Mukai 3 2
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5.5 Lengths of Fano manifolds of dimension

≤ 5

Lemma 5.5.1. Let X ̸= Y ⊂ Pn+2 be irreducible projective varieties of
dimension n. Then

(i) S(X,Y ) = Pn+2 if X ∪ Y is non-degenerate.

(ii) S1X = Pn+2 if X ⊂ Pn+2 is a non-degenerate variety which is not
linear.

Proof. (i) Assume that X∪Y ⊂ Pn+2 is non-degenerate and S(X,Y ) ̸= Pn+2.
Then dim S(X,Y ) = dim X +1 = dim Y +1 holds. This implies that X,Y ⊂
Vert(S(X,Y )). Here we denote the vertex of an irreducible projective variety
Z ⊂ PN by Vert(Z) := {p ∈ Z|S(p, Z) = Z}. It is well-known that the vertex
Vert(Z) ⊂ PN is a linear subspace (see [FOV99, Proposition 4.6.2]). Thus
we have X ∪ Y ⊂ Vert(S(X,Y )) = Pn+1 ⊂ Pn+2. This contradicts our
assumption.

(ii) This is easy. For example, we can show this by the same argument as
in (i).

Theorem 5.5.2. Let X be a Fano manifold of Picard number 1 with n =
dim X ≥ 4. Assume that X has a minimal rational component K with
p = n − 3 > 0. Then X is 2-connected by K . In particular, if the Fano
index iX is n − 1, then X is 2-connected by lines.

Proof. By Proposition 5.3.5, the variety of minimal rational tangents Cx ⊂
P∗(TxX) is

(i) a non-degenerate variety with no linear component, or

(ii) a disjoint union of at least three lines.

Let Cx be as in (i). If Cx is irreducible, Lemma 5.5.1 implies S1Cx = P∗(TxX).
On the other hand, in the case where Cx is reducible, S1Cx = P∗(TxX)
also holds. In fact, for the irreducible decomposition Cx = Cx,1 ∪ · · · ∪
Cx,m, we assume that S(Cx,i, Cx,j) ̸= P∗(TxX) for any i, j. Then we see
dim S(Cx,i,Cx,j) = n − 2. Hence S(Cx,i,Cx,j) is a linear subspace Pn−2 ⊂
P∗(TxX) (see the proof of Lemma 5.5.1). It turns out from Proposition 5.3.1
that m ≥ 3. Because Cx ⊂ P∗(TxX) is non-degenerate, there exists j such
that S(Cx,1,Cx,2) ̸= S(Cx,1, Cx,j). We may assume such j is 3. We have Cx,1 ⊂
S(Cx,1,Cx,2)∩S(Cx,1, Cx,3). Furthermore since S(Cx,1, Cx,2) and S(Cx,1, Cx,3)
are distinct linear subspaces of dimension n− 2, these intersection is a linear
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subspace of dimension n−3. Thus we have Cx,1 = S(Cx,1,Cx,2)∩S(Cx,1,Cx,3).
However this contradicts our assumption Cx has no linear components. If Cx

is as in (ii), we also have S1Cx = P∗(TxX).
As a consequence, in any case we have S1Cx = P∗(TxX). This implies

that d2 = n. On the other hand, since d1 = p + 1 = n − 2 < n, X is
2-connected by K . If iX = n − 1 ≥ 3, then it follows from the equation
p + 2 = iXdK that p = n − 3.

Remark 5.5.3. If X is a prime Fano manifold with iX = n − 1 which is a
del Pezzo manifold whose degree is at least 3, then the latter statement of
the above theorem follows from Theorem 5.1.1.

Theorem 5.5.4. Let X be a Fano 4-fold of Picard number 1. Then we have
the following table:

p iX X lK dK

3 5 P4 1 1
2 4 Q4 2 1
1 3 del Pezzo 2 1
1 1 coindex 4 2 3
0 2 Mukai 4 1
0 1 coindex 4 4 2

Proof. The computation of the length with respect to K is an immedi-
ate consequence of Theorem 5.2.3, Corollary 5.2.6, Lemma 5.4.6 and Theo-
rem 5.5.2. The other parts follow from the relation p + 2 = iXdK .

Lemma 5.5.5. For an irreducible non-degenerate projective curve C ⊂ PN ,
dim S1C = min{3, N}.

Lemma 5.5.6 ([FOV99, Remark 4.6.10]). For two distinct integral curves
C,D ⊂ PN , dim S(C,D) = 2 holds if and only if C ∪ D is a plane curve.

Theorem 5.5.7. Let X be a Fano 5-fold of Picard number 1. Assume that
X has a minimal rational component K with p = 1. Then X is 3-connected
by K .

Proof. By the same argument as in Theorem 5.5.2, we can prove this theo-
rem. In fact, Proposition 5.3.6, Lemma 5.5.5 and Lemma 5.5.6 implies that
dim S1Cx ≥ 3 for the variety of minimal rational tangents Cx ⊂ P∗(TxX).
It turns out that d2 ≥ 4. Because d2 ≤ 2(p + 1) = 4, d2 = 4. Hence X is
3-connected by K .
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Theorem 5.5.8. Let X be a Fano 5-fold of Picard number 1. Then we have
the following table:

p iX X lK dK

4 6 P5 1 1
3 5 Q5 2 1
2 4 del Pezzo 2 1
2 2 coindex 4 2 2
2 1 coindex 5 2 4
1 3 Mukai 3 1
1 1 coindex 5 3 3
0 2 coindex 4 5 1
0 1 coindex 5 5 2

Proof. The computation of the length with respect to K is an immediate
consequence of Theorem 5.2.3, Corollary 5.2.6, Lemma 5.4.6, Theorem 5.5.2
and Theorem 5.5.7. The other parts follow from the relation p + 2 = iXdK .

5.6 Lengths of Fano manifolds of coindex 3

In this section, we study Fano manifolds of coindex 3. Because we already
dealt with the case where n := dim X ≤ 5 in Theorem 5.1.2, we study the
case where n ≥ 6.

Proposition 5.6.1 ([KK04]). Let X be a projective variety and H a proper
dominating family of rational curves such that none of the associated curves
has a cuspidal singularity.

(i) For general x ∈ X, all curves in H passing through x are smooth at x
and no two of them share a common tangent direction at x.

(ii) Assume that for general x ∈ X and any irreducible component H ′ ⊂
H , dim H ′

x ≥ dim X−1
2

holds. Then Hx is irreducible. In particular,
H is irreducible.

Lemma 5.6.2 ([BS95, Corollary 1.4.3]). Let C be an integral curve and L a
spanned line bundle of degree 1 on C. Then (C,L) ∼= (P1, OP1(1)).

Notation 5.6.3. We denote by (d1) ∩ · · · ∩ (dk) ⊂ Pn a smooth complete
intersection of hypersurfaces of degrees d1, . . . , dk, in particular, by (d)k if
d = d1 = · · · = dk. We denote by G(k, n) a Grassmannian of k-planes in
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Cn, by LG(k, n) a Lagrangian Grassmannian which is the variety of isotropic
k-planes for a non-degenerate skew-symmetric bilinear form on Cn, by Sk

the spinor variety which is an irreducible component of the Fano variety of
k-planes in Q2k.

Theorem 5.6.4. Let X be a Fano manifold of coindex 3 with Pic(X) ∼=
Z[OX(1)] and K a minimal rational component of X. Assume that n :=
dim X ≥ 6. Then (lK , dK ) = (2, 1) except the case X is a Lagrangian
Grassmannian LG(3, 6). In the case X = LG(3, 6) we have (lK , dK ) =
(3, 1).

Proof. We have an inequality n+1 ≥ p+2 = (n− 2)dK . It follows from our
assumption n ≥ 6 that (p, dK ) = (n − 4, 1).

By Iskovskikh Theorem [Isk80] or Mukai’s classification result of Fano
manifolds of coindex 3 [Muk89, Mel99], X is

(i) a prime Fano manifold, which means OX(1) is very ample,

(ii) a double cover π : X → Pn with a branch divisor B ∈ |OPn(6)|, or

(iii) a double cover π : X → Qn with a branch divisor B ∈ |OQn(4)|.

Claim 5.6.5. For a general point x ∈ X, the variety of minimal rational tan-
gent Cx ⊂ P∗(TxX) is an equidimensional disjoint union of smooth projective
varieties.

When X is prime, this follows from Proposition 5.3.1. So we assume X
is as in (ii) or (iii). We denote by Y the target of π which is Pn or Qn. By
Proposition 5.2.1 it is sufficient to show that the tangent map τx : Kx → Cx

is isomorphic.
Since OX(1) is spanned and dK = 1, Lemma 5.6.2 implies that any l in K

is isomorphic to P1. Furthermore Proposition 5.6.1 implies that τx is bijective.
For [l] ∈ Kx we have OX(1).l = 1. Therefore π(l) ⊂ Y is a standard line and
πl : l → π(l) is an isomorphism. According to the generality of x ∈ X, we
may assume that l is free and the natural morphism between normal bundles
Nl/X → Nπ(l)/Y is generically surjective. Since Nl/X is semipositive, l ⊂ X is
a standard rational curve. Hence by Proposition 5.3.1, τx is an immersion.
As a consequence, we see τx is an embedding. So our claim holds.

Since n ≥ 6, Proposition 5.3.1 implies that Cx ⊂ P∗(TxX) is non-degenerate.
When n ≥ 7, we see Cx is irreducible. In fact, if there are distinct irreducible
components Cx,1, Cx,2 of Cx, we see dim Cx,1 + dim Cx,2 − dim P∗(TxX) ≥ 0.
This implies that Cx,1 ∩ Cx,2 ̸= ϕ. This contradicts the above claim. Ac-
cording to Zak’s theorem on linear normality [Zak93] and Theorem 5.4.5, we
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have lK = 2. So it remains to prove the case n = 6. If there exists an ir-
reducible component of Cx whose secant variety coincides with P∗(TxX), we
have lK = 2. Therefore we assume that the secant variety of any irreducible
component of Cx does not coincide with P∗(TxX). If Cx is irreducible, then it
is the Veronese surface v2(P2) ⊂ P5. This follows from Zak’s classification of
Severi varieties [Zak93]. Here remark that the Veronese surface is the variety
of minimal rational tangents of the Lagrangian Grassmannian LG(3, 6) at a
general point (see [HM02, Eli02, LM03]). Thus in this case X is isomorphic
to LG(3, 6) by Theorem 5.2.4. Because the secant variety of the Veronese
surface is a hypersurface, it implies that d2 = 4. Therefore we have lK = 3.
If Cx is reducible, there exists disjoint irreducible components V1 and V2. Re-
mark that we assumed that S1Vi does not coincide with P∗(TxX) for i = 1, 2.
If dim S(V1, V2) ≤ 4, we have a point q ∈ P5 \ S(V1, V2) ∪ S1V1 ∪ S1V2. For a
projection πq from a point q, πq(Vi) ⊂ P4 is a surface. Hence it turns out that
πq(V1)∩πq(V2) ⊂ P4 is non-empty. This contradicts q ∈ S(V1, V2). Therefore
we have S(V1, V2) = P∗(TxX). In particular, S1Cx = P∗(TxX) and lK = 2.

Here we remark a relation between 2-connectedness by lines and conic-
connectedness.

Definition 5.6.6 ([KS02, IR07]). For a projective manifold X ⊂ PN , we
call X conic-connected if there exists an irreducible conic passing through
two general points on X.

Lemma 5.6.7 (cf. [IR07]). Let X ⊂ PN be a projective manifold which is
covered by lines. Then

(i) if two general points on X are connected by two lines, X is conic-
connected;

(ii) if X is conic-connected, then the Fano index iX is at least n+1
2

.

(iii) Assume that X is conic-connected. Then two general points on X are
not connected by two lines if and only if iX = n+1

2
.

Proof. (i) is well-known to the experts (see [KMM92I], [Deb01, Proof of
Proposition 5.8]). Suppose that two general points x1, x2 ∈ X are connected
by two lines l1, l2. Then, without loss of generality, we may assume such
two lines are free. By the gluing lemma, there exists a smoothing (π : C →
(T, 0), F : C → X, s1) of l1 ∪ l2 ⊂ X fixing x1, where s1 : T → C is a section
of π such that s1(0) = x1 ∈ π−1(0) ∼= l1 ∪ l2 and F ◦ s1(T ) = {x1} (see
[Kol96, Chapter II.7]). According to a suitable base change, we may assume
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that there exists a section s2 of π such that s2(0) = x2 ∈ π−1(0) ∼= l1 ∪ l2.
Let Z ⊂ X ×X be the set of points (y1, y2) ∈ X ×X which can be joined by
an irreducible conic in X. Then for a point t ̸= 0 in T , (s1(t), s2(t)) ∈ Z. It
turns out that (x1, x2) is contained in the closure of Z. By the generality of
(x1, x2) ∈ X × X, we see Z is dense in X × X. Consequently our assertion
holds.

(ii) is in [IR07]. If X is conic-connected, then there exists a smooth conic
C such that TX |C is ample. This implies that 2iX = deg TX |C ≥ n+1. Hence
(ii) holds.

(iii) Suppose that X is conic-connected and it is not 2-connected by lines.
Then for general two points x, y ∈ X there exists a smooth conic f : P1 ∼=
C ⊂ X passing through x and y such that TX |C is ample. This implies that
H1(P1, f ∗TX(−2)) = 0. Hence there is no obstruction in the deformation of
f fixing the marked points x, y. It turns out that

dim[f ] Hom(P1, X : f(0) = x, f(∞) = y) = 2iX − n. (5.1)

If 2iX − n ≥ 2, Mori’s Bend and Break implies C degenerates into a union
of two lines containing x and y. This is a contradiction. Hence 2iX − n ≤ 1.
By combining (ii), we have iX = n+1

2
. Conversely if the Fano index satisfies

iX = n+1
2

, it turns out from the same argument as in Theorem 5.4.5 (i) that
X is not 2-connected by lines.

Example 5.6.8. Let S4 ⊂ P15 be the 10-dimensional spinor variety and let
X be S4 or its linear section of dimension n ≥ 6. Then X is a Fano manifold
of coindex 3 with the genus g := Hn

2
+1 = 7, where H is the ample generator

of the Picard group of S4. There exists a 6-dimensional smooth quadric
passing through two general points on S4 [ES89]. So X is conic-connected
and 2-connected by lines. Hence two geneal points on X can be connected
by a chain of two lines which is obtained as a degeneration of a conic.

Example 5.6.9. Let X be a Grassmaniann G(2, 6) ⊂ P14 or its linear section
of dimension n ≥ 6. Then X is a Fano manifold of coindex 3 with the
genus g = 8. For two distinct points x, y ∈ G(2, 6), they correspond to 2-
dimensional vector subspaces Lx, Ly ⊂ C6. Then there exists a 4-dimensional
vector subspace V ⊂ C6 which contains the join < Lx, Ly >. This implies
that x, y is contained in a 4-dimensional quadric Q4 ∼= G(2, 4) ⊂ G(2, 6). So
X is conic-connected and 2-connected by lines.

Remark 5.6.10. X := G(2, 6)∩(1)3 ⊂ P14 is a 5-dimensional Fano manifold
of index 3. According to Theorem 5.5.8, X is 3-connected by lines. However
X is conic-connected. This example shows that our chain of minimal rational
curves connecting two general points is not necessary a chain with minimal
total degree.
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Theorem 5.6.11. Let X be a prime Fano n-fold with iX = 2
3
n and K a

minimal rational component of X. Then lK = 2 except the following cases:

(i) (3) ⊂ P4 a hypersurface of degree 3.

(ii) (2) ∩ (2) ⊂ P5 a complete intersection of two hyperquadrics.

(iii) G(2, 5) ∩ (1)3 ⊂ P6 a 3-dimensional linear section of G(2, 5).

(iv) LG(3, 6) a Lagrangian Grassmannian.

(v) G(3, 6) a Grassmannian.

(vi) S5 a spinor variety.

(vii) E7(ω1) a rational homogeneous manifold of type E7.

Furthermore in the cases (i) − (vii) we have lK = 3.

Proof. According to the assumption that 3iX = 2n, n is 3, 6, or at least 9.
If n = 3, X is a del Pezzo 3-fold. So Remark 5.4.7 implies that (lK , dK ) =
(3, 1). Hence X is isomorphic to one of the manifolds listed in (i), (ii) or (iii)
by the Fujita-Iskovskikh’s classification result [Fuj80I, Fuj80II, Fuj81I]. In
the case where n = 6, we have lK = 2 or X is LG(3, 6) by Theorem 5.6.4.

From here, we make the assumption n ≥ 9. In this case, we have
2iX > n + 1. So dK = 1, that is, X is covered by lines. By Proposi-
tion 5.3.1 the variety of minimal rational tangents Cx ⊂ P∗(TxX) is smooth
irreducible and non-degenerate. It follows from our assumption 2p ≥ n − 1.
Hence Cx ⊂ P∗(TxX) is a non-degenerate irreducible projective manifold of
dimension 2

3
n − 2. By Zak’s theorem on linear normality, a classification of

Severi varieties [Zak93] and the assumption that n ≥ 9, S1Cx = P∗(TxX)
or Cx ⊂ P∗(TxX) is isomorphic to the Segre product P2 × P2 ⊂ P8, the
Grassmann variety G(2, 6) ⊂ P14 or E6-variety E6(ω1) ⊂ P26. In the former
case Theorem 5.4.5 implies that lK = 2. So we assume the latter holds.
Remark that the above Segre variety, Grassmann variety and E6-variety are
varieties of minimal rational tangents of G(3, 6), S5 and E7(ω1) respectively
(For example, see [HM02, Eli02, LM03]). By Theorem 5.2.4, X is isomorphic
to one of these varieties. In this case, since Cx ⊂ P∗(TxX) is a Severi variety,
S1Cx ⊂ P∗(TxX) is a hypersurface [Zak93]. This implies d2 = n − 1 [HK05,
Theorem 3.14]. Hence lK = 3.

Corollary 5.6.12. Let X be a prime Fano n-fold of Picard number 1 with
iX = 2

3
n and K a minimal rational component of X. Assume that n ≥ 6.

Then the following are equivalent.
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(i) lK ̸= 2.

(ii) lK = 3.

(iii) X ⊂ P(H0(X, OX(1))) is not conic-connected.

(iv) The dimension of the secant variety S1X ⊂ P(H0(X, OX(1))) is 2n+1.

(v) The variety of minimal rational tangents Cx ⊂ P∗(TxX) at a general
point is a Severi variety.

(vi) X ⊂ P(H0(X, OX(1))) is projectively equivalent to one of the manifolds
listed in Theorem 5.6.11 (iv) − (vii).

Proof. By the above theorem and its proof, (i), (ii), (v) and (vi) are equivalent
to each other. In general, if X ⊂ PN is conic-connected, then the dimension
of the secant variety S1X is smaller than 2n + 1 (see [IR08, Proposition 3.2]
and [Rus09, Theorem 2.1]). Hence (iv) ⇒ (iii) holds. (iii) ⇒ (i) follows from
Lemma 5.6.7. Finally, (vi) ⇒ (iv) comes from [Kon88].

Remark 5.6.13. Corollary 5.6.12 and Theorem 5.1.1 implies that iX = 2
3
n

is also a boundary of conic-connectedness and defectiveness of the secant
variety (c.f. Remark 2.3.3):

Property iX > 2
3
n iX = 2

3
n iX = 2

3
n

lK 2 2 3
Conic-connectedness Yes Yes No

Defectiveness of the secant variety Yes Yes No

5.7 Lengths of Fano manifolds admitting the

structures of double covers

Let X be a Fano n-fold with Pic(X) ∼= Z[OX(1)], where OX(1) is ample
and n := dim X ≥ 3. In this section, we assume that X is a double cover
of a projective manifold π : X → Y . Barth-type Theorem [Laz80] implies
Pic(X) ∼= Pic(Y ) and π∗OY (1) ∼= OX(1), where OY (1) is the ample generator
of the Picard group of Y . It follows from the ramification formula of the
branched cover that Y is a Fano manifold. We denote by B ∈ |OY (b)|
the branch divisor of π and by R1 the family of rational curves of degree
1 RatCurvesn

1 (X). We assume that R1 is a dominating family. Then we
can define the k-th locus lock

R1
(x) and the length with respect to R1 as in

Definition 5.4.1 and Definition 5.4.2.
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Proposition 5.7.1. Let X and R1 be as in above. Then the following holds.

(i) For general x1, x2 ∈ X, π(loc1
R1

(x1)) ∩ π(loc1
R1

(x2)) ̸= ϕ if and only if
X is 2-connected by R1.

(ii) Under the assumption OY (1) is spanned, X is 2-connected by R1 if and
only if for general points y1, y2 ∈ Y there exists curves l1 ∋ y1, l2 ∋ y2

on Y such that l1 ∩ l2 ̸= ϕ, OY (1).li = 1 and lengthq(B ∩ li) ≡ 0 mod
2 for any q ∈ Y and i = 1, 2.

Proof. (i) The ”only if” part is trivial. We show the converse. Let x1, x2

be points on X which are not on the ramification locus of π and we set
y2 := π(x2). Then we have π−1(y2) = {x2, x2

′}. We assume there exists a
point z ∈ π(loc1

R1
(x1)) ∩ π(loc1

R1
(x2)). Then there exists a curve [lxi

] ∈ R1

such that xi ∈ lxi
and z ∈ π(lxi

) for i = 1, 2. Since π(lx2) ⊂ Y is a curve of
degree 1, π−1(π(lx2)) is a curve of degree 2. It follows from the inclusion lxi

⊂
π−1(π(lxi

)) that there exists a curve [lx2
′ ] ∈ R1,x2

′ such that π−1(π(lx2)) =
lx2∪lx2

′ . Our assumption implies that lx1∩lx2 ̸= ϕ or lx1∩lx2
′ ̸= ϕ. So x2 or x2

′

is contained in loc2
R1

(x1). This means π|loc2R1
(x1) : loc2

R1
(x1) → Y is dominant.

Since π|loc2R1
(x1) is proper, it is surjective. Hence we see X = loc2

R1
(x1).

(ii) Suppose that OY (1) is spanned. Let l be a rational curve on Y
satisfying OY (1).l = 1. π−1(l) is denoted by C. From (i), it is sufficient to
show the following claim.

Claim 5.7.2. C is reducible if and only if lengthq(B ∩ l) ≡ 0 mod 2 for any
q ∈ Y .

For the double cover π : X → Y , we have π∗OX
∼= OY ⊕ L−1, where L is

an ample line bundle on Y which satisfies L⊗2 ∼= OY (B). Furthermore there
exists a morphism X ↪→ L := Spec(SymL−1) over Y . Since X is a divisor
on L, we can obtain the defining equation of X on L. In particular, we
see that there exists a global section s ∈ Γ(C, πC

∗Ll) such that s2 = πC
∗ϕ,

where ϕ ∈ Γ(P1,OP1(b)) and (ϕ = 0) = l ∩ B as divisors of l. We may
assume that πC is unramified at ∞ ∈ P1. Then we see C is reducible if and
only if π−1

C (A1) is reducible. Without loss of generality, we may assume that

ϕ = (x − a1y) · · · (x − aby), where ai ∈ C and Γ(P1, OP1(b)) ∼=
⊕b

i=0 Cxiyb−i.
Furthermore we may assume π−1

C (A1) = (s2 = (x − a1) · · · (x − ab)) ⊂ A2.
Thus C is reducible if and only if the cardinality #{j|aj = ai} ≡ 0 mod 2
for any i. Hence we obtain our assertion.

Corollary 5.7.3. Let X, Y and R1 be as in above. If Y = Pn and n ≥ b,
then X is 2-connected by R1.
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Proof. There exists a standard rational curve f : P1 → X such that f∗TX
∼=

O(2) ⊕ O(1)p ⊕ On−1−p. By the ramification formula, the Fano index iX of
X is equal to n+1− b

2
. It follows from the assumption n ≥ b that iX > n+1

2
.

Hence we have deg f∗(P1) = 1 and p = n − b
2
− 1. For general two points

x1, x2 ∈ X,

dim π(loc1
R1

(x1)) + dim π(loc1
R1

(x2)) − dim Pn = 2(n − b

2
) − n = n − b ≥ 0.

(5.2)
Hence Proposition 5.7.1 implies that X is 2-connected by R1.

Corollary 5.7.4. Let X, Y and R1 be as in above. If Y ⊂ Pn+1 is a
hypersurface of degree d and n ≥ 2d + b − 1, then X is 2-connected by R1.

Proof. By the same argument as in Proposition 5.7.3, we see that there exists
a standard rational curve f : P1 → X such that degf∗(P1) = 1 and p =
n − b

2
− d. For general two points x1, x2 ∈ X,

dim π(loc1
R1

(x1)) + dim π(loc1
R1

(x2)) − dim Pn+1 ≥ 0. (5.3)

Thus X is 2-connected by R1.
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